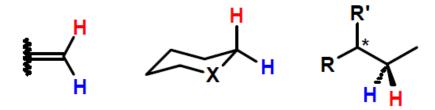
COSTANTI DI ACCOPPIAMENTO

- L'accoppiamento è sempre reciproco: se H_A è accoppiato con H_X , anche H_X è accoppiato con H_A e $J_{AX} = J_{XA}$
- ☐ Le costanti di accoppiamento sono misurate in Hz
- I valori delle costanti di accoppiamento sono indipendenti da B_0 . L'accoppiamento spin-spin è un'interazione tra i momenti magnetici nucleari, che sono indipendenti dal campo magnetico applicato (dipendono da γ e da I)

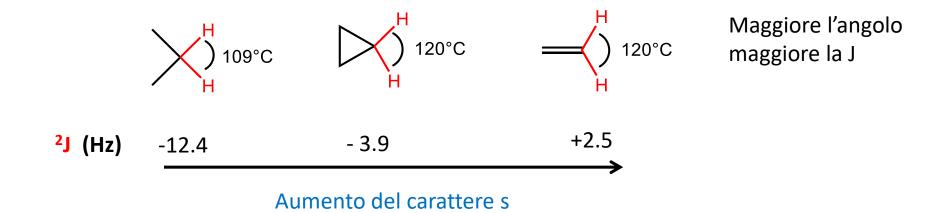
COSTANTI DI ACCOPPIAMENTO H-H


DIPENDONO DA

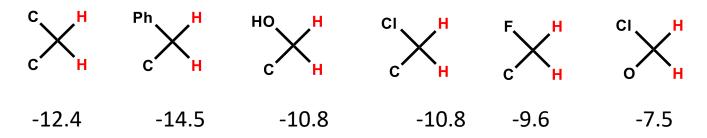
- 1. Ibridazione degli atomi di carbonio
- 2. Angolo di legame e angolo torsionale
- 3. Lunghezza di legame
- 4. Presenza di doppi legami vicini
- 5. Effetto di lone pair adiacenti
- 6. Effetto di sostituenti
- ¹J positiva
- ²J solitamente negativa
- ³J positiva
- ⁴J Positiva/negativa

ACCOPPIAMENTO GEMINALE 2J

²J H-H osservata fra protoni di un gruppo CH₂ quando essi sono magneticamente non equivalenti, cioè in tre casi principali


- 1. CH₂ olefinici
- 2. CH₂ inseriti in una struttura rigida che impedisce la libera rotazione
- 3. CH₂ diastereotopici per la presenza di un centro stereogenico

Le costanti geminali possono variare in un range piuttosto ampio (-17 +40 Hz). I fattori che principalmente influenzano questo tipo di costante sono:


- ∠ L'angolo di legame H-C-H
- L'ibridazione del carbonio
- Sostituenti

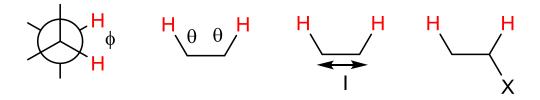
Dipendenza dall'angolo di legame e dall'ibridazione

²J: può essere negativa o positiva |²J| ≈ 12-15 Hz se Csp³; 2-4 Hz se Csp²

Ibridazione sp³: valori molto variabili ${}^2J = -23 \div +43 \text{ Hz}$ casi più comuni: ${}^2J = 10 \div 15 \text{ Hz}$

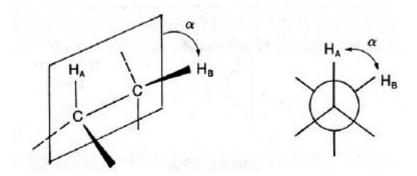
Sostituenti elettronegativi in α : aumento della 2J (diminuzione in valore assoluto)

Ibridazione sp²: ${}^{2}J = 0 \div 4 \text{ Hz}$

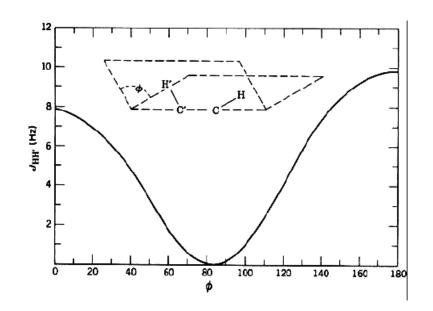

Sostituenti elettronegativi in β : diminuzione della J

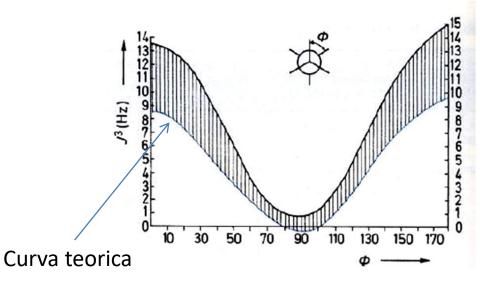
	X H	
X	2 J	E
Li	+7.1	1.0
H	+2.5	2.2
Cl	-1.4	3.0
OR	-2.0	3.5
F	-3.2	4.0

ACCOPPIAMENTO VICINALE 3J (H,H)


La costante vicinale è influenzata da:

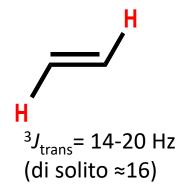
- Angolo diedro φ (Legge di Karplus)
- Sostituenti X
- Angolo di legame θ
- Lunghezza di legame l

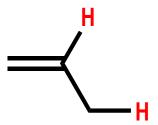



Dipendenza dall'angolo diedro LEGGE DI KARPLUS

$$^{3}J = A + B\cos\phi + C\cos 2\phi$$

A, B, C costanti empiriche




Dipendenza dall'angolo diedro

Andamenti costanti previsti dalla legge di Karplus

t-Bu
$$A = 180^{\circ}$$
 $A = 60^{\circ}$ $A = 60^{\circ}$ $A = 60^{\circ}$ $A = 120^{\circ}$ $A = 120^{\circ}$

$$^3J_{cis}$$
 = 6-14 Hz (di solito ≈10)

$$^{3}J = 4-10 \text{ Hz}$$

Per catene alchiliche in libera rotazione la *J* vicinale dipende dall'elettronegatività di X secondo la seguente equazione empirica

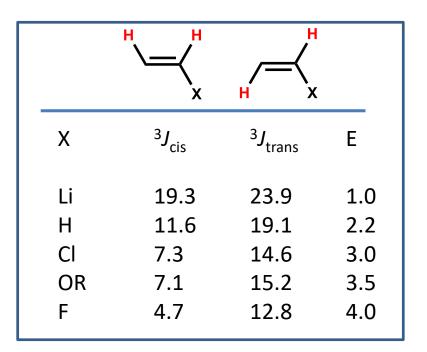
$$^{3}J(H,H) = 8.0-0.8(E_{X}-E_{H})$$

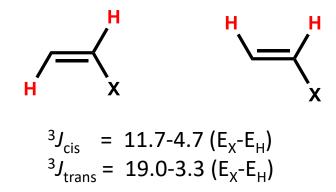
X-CH ₂ -CH ₃						
X	3 <i>J</i>	Е				
Li H Ph	8.4 8.0 7.6	1.0 2.2				
CH ₃ CI OR	7.3 7.2 7.0	2.5 3.0 3.5				

- 1. Trend: sostituenti elettronegativi riducono la ³*J*(H,H) ma non di molto
- 2. Attenzione: Si osserva sempre una *J* mediata su tutte le conformazioni!

R-CH₂-CH₃
$$^3J = 7.1 - 7.3$$

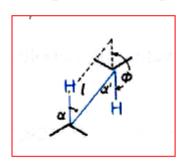
DA RICORDARE

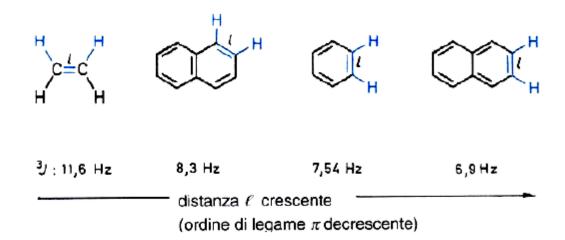

$$^{3}J = \frac{^{3}J(60^{\circ}) + ^{3}J(180^{\circ}) + ^{3}J(300^{\circ})}{3} \approx 7.0 \text{ Hz}$$


Nei sistemi ciclici c'è una dipendenza dall'orientazione

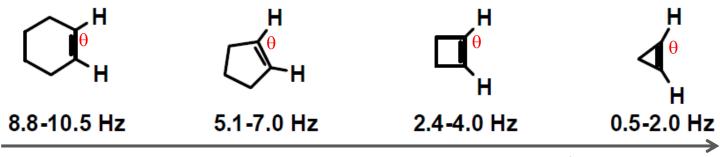
X= OH, OAc, Br

Negli alcheni


Nelle aldeidi


$$O$$
 H
 CH_3
 H
 CH_2CH_3
 $3J = 2.9$
 $3J = 1.4$

Nelle aldeidi le J vicinali sono molto piccole, spesso = 0


Dipendenza dalla lunghezza di legame e dall'angolo di legame

-Angolo di legame -Lunghezza di legame

Dipendenza dagli angoli di legame

Angolo crescente

Long range coupling 4_1

Sistemi insaturi

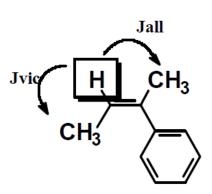
 $H ^4J = 1-7$

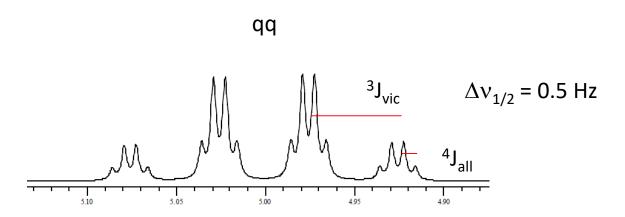

Sistemi saturi a W

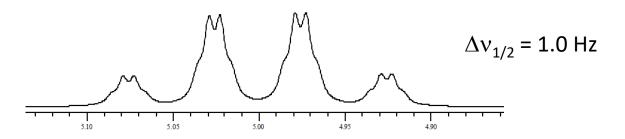
 $^{4}J = 7 Hz$

 $^{4}J = 3-4 Hz$

Long range coupling


Sistemi saturi: a W




Long range coupling 5_/

⁴**J**, ⁵**J**

Richiedono grande risoluzione

ACCOPPIAMENTI AROMATICI ED ETEROAROMATICI

Туре		Typical Value (Hz)	Range (Hz)	Туре	Range (Hz)
H	³ J ortho ⁴ J meta ⁵ J para	8 3 <1	6–10 1–4 0–2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.6–5.8 1.0–1.5 2.1–3.3 3.0–4.2
H_{α} O $H_{\alpha'}$	³ J αβ ⁴ J αβ' ⁴ J αα' ³ J ββ'		1.6-2.0 0.3-0.8 1.3-1.8 3.2-3.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.9-5.7 1.6-2.0 0.7-1.1 0.2-0.5 7.2-8.5 1.4-1.9
H_{α} $H_{\alpha'}$ $H_{\alpha'}$	³ J αβ ⁴ J αβ' ⁴ J αα' ³ J ββ'		2.0-2.6 1.0-1.5 1.8-2.3 2.8-4.0	1 2 3 5 4	
		$^{3}J_{1,2} = 8.3 - 9.1 \text{ Hz}$ $^{3}J_{2,3} = 6.1 - 6.9 \text{ Hz}$ $^{4}J_{1,3} = 1.2 - 1.6 \text{ Hz}$ $^{5}J_{1,4} = 0 - 1.0 \text{ Hz}$ $^{5}J_{1,5} = 0 - 1.5 \text{ Hz}$			