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Principles of mechanics applied to bulk matter:

Mechanics of fluids        Mechanics of solids


Continuum Mechanics

A material can be called solid (rather than -perfect- fluid) 
if it can support a shearing force over the time scale of 

some natural process.


Shearing forces are directed parallel, rather than 
perpendicular, to the material surface on which they act.

Some basic definitions - 1



When a material is loaded at sufficiently low temperature, and/
or short time scale, and with sufficiently limited stress 

magnitude, its deformation is fully recovered upon uploading:

the material is elastic

If there is a permanent (plastic) deformation due to exposition 
to large stresses:


the material is elastic-plastic

If there is a permanent deformation (viscous or creep) due to 
time exposure to a stress, and that increases with time:

the material is viscoelastic (with elastic response), or


the material is visco-plastic (with partial elastic response)

Some basic definitions - 2



Normal stress acts perpendicular to the surface 


(F=normal force)

Tensile causes elongation Compressive causes shrinkage
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Stress as a measure of Force

σ = stretching force
cross sectional area
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Shear Stress as a measure of Force

τ = shear force
tangential area



 Modulus of Elasticity, E: 
  (also known as Young's modulus)

• Hooke's Law:

σ = E ε

σ

Linear- 
elastic

E

ε

F

F
simple 
tension 
test

E: stiffness (material’s resistance to elastic deformation) 

Linear Elastic Properties



Young’s modulus



A time-dependent perturbation of an elastic medium (e.g. a 
rupture, an earthquake, a meteorite impact, a nuclear explosion 
etc.) generates elastic waves emanating from the source region. 
These disturbances produce local changes in stress and strain. 


To understand the propagation of elastic waves we need to 
describe kinematically the deformation of our medium and the 
resulting forces (stress). The relation between deformation and 
stress is governed by elastic constants.


The time-dependence of these disturbances will lead us to the 
elastic wave equation as a consequence of conservation of 
energy and momentum. 

Elasticity Theory



Let us consider a point P0 at position r relative to some 
fixed origin and a second point Q0 displaced from P0 by 
dx
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Unstrained state: 
Relative position of point P0 w.r.t. 
Q0 is δx.  

Strained state: 
Relative position of point P0 has 
been displaced a distance u to P1  
and point Q0 a distance v to Q1.  

Relative position of point P1 w.r.t. 
Q1 is δy= δx+ δu. The change in 
relative position between Q and P 
is just δu.

Deformation



The relative displacement in the 
unstrained state is u(r). The 
relative displacement in the 
strained state is v=u(r+ δx).  

So finally we arrive at expressing 
the relative displacement due to 
strain: 

δu=u(r+ δx)-u(r) 

We now apply Taylor’s 
theorem in 3-D to arrive at: 
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What does this equation mean?

Linear Elasticity
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The partial derivatives of the 
vector components
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• symmetric 
•  strain

represent a second-rank tensor which can be resolved into a symmetric 
and anti-symmetric part:

• antisymmetric 
•  pure rotation

Linear Elasticity – symmetric part
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The symmetric part is called the  
strain tensor
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and describes the relation between deformation and displacement in linear 
elasticity. In 2-D this tensor looks like
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Linear Elasticity – strain tensor
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Thus

... in other words ... 
the eigenvalues are the relative change of length along the three 

coordinate axes

In arbitrary coordinates the diagonal elements 
are the relative change of length along the 

coordinate axes and the off-diagonal elements 
are the infinitesimal shear angles.

shear angle

Deformation tensor – its elements



The trace of a tensor is defined as the sum over the diagonal elements. 
Thus:  

This trace is linked to the volumetric change after deformation. 
Before deformation the volume was V0. Because the diagonal elements are 
the relative change of lengths along each direction, the new volume after 

deformation is 

... and neglecting higher-order terms ...

ε
ii
= ε

11
+ ε

22
+ ε

33

θ = ΔV
V

0

= ε
ii
=
∂u

i

∂x
i

=
∂u

1

∂x
1

+
∂u

2

∂x
2

+
∂u

3

∂x
3

= divu = ∇ • u

V = L
1
(1 + ε

11
)L

2
(1 + ε

22
)L

3
(1 + ε

33
)

V = L
1
L

2
L

3
1 + ε

ii( )  or  V
0

1 + ε
ii( )

Deformation tensor – trace



Stress - Traction (vector)

In an elastic body there are restoring forces if deformation takes place. These forces can 
be seen as acting on planes inside the body. Forces divided by an areas are called 
stresses.

In order for the deformed body to remain deformed these forces have to compensate 
each other. 

Traction vector cannot be completely 
described without the specification of the 
force (ΔF) and the surface (ΔS) on which 
it acts:

And from the linear momentum 
conservation, we can show that:


T(-n)=-T(n)

T(n) = lim
ΔS→0

ΔF
ΔS = dF

dS



Stress-Traction (cont.)

Stress acting on a given internal plane can be decomposed in 3 mutually 
orthogonal components: one normal (direct stress), tending to change the volume 

of the material, and two tangential (shear stress), tending to deform, to the 
surface. If we consider an infinitely small cube, aligned with a Cartesian reference 

system:
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Consider an infinitively small tethraedrum, whose 3 faces are oriented normally to the 
reference axes. The components of traction T, acting on the face whose normal is n can be 

written using the directional cosines referred to versor system ê 
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...and the stress state in a point of the material can be 
expressed  with:



Stress-strain relation

The relation between stress and strain in general is described by the tensor 
of elastic constants cijkl

From the symmetry of the stress and strain tensor and a thermodynamic 
condition if follows that the maximum number if independent constants of 
cijkl is 21. In an isotropic body, where the properties do not depend on 
direction, the relation reduces to 

where λ and μ  are the Lame parameters, θ is the dilatation and  δij is the 
Kronecker delta. 

Generalised Hooke’s Law

Hooke’s Law
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The complete stress tensor looks like

Mean stress (invariant respect to the coordinate system)  

Deviatoric stress: 

In the Earth the mean stress is essentially due to lithostatic load:
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Stress-strain relation - 2

P = − ρ(z) dz
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Elastic parameters 

Consider a stretching experiment where tension is applied to an isotropic

medium along a principal axis (say x).

For Poisson’s ratio we have  0<ν<0.5. 

A useful approximation is λ=μ (Poisson’s solid), then ν=0.25 and for fluids ν=0.5

Rigidity is the ratio of pure shear strain and the applied shear stress component

Bulk modulus of incompressibility is defined the ratio of pressure to volume change. Ideal 
fluid means no rigidity (µ = 0), thus λ  is the  incompressibility of a fluid.

Young's modulus ≡ E = −
σ
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Stress-strain - significance

As in the case of deformation the stress-strain relation can be interpreted 
in simple geometric terms:

Remember that these relations are a generalization of Hooke’s Law:

l

u

γ l

u

 F= Kx

P = K ΔV
V = Kεiiσ22 = E ul = Kεiiσ12 = µγ = µε12



Let us look at some examples for elastic constants:

Rock K 
1012 dynes/cm2

E 
1012 dynes/cm2

µ 
1012 dynes/cm2

v

Limestone 0.621 0.248 0.251

Granite 0.132 0.416 0.197 0.055

Gabbro 0.659 1.08 0.438 0.219

Dunite 1.52 0.6 0.27

Elastic constants



We now have a complete description of the forces acting within an elastic 
body. Adding the inertia forces with opposite sign leads us from

to

the equations of motion for dynamic elasticity
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Equations of elastic motion



Equations of motion – P waves

Let us apply the div operator to this equation, we obtain

where

or P-wave velocityAcoustic wave 
equation

1
α2∂t

2θ = Δθ

θ = ∇ i u

ρ∂
t
2θ = (λ +2µ)Δθ

ρ∂
t
2u = f + (λ +2µ)∇∇ i u - µ∇ × ∇ × u



Equations of motion – S waves

Let us apply the curl operator to this equation, we obtain

we now make use of    and define

to obtain

S-wave velocityShear wave 
equation

∇ × ∇θ = 0

ϕ = ∇ × u
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ρ∂
t
2∇ × u = (λ + µ)∇ × ∇θ + µΔ(∇ × u)

ρ∂
t
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Plane waves

... what can we say about the direction of displacement, the

polarization of seismic waves?

... we now assume that the potentials have the well known form of 
plane harmonic waves

S waves are transverse because S is 
normal to the wave vector k

P waves are longitudinal as P is 
parallel to k

u = ∇Φ +∇ × Ψ ⇒ u = P + S
P = ∇Φ S = ∇ × Ψ

Ψ = Bexp[i(k • x − ωt)]Φ = Aexp[i(k • x − ωt)]

P = Akexp[i(k • x − ωt)] S = k ×Bexp[i(k • x − ωt)]



Wavefields visualization - body waves

https://www.iris.edu/hq/inclass/animation/seismic_wave_motions4_waves_animated

They are spherical waves

and decay as (r)-1

https://www.iris.edu/hq/inclass/animation/seismic_wave_motions4_waves_animated


Seismic Velocities 

Material P-wave velocity (m/s) shear wave velocity (m/s)

Water 1500 0

Loose sand 1800 500

Clay 1100-2500

Sandstone 1400-4300

Anhydrite, Gulf Coast 4100

Conglomerate 2400

Limestone 6030 3030

Granite 5640 2870

Granodiorite 4780 3100

Diorite 5780 3060

Basalt 6400 3200

Dunite 8000 4370

Gabbro 6450 3420



Seismic Velocities 

Material Vp (km/s)

Unconsolidated material
        Sand (dry)   0.2-1.0
        Sand (wet)   1.5-2.0

Sediments
         Sandstones  2.0-6.0
         Limestones  2.0-6.0

Igneous rocks
         Granite  5.5-6.0
         Gabbro  6.5-8.5

Pore fluids
         Air    0.3
         Water    1.4-1.5
         Oil    1.3-1.4

Other material
         Steel     6.1
         Concrete     3.6



Ray paths inside the Earth



Free surface: P-SV-SH



It seems that now we have the means to predict arrival times Tpre at 
a given the travel distance of a ray with a given emergence angle (ray 
parameter) and given structure. This is also termed a forward (or 
direct) problem.


We have recorded a set of travel times, Tobs, and we want to 
determine the structure of the Earth. Thus, what we really want is to 
solve the inverse problem.


In a very general sense we are looking for an Earth model that 
minimizes the difference between a theoretical prediction and the 
observed data:


where m is an Earth model.

T
obs

−T
pre
(m)( )∑

The Inverse Problem



Andrija MOHOROVIČIĆ


 Godišnje izvješće zagrebačkog 
meteorološkog opservatorija za 
godinu 1909. Godina IX, dio IV. - 
polovina 1. Potres od 8. X. 1909

http://www.gfz.hr/sobe-en/discontinuity.htm

Earth’s crust

http://www.gfz.hr/sobe-en/discontinuity.htm


Rays in homogeneous sphere



Sphere with increasing velocity...



GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD 

History of Seismology 4

Richard Dixon Oldham


The Constitution of the Earth as 
revealed by earthquakes,


 Quart. J. Geological Soc. Lond., 
62, 456-475, 1906

Beno Gutenberg

1914 Über Erdbebenwellen VIIA. Nachr. 
Ges. Wiss. Göttingen Math. Physik. Kl, 

166. 


who calculated depth of the 
core as 2900km or 0.545R

Inge Lehmann

 Bureau Central Seismologique International, Series A, Travaux 

Scientifiques, 14, 88, 1936.


who discovered of the earth's inner core. 

Earth’s core



Ray Paths in the Earth (1)



Ray Paths in the Earth (2)



Ray Paths in the Earth (3)



Ray Paths in the Earth (4)



P  P waves

S  S waves

small p depth phases (P)

small s depth phases (S)

c  Reflection from CMB

K  wave inside core

i  Reflection from Inner core boundary

I  wave through inner core

Ray Paths in the Earth - Names



Travel times in the real Earth



Velocity and density variations within Earth based on seismic observations. The 
main regions of Earth and important boundaries are labeled. This model was 

developed in the early 1980's and is called PREM for Preliminary Earth Reference 
Model.

Model PREM giving S and P wave velocities (light and dark green 
lines) in the earth's interior in comparison with the younger 

IASP91 model (thin grey and black lines)

A. M. Dziewonski & D. L. 
Anderson, 1981

http://ds.iris.edu/ds/products/emc-referencemodels/

Spherically symmetric models

http://ds.iris.edu/ds/products/emc-referencemodels/


Data example



Wavefields visualization - surface waves

Interference of P-SV 
waves


at surfaces (e.g. free 
surface)


and velocity is roughly 
92% of β

Interference of 
multiply reflected 

SH waves

at surfaces (e.g. 
free surface)

and velocity 
depends on β

They are cylindrical dispersed waves and decay as (r)-1/2



Surface waves

Effect of dispersion...



Data example - 2

http://ds.iris.edu/seismon/swaves/index.php

http://ds.iris.edu/seismon/swaves/index.php?


Seismological (body waves) distance ranges142 5. Seismogram interpretation and processing

FIGURE 5.1 Cartoon showing faulting terminology used for earthquakes and seismic stations. (left) The hypocenter marks
the location of rupture initiation, and the epicenter is the vertical projection of that location onto the surface of the Earth.
The fault plane represents the surface on which slip occured during an earthquake. (right) The epicentral distance (!) to a
seismic station can be measured in degrees from source to the station relative to the center of the Earth, generally used for
teleseismic distances (distances from 30◦ to approximately 95◦). Also shown are definitions for local, regional, and upper
mantle distances.

tered by the Earth’s three-dimensional hetero-
geneity. However, a book format does not allow
for the full exploration of unique and inter-
esting seismograms, and although we present
many examples of seismograms throughout the
book, any student of seismology should ex-
plore the large number of high-quality seismo-
grams that currently exist in open databases,
such as the databases at the Data Manage-
ment Center (DMC) at the Incorporated Re-
search Institutions of Seismology (IRIS). Be-
cause we cannot explore the digital world of
seismograms in a book format, this chapter fo-
cuses on the essence of using seismograms for
analysis, with examples of how simple mea-
surements lead to important results, such as
the location of the source or the identifica-
tion of complex rupture processes produced by
large earthquakes. In modern practice, almost
all approaches that use seismogram are imple-
mented on computers, which allows for vast
quantities of data currently collected to be an-
alyzed.

5.1 Terminology for seismograms

The coordinates of an earthquake point source
(where an earthquake rupture begins) are known
as the hypocenter (Fig. 5.1). The hypocenter is
usually given in terms of latitude, longitude,
and depth below the surface. The epicenter is the
surface projection of the hypocenter (the latitude
and the longitude), and the focal depth is the
depth below the surface, shown in Fig. 5.1. Epi-
central distance is the distance separating the
epicenter and the recording seismic station, and
can be measured in degrees at the center of the
Earth (Fig. 5.1). Since the nature of a seismogram
depends on this distance, especially for body
waves, we define distance ranges to categorize
seismograms (see below). For large earthquakes,
the finiteness of the source volume is not negli-
gible, and then these terms usually refer to the
point at which the rupture initiates. Other terms
such as the earthquake centroid will be intro-
duced later to define the effective center of stress
release of the source (Chapter 16).

7. Determination of Earth Structure 

depth, but only in the past 17 years have 
seismologists begun to map out what ap-
pears to be a modest, few-percent lateral 
heterogeneity at each depth. 

This chapter describes how we use seis-
mic wave recordings to determine large-
scale Earth structure. Only a fraction of 
the methodologies that have been devel-
oped can be discussed in this chapter, and 
new procedures are continually being in-
troduced. Thus, we present a spectrum of 
methods and the results of their applica-
tion to various depth ranges in the Earth. 
Numerous complete texts are devoted to 

the techniques and interpretations of shal-
low crustal reflection seismology (see ref-
erences for this chapter), so we do not 
discuss that field here. Our discussion first 
lays out some basic methodologies com-
mon to all applications and then works 
down from crust to core, considering the 
seismic waves at the different distance 
ranges defined in Chapter 6. The regional, 
upper-mantle, and teleseismic distance 
ranges (Figure 7.1) provide data that are 
sensitive to different depth intervals, with 
very different seismogram characteristics, 
as revealed in the last chapter. Here we 
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FIGURE 7.1 Schematic diagram of the three characteristic distance ranges used in the 
study of Earth structure. The range 0 - 1 4 0 0 km ) is the near-f\eld to regional-
distance range (center), where the seismic wavefield is predominantly crustal phases. The 
upper-mantle distance range (bottom) is from 1400 to 3300 km ) and is dominated 
by upper-mantle triplications. The teleseismic range ) involves waves that sample 
the lower mantle and core or reverberate in the upper mantle. 

6.2 Earthquake location with information from a single station 173

FIGURE 6.1 Observed P and S travel times extracted from the ISC catalog for the month of January 2015. Phases shown
are those identified in the catalog as direct P or S arrivals. Earthquakes with depths less than 33 km were selected to produce
consistent curves. The vertical gray lines divide the distance ranges into local, near-regional, far-regional or upper mantle,
and teleseismic. The gray box along the left identifies the local distance range. Approximate S-minus-P travel time differences
are shown at distances of 10◦, 20◦, 40◦, 60◦, and 80◦.

helps develop intuition about the specific obser-
vational thresholds in that region.

Local distance (! ≤ 100 km) earthquake seis-
mograms often include clear P-wave and S-
wave packages, each with a relatively short
seismic coda – the scattered waves that follow
the large direct phases and cause a gradual de-
cay of shaking with time. Seismograms from a
nearby earthquake are generally rich in short-
period (T ≤ 1 s) vibrations. The amplitude and
duration of shaking produced by a larger earth-
quake is generally larger than that produced by
a smaller event. The strongest arrivals from a
nearby earthquake generally last anywhere from
a few seconds to a few minutes (increasing with
distance and magnitude). The time between the
S and P wave arrivals, tS − tP , is less than one or
two minutes.

At near-regional distances (1◦ ≤ ! ≤ 13◦), the
shortest period signals attenuate to levels below
noise, although periods near 1 s remain clear.
The signals are spread over a longer time inter-
val because waves traveling at different speeds
separate with distance. The time difference tS −
tP approaches several minutes. Longer period
(T ! 5 s) shaking remains relatively simple and

lasts less than about 15 minutes. For shallow
sources, surface waves develop within a few
wavelengths distance of the source and domi-
nate the seismograms. Deeper sources continue
to produce strong and clear P and S arrivals and
coda. At far-regional or upper-mantle distances
(13◦ ≤ ! ≤ 30◦), body-waves become complex as
the waves interact strongly with mineralogical
phase changes occurring in the mantle transition
zone. Waves traveling through the crust con-
tinue the evolve towards lower frequency and
spread their energy over longer time intervals,
roughly 20–25 minutes.

At teleseismic distances (! ≥ 30◦), short-
period vibrations decrease in amplitude, espe-
cially the short-period S waves, which may not
be seen for shallow sources. The duration of de-
tectable ground motions increases beyond about
45 minutes, including an increase in tS − tP to
beyond about 5 minutes. The body-wave train
expands from simple P and S wave packages to
include reflections and multiple reflections off
the surface and the core, some of which can be
relatively large in the intermediate period band
(T ∼ 5 − 50 s). The duration of the measurable
shaking can be hours following moderate-to-



Strong motion seismology
Strong ground motion is an event in which an 
earthquake cause the ground to shake at least strongly 
enough for people to feel the motion or to damage or 
destroy man-made structures. 

The goal of strong motion seismology is to be able to 
understand and predict seismic motions sufficiently 
well that the predictions can be used for engineering 
applications 

The field of strong-motion seismology could initially be 
identified with a type of instrument, designed to 
remain on-scale and record the ground motion with 
fidelity under the conditions of the strongest ground 
motions experienced in earthquakes. 

Anderson J.G Physical Processes That Control Strong Ground Motion. In: Gerald Schubert (editor-in-chief) 
Treatise on Geophysics, 2nd edition, Vol 4. Oxford: Elsevier; 2015. p. 505-557. 



Strong motion seismology

Early instruments were typically designed so that ground 
motions up to the acceleration of gravity (1g) would be 
on-scale. 

The lower limit of ground motion considered by the 
early strong motion seismology studies was roughly 
defined by the thickness of the light beam read until the 
edge of a recorded film. The minimum acceleration 
resolved is somewhat less than 0.01g, that 
approximately coincided with minimum ground motions 
that humans are able to feel. 

Since much smaller ground motions can be recorded on 
modern instruments, the distinction between strong-
motion seismology and traditional seismology is blurred.



Example of Recordings 

The left panel is a plot of the three components of acceleration: 
strong, high-frequency shaking lasted almost a minute and the 
peak acceleration was about 150 cm/s2 (or about 0.15g). The 

middle panel shows the velocity of ground movement: the peak 
velocity for this site during that earthquake was about 20-25 cm/

sec. Integrating the velocity, we can compute the displacement, 
which is shown in the right-most panel: the permanent offsets 

near the seismometer were up, west, and south, for a total 
distance of about 125 centimeters.

Ground acceleration, 
velocity and displacement, 
recorded at a strong-motion 
seismometer that was 
located directly above the 
part of a fault that ruptured 
during the 1985 Mw = 8.1, 
Michaocan, Mexico 
earthquake.



“Attenuation” laws
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http://pasadena.wr.usgs.gov/office/hough/east-vs-west.jpg

Seismic hazard


