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Figure 1. First ionization energies of the first 19 elements.
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I. Trends in Ionization Energies
The variation in the ionization energies of the elements

is often used as an example of the periodicity of atomic prop-
erties as a function of atomic number. When the first ioniza-
tion energy is plotted against atomic number for the first 19
elements (Fig. 1) an obvious pattern appears. Ionization en-
ergy tends to decrease down a group and to increase across a
period. It is generally agreed that these two trends arise from
the following two effects:

1. Down a group, although the nuclear charge is increas-
ing, the amount of shielding of the ionizing electron
from the nuclear charge by inner shell electrons is also
increasing, so keeping Zeff (the effective nuclear charge)
much more constant than one might expect. The dis-
tance between the ionizing electron and the nucleus
is increasing, however, and so the overall attraction of
the nucleus for the ionizing electron is lessened.

2. Across a period, the increasing nuclear charge is
accompanied by only a small increase in shielding. The
number of inner shells is constant, and electrons in
the same (outermost) shell as the ionizing electron are
not effective in their shielding, in that they do not inter-
pose themselves between the electron in question and the
nucleus. Thus the net attraction between the ionizing
electron and the nucleus increases. (Superimposed on
this are two second-order effects that work in opposite
directions: (i) because the increasing nuclear charge pulls
inner shells closer to the nucleus, penetration by outer
shell electrons is less effective; the shielding potential of
inner shells therefore increases slightly across the period,
decreasing the ionization energy; however (ii) increasing
nuclear charge also contracts the outer shell, bringing
the ionizing electron closer to the nucleus, and increasing
the attractive force.)

The increase in ionization energy across a period is not a
regular trend. Discontinuities occur between groups II and III
and between groups V and VI. The former is associated with
the start of the occupancy of the np orbitals. An electron in
these orbitals is, on average, slightly farther from the nucleus
than an electron in a ns orbital. More importantly, because
the nodal plane of a p orbital passes through the nucleus (and
hence there is zero probability of finding a p electron there),
electrons in np orbitals are more shielded from the nuclear
charge than are electrons in ns orbitals, which have a significant
positive electron density at the nucleus. Thus p electrons
experience less nuclear–electron attraction.

II. Three Possible Explanations
for the Group V/Group VI Discontinuity

The discontinuity between groups V and VI has been
ascribed to various causes, some of which are more easily
rationalized than others. Three major reasons can be found
in textbooks:

A. In a shell having more than half its complement of elec-
trons, one (or more) orbitals has to accommodate two
electrons. These two electrons, sharing the same region
of space, will experience an extra repulsion from each
other over and above that experienced by electrons in
separate orbitals (1–3).

B. Because of the Pauli exclusion principle, electrons with
parallel (unpaired)1 spins tend to avoid each other, thus
decreasing the electrostatic repulsion between them.
This will be the situation when filling the first half of
the shell. When electrons are forced to doubly occupy
orbitals in the second half, their spins are constrained
to be paired (antiparallel).2 Because they are no longer
obliged to avoid each other, the electrostatic repulsion
increases (4). This treatment is similar to the previous
one but involves a spin factor as well as a distance factor.

C. Half-filled (and also completely filled) subshells of elec-
trons have an intrinsic stability (5, 6 ).

The rest of this paper describes in detail and comments
upon these three methods that have been used to explain the
shape of the ionization energy–atomic number curve in this
region.

If it were not such a commonly held view,3 the third of
these reasons could be dismissed without further comment,
as it offers no explanation in terms of electrostatic or quantum
mechanical interactions within the atom. Its justification
seems to come from the desire to explain the observation that
the ionization energy of a p3 (or p6) system is larger than that
of the systems on either side (p2 and p4, or p5 and s1). The im-
plication is that this ionization energy is higher than one might
have expected, based on the assumption of a baseline drawn
through the two adjacent values (see Fig. 2).
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A more sophisticated treatment in terms of exchange
energy (5), which also suggests that p3 and p6 systems have a
special stability, is described later (method C).

As mentioned in section I, the initial expectation should
be that the ionization energies increase regularly across a period
owing to the increase in Zeff. The increase from group III to
group V is, in fact, fairly regular. So also is the increase from
group VI to group VIII, but displaced downwards by 430 kJ
mol�1 for the second period and 250 kJ mol�1 for the third
period (see Fig. 3). Thus, rather than interpret Figure 1 in
terms of the ionization energy of nitrogen being larger than
expected, we should use Figure 3 to suggest than the ioniza-
tion energy of oxygen, and also of fluorine and neon, is less
than expected, by a constant amount for each. It is to the
origin of this constant drop, ∆E, that we now turn.

III. Method A: Coulombic Repulsion between Electrons
in the Same Orbital

Of the three reasons given in section II, the first, A, is the
easiest to understand. We are aware that the electrostatic re-
pulsion energy between two electrons is given by the formula
Erep = e2/4πε0r12, where r12 is the average distance between the
electrons. Electrons sharing the same orbital will, on average,
be closer together than electrons in separate orbitals. Although
the repulsions between all the electrons in the p-shell will
increase with the number of electrons, we expect an extra
jump in the electrostatic repulsion when orbital sharing starts.
If we call the general pxpy (different orbital) repulsion energy
A, the pxpx (same orbital) repulsion energy will be larger than
this, by an amount we can call B. The total pxpx (same orbital)
repulsion energy will thus be A + B. We can now calculate the
total interelectron repulsion energies for various pn configu-
rations, and also the loss in repulsion on ionization (Table 1).
As we go across the p-group, the energy required for ionization
will increase because of the increasing Zeff, but not as much
as we might expect, owing to the increasing loss of electron–
electron repulsion on ionization (last column in Table 1). This
is illustrated in Figure 4.

Thus we can identify the ∆E in Figure 3 and the y in
Figure 4 with B, the extra electrostatic repulsion between
same-orbital electrons. We might expect this to be less for
electrons sharing the 3p orbitals because these are larger and
more diffuse than the 2p orbitals. On average, two electrons
in the same 3p orbital should be further apart and experience
less electrostatic repulsion. This is in fact found to be the
case: ∆E (3p) < ∆E (2p) (see Fig. 3).

Note that apart from the Pauli stipulation that electrons
sharing the same orbital must have opposite spins, the rela-
tive spins of the electrons have not been considered in this
treatment.

IV. The Parallel Spin Avoidance Factor

The second reason given in section II for the decrease in
ionization energy from group V to group VI concerns itself
with the different interactions that occur between electrons
with parallel and paired spins. The basis for these different
interactions is the quantum mechanical antisymmetry require-
ment, from which can also be deduced the Pauli exclusion
principle.

Figure 2. The “stabilization” of nitrogen.

Figure 3. First ionization energies of the 2p and 3p blocks.
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Figure 5a. Plot of Pr as a function of r1 and r2 for the parallel spin
state of He (1s12s1) (the antisymmetric wave function ψa).

Figure 5b. Plot of Pr as a function of r1 and r2 for the paired spin
state of He (1s12s1) (the symmetric wave function ψs) (from J. W.
Linnett, Wave Mechanics and Valency, Methuen, 1960, p 74)

Without delving too deeply into the quantum mechanics
of the situation (which can cloud the issue for those who,
like me, are not experts in the field), it might appear that
the property of electrons with parallel spins tending to avoid
each other is almost as mysterious a concept as the supposed
half-shell stability mentioned in section II. A complete picture
of the situation can be found in books on quantum mechanics
(e.g., ref 9), but the following is offered as a simplified
summary.

The total wave function of a system of electrons is made
up of two parts: the space component of the wave function
describes how the behavior of the system depends on the
spatial coordinates of the particles, and the spin component
of the wave function describes how it depends of the spin of
each electron.4 Consider the simplest case of two electrons,
labeled (1) and (2), occupying two different orbitals on an atom
(represented by wave functions ψA and ψB). Using these wave
functions, we can create new space-component wave func-
tions that will describe the behavior of the new two-electron
system. We find that the quantum mechanical requirements
of orthogonality, electron indistinguishability, and normal-
ization are satisfied by the following two combinations of ψA
and ψB:

ψs = (1/√–
2)[ψA(1)ψB(2)] + (1/√–

2)[ψA(2)ψB(1)]
and

ψa = (1/√–
2)[ψA(1)ψB(2)] – (1/√–

2)[ψA(2)ψB(1)]

We now introduce the property of electron spin, and the
(Pauli) antisymmetry requirement, which states that the total
wave function must be antisymmetric to the exchange of electrons.
(By antisymmetric, we mean that the total wave function (i.e.,
including its space and its spin components) should change sign
if we substitute electron (2) for electron (1), and vice versa.)
If we carry out this operation on the above space-component
wave functions, we find that ψs does not change sign when
electrons (1) and (2) are exchanged, whereas ψa does. The total
(space + spin) wave functions are obtained by combining ψs and
ψa with the spin-component functions of the two electrons.
Electrons with paired spins have spin-component functions
of the opposite sign associated with them (σ+ and σ�), whereas
electrons with parallel spins have spin-component functions
of the same sign associated with them (either σ+ and σ+, or
σ� and σ�). By inspection, we can deduce that two electrons
occupying the state described by ψs must have paired spins
(so that their spin-component wave functions will change
sign on exchange), and the two electrons occupying the
state described by ψa must have parallel spins (so that their
spin-component wave functions will not change sign on ex-
change). Only by this means will the antisymmetry principle
be adhered to.

The significance of this is that we can use the functions
ψa and ψs to calculate the probability of finding each electron
at a radius, r, from the nucleus, using the relationship

Pr = 4πr1
2 � 4πr2

2 � ψA/B
2

Linnett (10) plotted Pr for both functions for the case
of two s orbitals, and obtained Figure 5. For ψa, the parallel spin
case, this has a nodal surface along the line r1 = r2, implying
zero probability of finding the two electrons at the same distance
from the nucleus. By contrast, for ψs, the paired spin case, there
is a higher probability of finding the two electrons at certain

Figure 4. Explanations for the experimental ionization energies.
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the reduction of electrostatic repulsion due to parallel spin
avoidance in separate 2p orbitals is half the extra electrostatic
repulsion due to two (paired) electrons sharing the same 2p
orbital. His results for the pn system are shown in Table 2.

This treatment identifies the ∆E in Figure 3 (and the y
in Fig. 4) with the value of 5D, of which 2D (40%) comes
from “classical” same-orbital repulsion and 3D (60%) from
“exchange energy”. We also identify the constant increment, x,
in the electron repulsion (see Fig. 4) with (A – D) rather than
with the A in section III. However, when a different set of
wave functions is used for the 2p orbitals, Blake’s calculations
suggest that ∆E is composed of only 20% same-orbital repul-
sion, and 80% exchange energy. Lennard-Jones and Pople also
noted that the relative values of the Coulomb and exchange
contributions depended markedly on the form of orbitals they
chose for their calculations (15). This dependence on seemingly
arbitrary assumptions of orbital mix has led some non-
quantum chemists to question the reality of exchange energy
and the validity of its use in explaining electronic configurations.

VI. Method C: The Stabilizing Effect of Parallel Spins

Sharpe considers that electrons with parallel spins take an
active role in stabilizing the atom (13). His treatment divides
the interelectronic energy into two parts: (i) the destabilizing
electron–electron repulsions of magnitude +A per two-electron
interaction (irrespective of whether the electrons are in the same
orbital or different orbitals), and (ii) the stabilizing exchange
energy between electrons with parallel spins of magnitude �K
per two-electron interaction.

This treatment produces the following equation for the
change in interelectronic repulsive energy (δE ) on ionization:

δE = (n – 1)A – δmK

where n is the number of p electrons, and δm is the decrease
in the number of possible pairs of spin–spin interactions.

Using this equation, a table similar to Table 2 can be drawn
up (Table 3). This relationship is illustrated in Figure 6, and the
interpretation is as follows: As we go across the p-group, the
increase in ionization energy as Zeff increases will be lessened
owing to the increasing loss of electron–electron repulsion
on ionization (the factor A). This still results in a (small) net
steady increase of ionization energy with atomic number (the
line ABC in Fig. 6). But for some elements the increase will
be greater, owing to the loss in stabilization energy (K or 2K )
on ionization. This loss will be greatest for the p3 and the p6

cases. In this treatment may be seen the origin of the suggested
extra stability of half-filled and filled shells. But the treatment
is somewhat misleading, and is also based on an incorrect
assumption.

It is misleading in that it suggests that the interaction
between electrons of the same spin stabilizes a system. This
stabilization, however, is only with respect to a (hypothetical)
system that has no spin interactions at all. A fuller account
might describe a parallel-spin interaction as causing the usual
electron–electron repulsion to be less destabilizing than expected,
owing to the mutual avoidance of the electrons involved.

Its incorrect assumption is that electrons in the same
orbital repel each other to the same extent as electrons in dif-
ferent orbitals. Calculations and observations (for example,
the progression from high-spin to low-spin configurations on
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similar distances from the nucleus (0.5 au in this example).
A similar argument can be applied to the pxpy case.

Electrons with parallel spins do not physically repel each
other any more (or less) than electrons with paired spins (the
Coulombic repulsion would be the same for both, if they were
separated by the same distance). But because their spatial be-
havior is described by the antisymmetric wave function ψa,
the probability of finding two parallel-spin electrons close to
each other is much less than is the case with two electrons
whose spins are paired, whose spatial behavior is described
by the symmetric wave function ψs. This lack of same-spin
electron density around an electron is called a Fermi hole (11),
and the mutual avoidance can be predicted to have two effects
on the energy of the system: (i) the electrostatic repulsion
between parallel-spin electrons should be reduced, and (ii) each
electron in a parallel-spin assembly is shielded from the nucleus
less by its neighbors than is the case with paired electrons.

Each of these effects helps to stabilize a collection of
electrons whose spins are parallel. The phenomenon goes by
various names: exchange energy, Pauli repulsion energy, spin
correlation energy. It is not, though, an energy as such. Rather,
it is a factor that can affect the electrostatic energy of the
system by the mechanisms described. Perhaps a better term
would be “parallel spin avoidance factor”.

Strangely, calculations by Boyd (12) show that the electro-
static repulsion between parallel-spin electrons is in fact slightly
greater than that between paired electrons. He therefore suggests
that the decrease in the system’s energy is entirely due to the
increased attraction between the paired electrons and the
nucleus.

V. Method B: The Combination of Coulombic Repulsion
with the Parallel Spin Avoidance Factor

The treatment described in section III can be extended
by incorporating the concept of parallel spin avoidance. Blake
(14) has performed calculations on both the pn and dn systems,
which yield values for the Coulomb and “exchange” parts of
the electrostatic energy. If we denote the Coulomb repulsion
between two electrons in different 2p orbitals by A, as in
section III, and the extra repulsion due to their occupancy
of the same orbital by 2D (this equates to the B of section
III), Blake calculates that the exchange energy benefit between
two electrons with parallel spins is equal to D. In other words,
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increasing the strength of the ligand field in transition metal
complexes) suggest that double occupancy of an orbital involves
more electrostatic repulsion than single occupancy.

VII. Conclusions

All three methods of calculating interelectron repulsions,
either including (methods B and C) or not including (method
A) the parallel spin avoidance factor and either ignoring
(method C) or taking into account (methods A and B) the
extra repulsion due to dual occupancy of the same orbital,
predict exactly the same shape for the ionization energy–
atomic number curve for the 2pn and, by analogy, the 3pn

cases. Method C suggests the p3 or p6 configurations have a
particular stability, whereas the other two do not. Calculation
of the exact values for the terms A, B, D, and K would enable
decisions to be made about which method’s results correspond
most closely to the experimental values, but the essential
parameters are difficult to measure. Oversimplification of the
quantum mechanical arguments involved in taking account
of the parallel spin avoidance factor seems often to have led
to generalizations that can all too easily be interpreted some-
what simplistically and incorrectly.

Conceptually, the approach involving the neglect of the
parallel spin avoidance factor (method A) is easier for the pre-
university student, who is not versed in quantum mechanics,
to comprehend. It is therefore recommended that, at the sixth
form/high school stage and also for university students who
are not exposed to quantum mechanics, this interpretation
be adopted. It is also the most economical theory in terms of
the models it uses and the assumptions it makes, and, in the
context described, its predictions are no less accurate than
those of more sophisticated theories.

Finally, note that a similar treatment can be applied to
the third ionization energies of the 3d group of transition
metals5 (see Fig. 7). These M2+ ions have the dn configuration
(n = 1–10). ∆E ′ in Figure 7 (500 kJ mol�1) can be identified
either with B′ (the extra repulsion that two d electrons expe-
rience due to their double occupancy of the same orbital) in
the treatment of method A, or with a similar constant to the
5D of method C. Blake calculates ∆E ′ to be equal to 7D′,
taking the double-occupancy repulsion as equaling 2D′.
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Notes
1. The terms parallel and unpaired both refer to electrons

whose spin vectors are in the same direction. To avoid duplication,
in this article they will be referred to as parallel spins.

2. Likewise, the term paired will be used for electrons whose
spin vectors are in opposite directions.

3. Papers by Duke (7 ) and Rich (8) comment on this mis-
conception.

4. Like the Born–Oppenheim treatment, which allows us to
separate for example electronic, vibrational, and translational en- Figure 7. Third ionization energies of the 3d block.

Figure 6. Stabilization by parallel spins.
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ergies from each other and consider them in isolation, the Pauli
treatment of quantum mechanics allows us to factorize ψtotal into a
product ψspace � ψspin. But as the atom gets larger and the electrons
move at close to relativistic speeds, this separation is no longer valid.
The Dirac treatment, taking account of relativistic effects, is more
appropriate for heavier atoms. It arrives naturally at four quantum
numbers, of which the fourth can be associated with the electron’s spin.

5. For the reasons given in endnote 4, this treatment is not
appropriate for the later transition metal groups.
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