

Green's function is a basic solution to a linear differential equation, a building block that can be used to construct many useful solutions.

If one considers a linear differential equation written as:

L(x)u(x)=f(x)

where L(x) is a linear, self-adjoint differential operator, $u(x)$ is the unknown function, and $f(x)$ is a known nonhomogeneous term, the GF is a solution of:

If such a function G can be found for the operator L, then if we multiply the second equation for the Green's function by f(s), and then perform an integration in the s variable, we obtain:

$$
\int L(x)G(x,s)f(s)ds = \int \delta(x-s)f(s)ds = f(x) = Lu(x)
$$

$$
L\int G(x,s)f(s)ds = Lu(x)
$$

$$
u(x) = \int G(x, s) f(s) ds
$$

Thus, **we can obtain the function u(x) through the knowledge of the Green's function and the source term**. This process has resulted from the linearity of the operator L. See Linear System Theory (i.e. impulse response)

 $f(t) * h(t) = \int f(\tau)h(t-\tau) d\tau$ −∞ ∞

Consider the boxcar function (box filter):

$$
h(t) = \begin{cases} 0 & t < -\frac{1}{2} \\ 1 & -\frac{1}{2} \le t \le \frac{1}{2} \\ 0 & t > \frac{1}{2} \end{cases}
$$

This particular convolution smooths out some of the high frequencies in f(t).

Sampling Function

A Sampling Function or Impulse Train is defined by:

$$
S_{T}(t) = \sum_{k=-\infty}^{\infty} \delta(t - k\Delta t)
$$

where Δt is the sample spacing.

Sampling Function

The Fourier Transform of the Sampling Function is itself a sampling function.

The sample spacing is the inverse.

 $S_{\Delta t}(t) \Leftrightarrow S_{\frac{1}{2}}$ Δ t (ω)

The convolution theorem states that convolution in the temporal domain is equivalent to multiplication in the frequency domain, and viceversa.

$f(t) * g(t) \Leftrightarrow F(\omega) \cdot G(\omega)$

 $f(t) \cdot q(t) \Leftrightarrow F(\omega) * G(\omega)$

This powerful theorem can illustrate the problems with our point sampling and provide guidance on avoiding aliasing.

Consider: $f(t)\cdot S_{\Delta t}(t)$

Convolution Theorem

What does this look like in the Fourier domain?

Convolution Theorem

In Fourier domain we would convolve

Aliasing

What this says, is that any frequencies greater than a certain amount will appear intermixed with other frequencies.

In particular, the higher frequencies for the copy at $1/\Delta t$ intermix with the low frequencies centered at the origin.

Aliasing and Sampling

Note, that the sampling process introduces frequencies out to infinity.

- We have also lost the function f(t), and now have only the discrete samples.
- This brings us to our next powerful theory.

The Shannon Sampling Theorem:

A band-limited signal f(t), with a cutoff frequency of λ , that is sampled with a sampling spacing of Δt may be perfectly reconstructed from the discrete values f[$n\Delta t$] by convolution with the sinc(t) function, provided the Nyquist limit: λ<1/(2Δt)

Why is this?

The Nyquist limit will ensure that the copies of $F(\omega)$ do not overlap in the frequency domain.

We can completely reconstruct or determine $f(t)$ from $F(\omega)$ using the Inverse Fourier Transform.

Sampling Theory

In order to do this, we need to remove all of the shifted copies of $F(\omega)$ first.

This is done by simply multiplying $F(\omega)$ by a box function of width 2λ.

Sampling Theory

In order to do this, we need to remove all of the shifted copies of $F(\omega)$ first.

This is done by simply multiplying $F(\omega)$ by a box function of width 2λ.

So, given $f[n\Delta t]$ and an assumption that $f(t)$ does not have frequencies greater than $1/(2\Delta t)$, we can write the formula:

 $f[nT] = f(t) \cdot S_{\wedge t}(t) \Leftrightarrow F(\omega) * S_{\wedge t}(\omega)$

 $F(\omega) = (F(\omega) * S_{\Delta t}(\omega)) \cdot Box_{1/(2\Delta t)}(\omega)$

therefore,

 $f(t) = f[n\Delta t]$ *sinc(t)

http://www.thefouriertransform.com/pairs/box.php

http://195.134.76.37/applets/AppletNyquist/Appl_Nyquist2.html