
Harmonic oscillations

Small perturbations of a 
stable equilibrium point

Repulsive Potential ∝ 1/rm

Attractive Coulombic 
Potential ∝ 1/r

Total Potential

Linear restoring 
force

Harmonic 

Oscillation



Hooke’s law

ceiiinosssttuu

It's an anagram. In the time before patents and other 
intellectual property rights, publishing an anagram was a 
way to announce a discovery, establish priority, and still 
keep the details secret long enough to develop it fully. 
Hooke was hoping to apply his new theory to the design 
of timekeeping devices and didn't want the competition 
profiting off his discovery. 


1678: “About two years since I printed this Theory in an 
Anagram at the end of my Book of the Descriptions of 
Helioscopes, viz. ceiinosssttuu, that is Ut tensio sic vis.”

Although Robert Hooke's name is now usually 
associated with elasticity and springs, he was 
interested in many aspects of science and technology. 
His most famous written work is probably the 
Micrographia, a compendium of drawings he made of 
objects viewed under a magnifying glass.



Modeling Vibration

The Ingredients:

3
Realistic Addition:


Dissipation2

Elasticity (stores potential energy)1
Inertia (stores kinetic energy)

mass

stiffness

damping

to model lots of physical 
systems: engines, water 
towers, building etc...



From Newton’s 2nd Law

This is the condition for simple harmonic motion

A mass under a restoring force



Some definitions:


The time taken to make one complete oscillation is the period, 
T.


The frequency of oscillation, f = 1/T   in  s-1 or  Hertz

The distance from equilibrium to maximum displacement is the 
amplitude of oscillation, A.

An object moves with simple harmonic motion (SHM) 
when the acceleration of the object is proportional to 
its displacement and in the opposite direction. 

SHM



Consider the following:

The general equation for the curve traced out by the pen 
is   x = A cos (ωt + δ)


where (ωt + δ) is the phase of the motion


and  δ  is the phase constant

t 

x

SHM



We can show that the expression x = A cos (ωt + δ)


is a solution of                         by differentiating wrt 
time

Compare this to   a = -(k/m)x   


x = A cos (ωt + δ)   is a solution if   

SHM - natural frequency



We can determine the amplitude of the oscillation (A) 
and the phase constant (δ) from the initial position xo 
and the initial velocity vo 

The system repeats the oscillation every T seconds


therefore              x(t) = x(t+T)


and 

The function will repeat when ωT = 2π  

SHM - IC



We can relate ω, f and the spring constant k using the 
following expressions.

ω is known as the angular frequency and has units of 
rad·s-1



v v =-ωAsin(ωt)

t

a a =-ω2Acos(ωt)

t

x x =Acos(ωt)

T/2   T

t

x, v, a time dependence in SHM



In SHM the total energy (E) of a system is constant but the 
kinetic energy (K) and the potential energy (U) vary wrt.
Consider a mass a distance x from equilibrium and acted upon 
by a restoring force

Kinetic Energy

Potential Energy

Substitute ω2=k/m

Energy of SHM



Potential


Energy

Kinetic


Energy

Graphical representation



Total energy E =          K                 +            U

but

In SHM the total energy of the system is proportional 
to the square of the amplitude of the motion

Total Energy



A simple pendulum consists of 
a string of length L and a 
bob of mass m.


When the mass is displaced 
and released from an initial 
angle φ with the vertical it 
will swing back and forth 
with a period T.

We are going to derive an 
expression for T.

The Simple Pendulum



Forces on mass:

     mg (downwards)

     tension (upwards)

When mass is at an angle φ to 
the vertical these forces have to 
be resolved.

Tangentially:

weight = mg sin φ (towards 0)

tension = T cos 90 = 0 

+ve

0



we find           s = Lφ

+ve

0

Using 

From Newton’s 2nd Law (N2)



+ve

0

or

For small φ      sinφ ~ φ 

ie SHM with   

This has the solution


             φ = φo cos (ωt + δ) 



Period of the motion  

ie the longer the pendulum the 
greater the period   

Note: T does not depend upon 
amplitude of oscillation


even if a clock pendulum 
changes amplitude it will still 
keep time



Period of the motion  

This is only true for φ < 10o

Generally   

Tipler Fig 14-16

T = 2π L
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Dark blue pendulum is the simple

 approximation, 


light blue pendulum shows the numerical 
solution of the nonlinear differential 
equation of motion.

If the initial angular displacement is significantly large the small angle 
approximation is no longer valid

The error between the simple harmonic solution and the actual solution 
becomes apparent almost immediately, and grows as time progresses. 
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All real oscillations are subject 
to frictional or dissipative 
forces.


These forces remove energy 
from the oscillating system and 
reduce A.

A

time

Damped Oscillations



Consider mass m on the end of a 
spring with a spring constant k

m

k
Restoring force = kx when mass is a 
distance x from equilibrium

Drag force ∝ dx/dt

where γ = b/m  and ω2 = k/m

Damped Oscillations



In order to find the auxiliary eq. one tries:

where γ = b/m  and ω0 = (k/m)1/2

Auxiliary equation
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and the constants can be determined applying the initial 
conditions, e.g. x(0)=x0 and v(0)=0. 

overdamped


critically damped


underdamped

with

Initial conditions



energy E ∝ amplitude A2

max displacement when cos=1

if amplitude is decreasing exponentially then energy will also 
decrease exponentially

Generally

Am
pl

itu
de

xo

t

Energy of a damped oscillator



this can be related to the fractional energy lost per cycle

A damped oscillator is often described by its quality-factor or 
Q-factor

Quality factor - Q



In a weakly damped system the energy lost / cycle is small 


                          dE = ΔE     and     dt = T



Consider the steady state 
behaviour of a mass oscillating on 
a spring under the influence of a 
driving force.

The mass oscillates at the same 
frequency of the driving force 
with a constant amplitude xo.

The oscillations are out of phase, 
ie the displacement lags behind 
the driving force.

Driven oscillations

t
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mass     driving force



Force = Focos(ωt) has +ve peaks at 
t = 0, 2π/ω, 4π/ω…………

+ve peaks of the displacement 
occur at t = Δt, (2π/ω)+Δt, (4π/ω)
+Δt …………

This describes a displacement with the same frequency as 
the driving force, has constant amplitude and a phase lag φ 
with respect to the driving force.
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mass     driving force



Equation of motion for a driven oscillator is

where γ = b/m  and ω2 = k/m

Solution of this equation is

To determine the xo and φ we need to substitute the solution 
into the equation of motion.

We need



This equation must be true at all times.  


To solve for xo and φ we need to consider two situations.

1. (ωt - φ) = 0       ∴sin(ωt - φ) = 0    and   cos(ωt)=cos φ 

2. (ωt - φ) = π/2   ∴cos(ωt - φ) = 0   and cos(ωt)=cos(π/2 + 
φ)



This leaves us with two simultaneous equations:

Remember                                 and cos2A + sin2A = 1 

The solutions are



The average rate at which power is absorbed equals the 
average power delivered by the driving force, to replace the 
energy dissipated by the drag force.


Over a period it is:
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When damping is small oscillator 
absorbs much more energy from 
driving force.


Resonance peak is narrow   

When damping is large oscillator 
resonance curve is broad  

For small damping  
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Figure 2.4  The amplitude and phase response functions for a seismometer with a natural 

frequency of 1 Hz. Curves for various level of damping h are shown.  

                    

 

 

2.3 Seismometer frequency response, alternative solution 

 

In the literature, the complex frequency displacement response function is often found 

as 

 

Td! "#$
hi 0

22

0

2

2ωωωω

ω

−−
      (2.16) 

  

The amplitude response is the same as above (2.10), but the phase response is 

 

At very high frequencies (ω>>ω0), |A(ω)|≈1, and 
θ≈π, so the displacement from equilibrium is 
the negative of the forcing displacement, that 
is moving so rapidly that the mass cannot 
follow the motion at all.


At very low frequencies (ω<<ω0 ) we have                    
|x0(ω)|≈ω2/ω02, so that the amplitude of the 
response falls off quadratically with frequency. 
From the time domain representation, we see 
that this response is proportional to the 
negative of the forcing acceleration


