Neo-deterministic Seismic Hazard Assessment

Franco Vaccari

Dipartimento di Matematica e Geoscienze Università di Trieste, via Weiss 4, 34128 Trieste email: <u>vaccari@units.it</u>

Regional polygons						
I-D layered anelastic structures						
Structural model						

Regional polygons
I-D layered anelastic structures
Structural model

Polygons the	at defin	e different	structural	regions	(lon,lat)
regioneeer	12.550	38.070			
	12.770	38.200			
	12.940	38,050			
	13,090	38,090			
	13.070	38,160			
	13.350	38.250			
	13.450	38,125			
	13.550	38,135			
	13.800	37.980			
	14.025	38.050			
	14.650	38.070			
	14.780	38.180			
	14.980	38.200			
	15.110	38.150			
	15.300	37.810			
	15.140	37.370			
	14.280	37.070			
	13.940	37.080			
	12.980	37.580			
	12.690	37.549			
	12.460	37.800			
region0002					
	15.110	38.150			
	15.300	37.810			
	15.680	38.235			
	15.690	37.950			
	16.100	37.900			
	15.140	37.370			
	15.323	37.264			
	15.381	37.030			
	15.160	36.795			
	15.190	36.641			
	14.501	36.801			
	14.280	37.070			
region0016	12 000	45 550			
	13.900	45.550			
	13.080	45.550			
region0252	13.080	45.050			
region@252	12 050	45 000			
	13.050	45.500			
	13.950	45.050			
	13.500	45.550			
	13.500	45.900			
	13.300	43.900			

Corso di Rischio Sismico e Vulcanico - Esercitazioni

		thk(km)	rho	Vp(km/s)	Vs(km/s)	Qp	Qs	depth(km)	layer	-
Regional		0.5000	2.300	3.800000	2.200000	660.00	300.00	0.50000	1	
polygons		0.5000	2.300	3.900000	2.250000	660.00	300.00	1.00000	2	
1 /8		1.0000	2.450	4.000000	2.300000	660.00	300.00	2.00000	3	
	1	4.0000	2.450	4.800000	2.700000	660.00	300.00	6.00000	4	
		3.0000	2.600	5.900000	3.350000	660.00	300.00	9.00000	5	
I-D lavered		5.0000	2.700	6.500000	3.700000	660.00	300.00	14.00000	6	
anolastic structuros		6.0000	2.800	7.000000	4.000000	660.00	300.00	20.00000	7	
allelastic sti uctui es		8.0000	2.800	6.700000	3.750200	660.00	300.00	28.00000	8	
		3.0000	2.850	6.700000	3.750300	660.00	300.00	31.00000	9	
	1	1.0000	2.900	7.000000	4.000000	660.00	300.00	32.00000	10	
Structural model		68.0000	3.350	8.000000	4.500000	660.00	300.00	100.00000	11	
Structural model		100.0000	3.400	8.000000	4.150600	220.00	100.00	200.00000	12	
	1	10.0000	3.450	8.200000	4.400000	220.00	100.00	210.00000	13	
		10.0000	3.450	8.250000	4.450000	220.00	100.00	220.00000	14	
		10.0000	3.450	8.300000	4.500000	220.00	100.00	230.00000	15	
		10.0000	3.450	8.350000	4.550000	220.00	100.00	240.00000	16	
		10.0000	3.450	8.400000	4.600000	220.00	100.00	250.00000	17	
		60.0000	3.500	8.400000	4.600100	220.00	100.00	310.00000	18	
		9.0000	3.500	8.700000	4.750000	330.00	150.00	319.00000	19	
		10.0000	3.520	8.740000	4.750100	330.00	150.00	329.00000	20	
		25.0000	3.950	9.576000	5.285000	330.00	150.00	565.00000	30	
		25.0000	4.000	9.630000	5.313000	330.00	150.00	590.00000	31	
		25.0000	4.050	9.683000	5.340000	330.00	150.00	615.00000	32	
		25.0000	4.100	9.736000	5.367000	374.00	170.00	640.00000	33	
		25.0000	4.200	9.782000	5.390000	440.00	200.00	665.00000	34	
		25.0000	4.250	10.014000	5.518000	506.00	230.00	690.00000	35	
		25.0000	4.300	10.180000	5.630000	572.00	260.00	715.00000	36	
		25.0000	4.350	10.190000	5.746000	638.00	290.00	740.00000	37	
		25.0000	4.400	10.492000	5.850000	704.00	320.00	765.00000	38	
		25.0000	4.410	10.6//000	5.950000	110.00	350.00	790.00000	39	
		25.0000	4.420	10.852000	6.044000	836.00	380.00	815.00000	40	
		25.0000	4.425	11.025000	6.140000	902.00	410.00	840.00000	41	
		25.0000	4.435	11.180000	6.230000	968.00	440.00	865.00000	42	
		25.0000	4.450	11.224000	6.250000	1045.00	4/5.00	890.00000	43	
		25.0000	4.4/5	11.20/000	6.275000	1166.00	520.00	915.00000	44	
		25.0000	4.500	11.310000	6.237000	1222 00	560.00	940.00000	45	
		25.0000	4.525	11.300000	6 340000	1232.00	500.00	903.00000	40	
		25.0000	4.550	11.392000	6 360000	1320.00	625 00	1015 00000	4/	
		25.0000	4.5/5	11 476000	6 375000	1452 00	660 00	1015.00000	40	
		25.0000	4.630	11 519000	6 300000	1507 00	685 00	1045.00000	50	
		25.0000	4.030	11.518000	6 405000	1584 00	720 00	1003.00000	51	
		25.0000	4.000	11.500000	6 421000	1650 00	750.00	1115 00000	51	
		23.0000	4.080	11.000000	0.421000	1020.00	120.00	1112.00000	52	1

Regional scale - Sources

Earthquake catalogue

Focal mechanisms

Seismogenic

zones

		_	_				
1005 0	0 0	0	0	4150	1375	0520520	05200
1065 3	2711	0	0	4553	1022	0520520	05200
1087 9	0 0	0	0	4125	1560	0500500	05000
1097 0	0 0	0	0	4560	1530	0620620	06200
1117 1	313	0	0	4545	1104	0640640	06400
1120 0	0 0	0	0	4142	1387	0550550	05500
112510	11 0	0	0	4113	1478	0550550	05500
1139 1	22 0	0	0	4110	1483	0420420	04200
1148 0	0 0	0	0	4377	1123	0500500	05000
1168 1	10 0	0	0	4372	1040	0420420	04200
1169 2	4 0	0	0	3733	1520	0730730	07300
1170 3	90	0	0	4157	1333	0520520	05200
1182 8	15 0	0	0	4442	890	0440440	04400
1988 3	1512	3	0	4483	1073	5440360	04400
1988 42	26 05	53	0	4228	1658	5450450	0 00
198810	28184	18	0	3780	1509	5350320	03500
1989 9	13215	54	0	4587	1118	10470400	04700
198910	23211	19	0	4175	1273	5440350	04400
198912	26195	59	0	4352	755	5440440	0 00
1990 5	5 72	21	0	4073	1563	10500390	05000
199012	13 02	24	0	3727	1507	5530530	05200
1991 5	26122	26	0	4069	1574	5470390	04700
199111	20 15	54	0	4674	946	5520520	0 00
1992 2	18 33	30	0	4226	1418	5420360	04200

1005 0 0 0 0 4347 1188 0520520 05200

Earthquake

catalogue

zones

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Polygons th	at define	e seismogenic	zones	(lon, lat
seismo0257				
	15.278	44.918		
	15.036	44.635		
	14.644	44.783		
	14.422	45.193		
	14.890	45.500		
seismo0004				
	12.520	46.468		
	13.300	46.550		
	13.600	46.450		
	13.580	46.400		
	13.160	46.156		
	12.636	45.972		
	12.403	45.840		
seismo0079				
	14.955	37.582		
	15.196	37.529		
	15.273	37.511		
	15.486	36.630		
	14.984	36.582		
	14.969	37.098		
seismo0081				
	19.334	39.834		
	19.110	39.310		
	18.618	39.527		
	18.911	40.190		

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Earthquake Seismogenic zones Focal mechanisms

NUMBEA YEARMODY HRMISEC LA.TITN LON.GITE DEPT MLMDMSMBMA AGEN AREADESCRI NUMBEF ST1 D1 RA1 ST2 D2 RA2 PDI PI TDI TI BDI BI Q REFE AREADESCRI NUMBEM M00 SF REFE DURA F2 M0XX ER1 M0YY ER2 M0ZZ ER3 M0XY ER4 M0XZ ER5 M0YZ ER6 NUMBET HDR SF M0 TVAL TD TAZ NVAL ND NAZ PVAL PD PAZ AST AD ARA BST BD BRA REFER NUMBEU SF SMRR ER1 SMTT ER2 SMFF ER3 SMRT ER4 SMRF ER5 SMTF ER6

44A 19591223 929000 37.720N 14.610E 770 00 0 053 SICILY 00044F 077 43 004 344 87 132 041 29 289 34 161 43 0001 SICILY 54A 19671031 2108000 37.840N 14.600E 380 0 0 0 050 SICILY 00054F 009 61 189 274 80 333 228 27 324 13 077 60 0001 SICILY 57A 19680115 133000 37.890N 13.080E 200 SICILY 0 0 0 051 00057F 040 82 046 302 46 168 163 23 272 37 0001 SICILY 049 45 58A 19680115 201000 37.780N 13.030E 30 0 0 0 054 SICILY 00058F 204 70 015 108 75 159 157 04 065 25 255 65 0001 SICILY

- •••
- •••
- ...

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Sources

Magnitude discretization and smoothing

Sources

Why do we do this?

Magnitude discretization and smoothing

To account for mislocations of events in the catalogue

Magnitude discretization and smoothing

Sources

To account for mislocations of events in the catalogue

To account (roughly) for fault dimensions

Magnitude discretization and smoothing

Sources

Why do we do this?

- To account for mislocations of events in the catalogue
- To account (roughly) for fault dimensions
- To account for the location of future events
- To be conservative...

Regional scale - Discretized Magnitude

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Regional scale - Smoothed magnitude

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Regional scale - Sources inside SZ

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Source definition - Radiation pattern

Source definition - Scaled point source

- The moment-magnitude relation by Kanamori (1977) is used
- At first synthetic seismograms are computed for a unitary scalar seismic moment (I dyn cm)
- Then they are scaled for magnitude in the frequency domain according to the spectral law by Gusev (1983) as reported in Aki (1987)

Source definition - Scaled point source

Source kinematic model

2-dimensional final slip distribution over a source rectangle, shown as a density plot (Mw=7.0).

Rupture front evolution was simulated kinematically from random rupture velocity field.

(Gusev, 2011)

Far-field source time histories and their spectra.

"Displacement" far-field functions (arbitrary scale) for the simulated case of mostly unilateral rupture propagation

Example computation - Ground shaking

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Example computation - Ground shaking

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Example computation - Ground shaking

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Regional Scale - Displacement

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Regional Scale - Check (I Hz cutoff)

Friuli, 6 May 1976 (North-Eastern Italy)

Irpinia, 23 October 1980 (Southern Italy)

close to the Tolmezzo station

Regional Scale - Check (I Hz cutoff)

To obtain an estimate of PGA, overcoming the I Hz limitation chosen in the modelling, the shape of Design Spectra can be used

Response spectrum

To obtain an estimate of PGA, overcoming the I Hz limitation chosen in the modelling, the shape of Design Spectra can be used

Response spectrum

Rule of thumb for a rough estimate of the resonance period: T=1 s every 10 floors, but it strongly depends on the building characteristics (type of construction, geometry etc)

To obtain an estimate of PGA, overcoming the I Hz limitation chosen in the modelling, the shape of Design Spectra can be used

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Corso di Rischio Sismico e Vulcanico - Esercitazioni

The procedure gives good results when applied to the case of the Irpinia 1980 earthquake. The DGA predicted by the modelling is similar the actual DGA obtained from recordings

Corso di Rischio Sismico e Vulcanico - Esercitazioni

Corso di Rischio Sismico e Vulcanico - Esercitazioni