1 A number of preliminary results

1.0.1 Zorn’s Lemma

Let X be a set with an order relation <. A totally ordered subset C' (i.e. each two elements
of C' are comparable for <) of X is called a chain. We say that X is inductive if any chain
C of X has an upper bound in X, that is there exists a z € X with y < z for all y € C. If
C'is a chain and z € C we set P(C,z) :={y € C : y < x}. A set B is an initial segment of
a chain C if B = P(C,z) for some z € C.

The following will play a repeated role in the sequel. The proof will be based on the
Axiom of Choice.

Lemma 1.1 (Zorn’s Lemma). Every nonempty ordered set that is inductive has a maximal
element.

Proof. Suppose that the statement is false. Then for any x € X there is a y with = < y.
Now we claim that for any chain C' there exists x € X with y < z for all y € C: indeed,
just take an upper bound xg of the chain and then, since zg is not maximal, a new element
with zg < x.

Using the axiom of choice, we define for every chain C such an element f(C) := x.

Given C' C X we say that C is conforming if the following three properties hold:

1. C is a chain;
2. C does not contain an infinite strictly decreasing sequence;
3. for any € C we have x = f (P(C,z)) for any x € C.

By convention, ) is conforming. Furthermore, if C is conforming, also C' U {f(C)} is
conforming.
We claim now the following.

Claim 1.2. Given two conforming sets A and B in X, if A # B then one of the two is an
initial segment of the other.

Proof. Let C = {¢c € ANB : P(A,c) = P(B,c)}. We claim that either C = A or
C = P(A,a) for some a € A. If C # A, here exists an a € A\C which is minimal (otherwise
there would be an infinite strictly decreasing sequence in A). It follows that P(A,z) C C.
If P(A,a) G C, there exists c € C\P(A,a). We have a # ¢, since ¢ € C' and a ¢ C. Then,
since ¢ € A and A is a chain, we have a < ¢. However, from the definition of C' it is possible
to see that if ¢ € C' then P(A,c) C C. So, since a € P(A,c) C C, we conclude a € C, which
is a contradiction. So P(A,a) = C. Similarly, either C' = B or C = P(B,b) for some b € B.
What is left to consider is the case A # C and B # C. Then C = P(A,a) = P(B,b). We
have a = f(P(A,a)) = f(P(B,b)) = b. But then, by the definition of C, we have a € C,
giving a contradiction, because C' = P(A,a) Z a.
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Let E be the union of all conforming subsets of X and let a € E. Let A be a conforming
set containing a. Then we claim that P(A,a) = P(F,a). Indeed P(A,a) C P(E,a) is
obvious. On the other hand, if x € P(F,a) and B is a conforming set containing z, if B is
equal or is an initial set of A, obviously = € A, while, if A = P(B,b), then z < a < b and
x € B implies x € P(B,b) = A. That is, P(A,a) = P(E,a).

Then, it can be shown that F itself is conforming, and obviously the largest conforming
subset of X. However also EU{f(E)} £ E is conforming and strictly larger, and so we get
a contradiction.

O

1.0.2 Complete metric spaces

Definition 1.3. A metric space is a set X and a function d : X x X — R such that the
following properties hold:

1. d(z,y) =0 <=z =y;
2. d(z,y) = d(y,z) for any pair z,y € X;
3. d(z,y) < d(z,z)+d(z,y) for any choice of z,y,z € X

A sequence {zy }nen in a metric space (X, d) is Cauchy if for any € > 0 there exists a n. € N
such that n,m > n, implies d(x,, z,,) < €.

A metric space (X, d) is complete if any Cauchy sequence in (X,d) is convergent in
(X, d).

Definition 1.4. é completion of a metric space (X,d) is a pair consisting of a complete
metric space (X, d) and an isometry j : X — X such that j(X) is dense in X.

Theorem 1.5. Every metric space has a completion. The completion is unique, up to an
isometric one to one and onto map.

Proof. Consider the set M of Cauchy sequences in (X, d). Let us introduce a map d : M X
M — R defined by

d({oa} {ga}) = lm_d(en, yo). (1.1)

Notice that the above limit exists and is finite. Indeed, for € > 0 consider n. € N such that
n,m > n, implies d(zp, ;) < € and d(yn, ym) < €. Then, for n,m > n.

Now we check that

|d (xn’yn) - d(l’n, ym) | < d(ynuym) . (12)



Indeed d (xna yn) <d (xna ym) +d (yna ym) implies

d(Zn,Yn) — d(@n, Ym) < d(Yn, Ym) -

Similarly, d (2, Ym) < d (Tn,Yn) + d (Yn, Ym) implies

d(xnaym) - d(fnayn) < d(ynzym) .

Hence we obtain (1.2). For the same reasons we obtain

|d(l‘mym) —d (l'ma ym) ‘ < d(l‘ml'm) .

We conclude that

‘d(xnayn) - d($m7ym) ’ < d(wnaxm) + d(ynyym) < 2e.

So the sequence {d (z,,yn)} is a Cauchy sequence in R, and hence the limit in (1.4) exists
and is finite.

It is easy to see that d : M x M — [0, +00) is symmetric and satisfies the triangular
inequality. We define the relation

{zn} ~{yn} = d({zn}, {yn}) = 0. (1.3)

It is easy to see that it is an equivalence relation. Let M:=M / ~ with natural projection
7+ M — M. It remains defined a metric dy; : M x M — [0,4+00). There is a natural
immersion j : X < M given by j(z) = {z,z,x,....} such that d(z,y) = d(j(z),j(y)) =
dpr(moj(z),moj(y)). It is also easy to see that 7o j(X) is dense in M since for any given

7 ({xn}) € M, we have 70 j(2p,) ——"% 7 ({xn}) in (M, dys). Indeed, since we know that

for any € > 0 there is N(¢) s.t. n,m > N(e) = |z, — | <€,
we obtain that for any ng > N(e) we have

d ({Zng, Tngs Tngs - 1 {xn}) = lim d(zp,xn,) <€ (1.4)

n—-+o0o

which implies d ({Zny, Zng, Zngs -} {Zn}) —~—= 0, which, in turn, implies 7o j (2, ) ———

7 ({zn}) in (M, dy).

Next, (M,dps) is complete. Indeed, if N 3 m — 7 ({Zn m Inen) is a Cauchy sequence
in (M,dyy), then for any € > 0 there is N(e) s.t. mq, mo > N(e€) implies

d ({xn7m1 }neNa {xn,m2}n6N) = ngrfoo d(xn,ml ) xn,m2) <e

Set y1 := 71,1 and for any m > 1 choose N(m) € N s.t. d(Zn(m),m, Tnm) < 1/m for any
n > N(m) and set yn := Tn(n) - Let us see, first of all, that {y,} is a Cauchy sequence.



We have for any j > min (N(m), N(n)) and for n,m > N(e)

d (2N () TN (m)m) < d(ENm)ms Tin) + d(@jn, Tjm) + d (Tjm, TN (m),m)
<1/n+1/m+d(zjn,xjm) (for j > min(N(m), N(n)))
<1/n+1/m+e (for n,m > N(e) and j > 1)
< 2¢ (for n,m > 1) .

Next, we need to show that

lim d ({xN(n),n}TLENa {xn,m}neN) =0. (15)

m——+00

Now, for any € > 0,

d ({xN(n),n}TLENa {CEn,m}neN) = ngr-‘,r-loo d(ZUN(n),na xn,m)

< limsup d(xN(n),na xN(m),m) + lim sup d(xN(m),ma xn,m)

n—-+oo n——+oo
< limsup d(xN(n),nv xN(m),m) + 1/m <e
n—-+o0o

for n and m sufficiently large. This yields (1.5). To complete the proof of Theorem 1.5 see
Exercise 1.6 below. ]

Exercise 1.6. Show that if (X,dx) and (Y,dy) are two complete metric spaces, if Z is a
dense subspace of X and if T': Z — Y is a continuous map, which is uniformly continuous

on bounded subsets of Z, then there is, and is unique, a continuous extension 7 : X — Y
of T.

1.0.3 Tychonov’s Theorem
Definition 1.7. Let {X,}4c4 be a family of sets. We consider the product

H Xo = {(Ta)gen : Ta € X, for all a € A},
a€A

Suppose now that each X, is a topological space. Then the product topology is the weaker
topology containing as open sets, products of the form [] .4 Us, where U, C X, is open
for any a € A and where U, C X, for at most finitely many a.

=

Theorem 1.8 (Tychonov’s Theorem). The Cartesian product [[,., Xo with the product
topology is compact if and only if all the X, are compact.

The fact that if the product is compact all the X, are compact follows easily from the
fact that the projection function m,, : X := H Xo = Xg, is continuous for all ag € A and

a€A
the continuous image of a compact space is compact. So the interesting part is showing that

the product is compact. Consider a cover X = UpcpAp with open sets. We need to show



that there exists a finite subset By of B such that X = Upep fAb. An equivalent statement
is that if NpcpCy = 0, where the Cp, are closed sets, then there exists a finite subset By of B
such that Myep,Ch = 0.

Definition 1.9. A collection € = {C}, : b € B} of distinct sets is said to have the finite
collection property if for any finite subset By of B we have Myep,Ch # 0.

Notice that the following is elementary.

Exercise 1.10. A topological space X is compact if an only if any collection of closed
subsets of X which has the finite collection property has non—empty intersection.

Given two such collections, € = {C, : b € B} and © = {Dy : I/ € B’} of subsets
of X, we can write that € < © if for any Cp there exists Dy = Cp. The set formed by
collections enjoying the finite collection property satisfies the inductive property, that is, if
{€; : j € J} is a totally ordered family of such collections, it has an upper bound, that
is, a collection which is larger than all the €;. Indeed just consider the collection €, which
is formed by all the sets of all the collections €;. Notice that it has the finite collection
property, because if Cy,...,C, € €, they belong C; € €;,,..., C, € €, and since one of the
i, €, is the largest, for example €, is the largest, then Cy,...,C,, € €;;, and since €},
has the finite intersection property, then C;()...[1Cn # 0. So we conclude that € has the
finite intersection property.

Now, we apply Zorn’s lemma and conclude that there exists a collection ® = {Dy : d € D}
of distinct sets with the finite collection property and maximal. The following lemma is
true.

Lemma 1.11. Let X be a set and let ® = {D; : d € D} be a collection of distinct subsets
with the finite intersection property and mazximal. Then the following holds:

1. every finite intersections of elements in O is in D;
2. if A is a subset of X with non empty intersection with all elements of ©, it is in D.

Proof. Let Dy, N....N Dy, be a finite intersection of elements in ®. It is elementary that if
it is not an element of ®, then ® U{Dy, N....N Dy, } satisfies the finite intersection property
and, since © is a maximal collection with this property and ® U{Dg, N....NDy,} 2 D, we
get a contradiction. So Dy, N ....N Dy, € D.

Since the 1st claim in the statement is true, moving to the 2nd statement, it is elemen-
tary to see that © U {A} satisfies the finite intersection property. By the maximality of ©,
it follows that the 2nd statement is true.

O

Completion of the proof of Tychonov’s Theorem. Let by contradiction assume that X
is not compact. Then there exists a a collection € = {Cp, : b € B} formed by closed sets
of X which has the finite collection property but which satisfies (,c5Cy = 0. We can
consider a maximal collection ® = {Dy; : d € D} with € x ®. If we consider finitely many
elements Dy, ..., D, € D, by the finite collection property of ® the intersection Dy () ...\ Dn



is nonempty and has nonempty image 7 (D1()...(1Dn) = 7 (D1)()...(\7(Dy). So the
family of sets D4y := {74 (Dg) : d € D} has the finite collection property in X, for any
a € A. By the compactness of X,, we have

N @) #0,

deD

so in particular this intersection contains an x, € X,. Consider X > x = (z4)qca. We
claim that x € C for any b € B. This will contradict (,c5Cp = 0.

An open neighborhood of x is of the form U = [],. 4 Ua, where U, C X, is open for any
a € A and where U, C X, for at most finitely many a. Let U,,, ..., U,, be the only factors

which are proper subsets of the corresponding X,’s. Then Uy, (74, (Dg) # () for any d € D.
So 7r;j1 (Uaj) N Dy # 0 for any d € D. But then 7T;j1 (Uaj) is an element of ® by Lemma

1.11. SoUd = ﬂjzlqu 7ra_7.1 (Uaj) is an element of ©. We conclude that & N Cy # ) for any
b € B and for any neighborhood U of x. This implies that x € C, for any b € B, completing
the proof of Tychonov’s Theorem.

1.0.4 Normal topological spaces

Recall that a topological space X is Hausdorff if given two distinct points =,y € X there
exist a neighborhood U of x and a neighborhood V of y such that U NV = ().

Definition 1.12. A topological space X is regular if for any x € X and for any closed
subspace B of X with = &€ B, there exist a neighborhood U of x and a neighborhood V' of
B such that UNV = (.

A topological space X is normal if for any pair A and B of disjoint closed subspaces
of X there exist a neighborhood U of A and a neighborhood V' of B such that U NV = ().

Theorem 1.13. Every metric space X is normal.

Proof. Let A and B be two disjoint closed subspaces of X. For any a € A consider a ball
of center a and radius €, > 0 such that Dx(a,€,) N B = 0 and for any b € B consider a ball
of center b and radius €, > 0 such that Dx(b,e) N A = 0. Set

_ € _ @y
U : UDX<a,2>andV bgDXG) 2)

a€A

If now there exists z € UNV, then for somea € Aand b € Bwehave z € Dx (a, %‘1) N Dx (b, %”)
Then, by the triangular inequality, d(a,b) < % It is not restrictive to assume ¢, < €.
Then d(a,b) < €, contradicting Dx (b, €e;) N A = (. This implies that U NV = (), proving
the statement. O

Theorem 1.14. Every compact and Hausdorff space X is normal.



Proof. First of all we prove that X is regular. Consider x € X and B closed subspace of X
with z ¢ B. Notice that B is compact. By the Hausdorff property, for any b € B there are
a neighborhood U® of z and V}, of b with U®) NV, = 0. Since B is compact, it is possible
to find a cover of B C Vj, U... UV}, which is disjoint from U®) 0 ...NU®) which is a
neighborhood of z.
Give now any pair A and B of disjoint closed subspaces of X, by the previous part of
the proof, for any a € A there exist a neighborhood U, of a and a neighborhood V() of B
so that V(@ N U, = 0. Tt is possible to find a cover of A C U, U ...UU,, which is disjoint
from V(@) 0. N V() which is a neighborhood of B.
O

Theorem 1.15 (Urysohn’s Lemma). Let X be a normal space, A and B be two disjoint
closed subspaces of X and [a,b] C R a compact interval. Then there exists f € C°(X, [a,b])
with f =a in A and f =0 in B.

Proof. Tt is enough to consider [a, b] = [0, 1].
Let P be the set of rational numbers in [0,1]. We will define a family of open sets {Up}pep
with

U, CU,ifqg<p, (1.6)

with A C Uy and U; = X \B.

Suppose that we have defined {Up}pep. We can extend this to a family {U,},cq setting
U, =0 for p < 0 and U, = X for p > 1. Notice that (1.7) continues to hold. For any z € X
set now Q(z) ={pe€ Q:2 € U,}. Set now f: X - R by

f(z) = inf Q(z)

Notice that f =0in A (since A C Uy and ANU, =0 for any p < 0) and f =1 in B (since
B C U, for any p > 1 and BN U; = (). Before proving the continuity of f, we prove the
following two statements:

erxcU,= flx)<r
ez ¢ U, = f(x)>r

Indeed, = € U, by (1.7) implies Q(z) 2 QN (r, +o00) and so f(z) < inf (Q N (r, +o0)) = r; if
x € U, with f(z) < r then there exists p € Q(z) with p < r, which implies z € U, C U, G
Uy, yielding a contradiction with (1.7).

Let us now prove the continuity, fixing zo € X and an ¢ > 0. Fix two rational
numbers p < ¢ with f(xo) —€ < p < f(zo) < ¢ < f(xo) + €. We show that there
exists an open neighborhood U of zg such that f(U) C (f(zo) — €, f(xo) + €). We can
choose the open set U := U,\U,. Notice z ¢ U, = f(z) > p > f(z0) — € and that
r €U, = f(x) < q< f(zo)+e, so it is true that f(U) C (f(zo)—¢, f(wo)+€). Furthermore,

p < f(xo) implies 2o & U, and f(zo) < ¢ implies zg € Uy, so zg € U = U,\U,.



To complete the proof, we need to define the family of open sets {Up,}pcp. Recall
that A C Uy we have U; = X\ B with Uy ; Uy. We can arrange P as a sequence, which
starts with 0 and 1. Let P, the set formed by the first n terms and suppose that (1.7)
holds for elements of P,,. Consider now P,11 = P, U{r}. Here 0 < r < 1, and there are
p <r<gq,p € P, the immediate predecessor and ¢ € P, the immediate successor of r in
P, +1. Consider the pair of closed sets A= U, and B=X \Uy, which are disjoint because
of (1.7). Since X is normal, there exist open neighborhoods U of A and V of B with
UNV =0. Let now U, := U. Then U, C U, by definition and U, C X\V C X\g =U,.
Hence (1.7) is true also in P,41. By induction {Up,},cp remains defined.

O

Corollary 1.16 (Urysohn’s Lemma). Let X be locally compact and Hausdorff and let K C
V with K a compact subset of X and V' an open subset of X with K C V. Then there exists
feC%X,[0,1]) with f=1in K and f =0 in X\V.

Proof. Suppose we know that
there exists an open set U with K C U C U C V with U compact. (1.7)

Then consider f € C°(U,[0,1]) with f = 1in K and f = 0 in U\U which is obtained by
the previous Lemma 1.15 (after f ~ 1 — f). Then set f = 0in X\U. In this way we obtain
the desired function.

We need to prove the statement in (1.7). Notice that there exists an open set G with
G compact with K C G. If V = X we are in the previous situation with U = G. So
assume V' # X and consider the closed set B = X\V. Now, for any b € B there exist
an open neighborhood V;, of b and a relatively compact open neighborhood U®) of K with
U® NV, = 0. Notice that U® C X\V, implies U(b) C X\V;, because X\V; is closed.
So, in particular, b & U(b). Then {BNG N U(b) : b € B} is a collection of compact sets
with empty intersection. It follows that there exists {B N G N o) . j =1,..,n} with
empty intersection. Then set U = GNU®) N ...ATU®): it is an a relatively compact open
neighborhood of K whose closure G N T® is contained in X \B=V.

O
1.0.5 Weierstrass Approximation Theorem

Theorem 1.17 (Weierstrass Approximation Theorem). The set of real valued polynomials
is dense in C°([a,b],R) for any interval [a,b].

Proof. Tt is not restrictive to consider only case [a,b] = [0, 1]. We recall

(z+y)" = i (Z) akynk, (1.8)

k=0



Setting i (x) := (Z) F(1 — 2)" %, we have Z ri(x

Applying z0, to (1.8) we obtain

nx(z +y)" ! = (k) kakyn=k, (1.9)
k=0
and so
nr = Z kri(z). (1.10)
k=0

Applying 2202 to (1.8) we obtain

n(n —1)z?(z +y)" 2 = (Z) k(k — 1)zkynF, (1.11)
and so
n(n—1)z% = > k(k — )rg(x) (1.12)
k=0

The proof given here of this theorem is based on the following formula,

n

Z (k —nx)?r = n?z? Z ri(x) — 2nz Z kry(z) + Z k2ry.(x)
k=0

k=0

= n’x —anna:—f-Zk — Drp(x -i-Zka
k=0

= —n?z? +n(n — 1)a? +nz = —nz? + nx = nz(l — z).

Given now f € C9([0,1],R), for any given € > 0 we know that there exists 6 > 0 such that
for any integral I C [0, 1] of length |I| < § we have oscr(f) < € where

oscrf :=sup f(I) —inf f(I). (1.13)

Now we write




The first term is bounded by

1<l ¥ (1@-7(5))nw < ¥

|rf§|<5 ’x,E’<§

n

while, for oscjg 1)(f) < M, the 2nd term can be bounded by

n
—_ o= 20 o= ]2
M & k2 M & M M
2 n—-+4o0o
< 52 Z <x - n) re(z) = 52,2 (nx — k)" ri(x) = an(l —z) < e 0.
k=0 k=0
From this we derive that there exists an n such that I + I] < 2e. O

Remark 1.18. Notice that the main steps in the above proof have probabilistic interpre-
tation. If we consider n independent random variables X; with P[X; = 1] = z and
P[X; =0] =1—z, then E[X;] =z, Var[X;] = z(1 — x).
For S, = X1 + ... + X, we have P[S,, = k] = ri(z), E[S,] = nz, Var[S,] = nz(1 — z)
and this equality corresponds to the last one in the proof of Theorem 1.17. Notice that in
general, given n independent random variables X; with E[X;] = m, Var[X;] = 02, then it
is simple to prove

P [ X1+ ...+ X,

—m‘zé] <
n

nd?’
This inequality generalizes the inequality

Z re(z) < M

né?
o= Ef2s
proved above, see Varadhan Sect. 3.2 [14].

1.0.6 Ascoli Arzela Theorem

Definition 1.19. Let X be a compact topological space and consider the set of continuous
functions from X to R, which we denote by C°(X,R). Notice that we can introduce in
C%(X,R) the distance d(f, g) := sup,ex |f(z) — g(z)|.

Exercise 1.20. Show that in Definition 1.19 is a metric that makes C(X,R) a complete
metric space.

Theorem 1.21 (Ascoli Arzeld). Let X be a compact metric space and let S C C°(X,R).
Then S is compact if and only if:

15 is bounded

10



2 S is equicontinuous

Proof. Suppose S is relatively compact. If S is not bounded and equicontinuous then either
there is a sequence f, € S such that (1) does not hold in the sense that |sup f(X)| +
linf f,,(X)| 2= oo, or there is a sequence f,, € S such that (2) does not hold in the sense
that there is an € > 0 such that for any n there are z,,,y, € X such that dist(z,,y,) < 1/n
and |fn(xn) — fn(yn)| > €. In either case, it is impossible to extract a subsequence of {f,}
convergent in C°(X,R).

Suppose now S is bounded and equicontinuous. Since X is a compact metric space,
there is a sequence x,, € X such that Ve > 0 there is k(e) > 1 such that

sup inf dist(z,z;) <e.

SR )

By a diagonal process and by Bolzano Weierstrass (thanks to (1)), we obtain a subsequence
fn such that for any z,, {fn(zm)}nen converges. Let us show now that f,(z) converges for
any x.

For any € > 0 and for any § > 0 and any j < k(J), we have

[fn(2) = fm(@)| < | fo(@) = fu(@i)] + [fm(25) = fo(@i)] + [ (@) = fn(25)]-
By equicontinuity, for 6 > 0 small we have
|fu(x) = fr(xj)] + | fm(x) — fi(x;)| < 2€ for all j < k(5) with dist(x,z;) <6 and m in N.

For m,n > N(€), |fm(xj) — fu(z;)] < € for any j < k(e). Then we have proved that
m,n > N(e) = |fu(x) — fm(z)| < 3¢ for any x € X. Hence we have proved that {f,} is a
Cauchy sequence in CY(X, R). It is easy to conclude that there is an f(x) := lim, 1 o0 fn(7)

pointwise well defined, and f,, oo, f uniformly. O

1.0.7 Reisz representation theorem

In this section, we will consider X, a locally compact and Hausdorff topological space.
We will denote by CY(X)(= C%(X,R)) to be the space of continuous maps from X to R
which have compact support. Just for this section, if K is a compact subspace of X and
f € C%X,|0,1]) is such that f = 1 in K, we will write K < f; if V is an open subspace s.t.
f € CY%X,[0,1]) is such that supp f is a compact subspace of V', we will write f < V.

Theorem 1.22. Let X be a locally compact and Hausdorff space. Let A be a positive linear
operator on C2(X,R). Then there exists a o algebra M containing the Borelian sets, and
a unique positive measure p on M such that:

1Af=[yfdu for any f € CA(X,R).

2 u(K) < oo for any compact K.

11



3VE € M we have u(E) = inf{u(V): V open V 2 E}.

4 We have p(E) = sup{u(K) : K compact K C E} VE € M open and for all VE € M s.t.
u(E) < oo.
5VE € M with u(E) =0 and for any A with A C E we have A € M and u(A) = 0.

Ezample 1.23. If X = N, then any A : C%(N,R) — R like above can be identified with the
sequence {Aey, fnen in [0,400), where e,(m) = dpm, withe the Kronecker delta. Then

A ({an}nEN) = Z apAey,.
n=1

Proof. For any open set V set

p(V) =sup{Af: f <V}

Hence for V7 C V5 we have p(V1) < p(V2). As a consequence, for any open subset £ C X
the following is true

p(E) =inf{u(V): E CV with V open}. (1.14)

Formula (1.14) makes sense for any subset E C X, and we use it to define p(F) for any E.
Notice that Fy C Fsy implies u(E7) < u(Es2).
Let Mp be the set of the E such that u(E) < oo and such that

u(E) = sup{u(K) : E O K compact}. (1.15)

We define M to be the set of the F C X such that EN K € Mg for any compact K.
Claim 1.24. My contains any compact set K.

Proof. 1t is enough to show p(K) < oo. Pick K < f and let V = {f > 1/2}. Then K C V
and g < 2f for any g < V. Then

p(K) < p(V) =sup{Ag: g < V} < A(2f) < co.

O
Notice that the above claim implies also that any compact K belongs to M.
Suppose now that u(E) = 0. Then, it follows from by monotonicity that u(K) = 0 for
any compact K C F, so that (1.15) is true. Hence E € Mp. And since any subset of F,
for the same reasons, belongs to Mg, it follows that £ € M. This proves claim 5 in the
statement.

Claim 1.25. Every open set satisfies (1.15). Hence Mp contains every open set V with
uw(V) < oo.
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Proof. Let a < u(V'). Then there exists f < V such that o < Af. Given any open set W D
supp f, we have f < W, and hence a < Af < u(W). We also have p(supp f) > Af > a.
This yields formula (1.15).

O
Claim 1.26. For any sequence of arbitrary sets Fj... in X we have
o
,U/(UfzozlEn) < ZN(En) : (1‘16)
n=1
Proof. Observe first of all that for two opens sets, we have
p(ViuVa) < p (Vi) +p(Vz). (1.17)

To show this pick f < V3 U Va. Now there are h; < V; such that hy 4+ hg = 1 on supp f.
Then f = fh1 + fho with fh; < V; and since, linearity Af = Afhy + Afho, we conclude
that

Af = Afhi+Afhy < (Vi) + (V) for any f < ViU Va.

Hence
w(ViUVa) =sup{Af: f<ViUW}<u(Vi)+pu(Va).

Notice that (1.17) extends immediately into
pWViu. UV, <p(Vi)+...4+ p(Vy) for any n > 2 open sets Vi, ..., Vj,. (1.18)

Going back to the countable subadditivity, if p (E),) = oo for some n we are fine. If this is
not the case, consider E,, C V,,, V;, open with p (V) < u(E,) + 27 ™. Consider the open
set V =Up2yV, and consider f < V. Since supp f is compact, there exists an n such that

Af <UL V) <Y u(Vi) <> n(E) +e,
=1

i=1

where in the 2nd inequality we used (1.18). Since the last formula holds for any f <V and
we have U2, E; C V, we we conclude that

p(URE) < (V) <) p(E:) +e
=1

Since € > 0 is arbitrary, we obtain (1.16). O

Claim 1.27. For any sequence Ej... of disjoint elements in Mp we have for F' = U2 | E),
[e.9]
(B =3 (B (1.19)
n=1
and, if u(EF) < oo, then £ € Mp.
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Proof. Let us first show that for disjoint compact sets we have
p(K1 U Ko) = p(Kq) + p(K2). (1.20)

We know already that pu(K; U Ks) < u(Kq) 4+ p(K2) is true

There are disjoint open sets V; and Vs, with V; O K. Consider an open set W O K U K3
with u(W) < p(K1UK32)+e. There are f; < WNV; with Af; > p(WnNV;)—e. By K; € WNV;
and f1 + fo < W (where f1 + fo € C%(X, [0,1]) because supp fi Nsupp fo € ViNVa =),

p(K1) 4+ p(K2) < p(W N V) 4+ p(W N Va) <Afi+ Afa + 2
< pu(W) + 2e < p(K1 U Ka) + 3e.

By the arbitrariness of € > 0, we conclude p(K; U K2) > p(K7) + p(K2), and so (1.20).
Notice that it is elementary that (1.20) extends to the case of n > 2 disjoint compact
subspaces.

Going back to the countable union, if we have p(E) = co both sides are equal to co by
the countable subadditivity. So suppose u(E) < co. Since E; € Mp, there is a compact
H; C E; such that u(E;) > u(H;) — 2 %. For K,, :== H{ U ...U H,,

p(E) Z p(Kn) = 3 p(H) > D pl(E:) = e

where the equality follows from (1.20), in the case of n > 2 disjoint compact subspaces.
This holds for any n and €. So

wE) = Z 1(E;).
=1

By the previously proved countable subadditivity we have equality, obtaining (1.19). In
particular, taking N large enough,

N N

p(E) <) (B +e< > p(H;) + 2 = p(Ky) + 2e.
=1 =1

This proves (1.15), and so proves E € Mp. O

Claim 1.28. If £ € Mp and € > 0, there are K C F C V, K compact and V open, with
wV—K) <e.

Proof. There are K and V with K C ECV and u(V) —¢/2 < u(E) < p(K)+¢€/2. V-K
is open, we have u(V — K) < u(V) < p(K)+e€ < oo,s0 V — K € Mp by Claim 1.25. Then

u(EK) +p(V — K) = u(V) < w(K) + e,

where the equality follows by Claim 1.27, yields the desired result. 0
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Claim 1.29. If A,B € Mp, then A— B, AU B, AN B all belong to Mp.

Proof. We start observing that for € > 0 there are K1 C A C V; and Ky C B C V, with
w(Vi\K;) < e. It is elementary that

A\B € VI\K; C (VI\K1) U (K1\V2) U (V2\K3). (1.21)

Indeed A C Vi and K5 C B gives the 1st inclusion. Looking at the 2nd inclusion, elements
of 1\ K3 not in V1\K; are necessarily elements of x € K1\Ks. Since X = Vo U (V3 then
K1 = (K1 NW) U (K;NCW). If z € Ky N Va, then, since © ¢ Ko, we have x € V5\ K>
Otherwise, z € K3 N LV, = K1\ Va. So, (1.21) is proved.
By subadditivity
(A — B) < 2¢ + u(Ky — Vo).

Since (K; — V3) is a compact subset of A — B, we conclude A — B € Mp. Next, AU
B =(A—-—B)UB and AU B € My by the previous step on disjoint unions. Finally,
ANB=A—-(A-B). O

Claim 1.30. M is a o algebra containing all Borel sets.

Proof. Let K be compact in X. If A € M, then CANK = K — (AN K) is the difference of
two elements in My and so by Claim 1.29 it belongs to Mp. So A € M implies CA in M.
Next, let A = U°A; with A; € M. Let K be compact, let B; = A; N K and

B,=(A,NK)—(B1U...UBy_1).

Then the B,, form a disjoint sequence in Mp and so AN K = UB; € Mp by Claim 1.27.
So A € M. Finally, let C be closed. Then, for any K, C' N K is compact so is in Mg and
CeM. O

Claim 1.31. My contains exactly the £ € M with u(F) < co.

Proof. Let E € Mp. For any K compact, E N K € Mp by Claims 1.24 and 1.29. By
definition, this implies £ € M.

Let us pick now E € M with pu(FE) < co. Then there is V O E with p(V) < co. By Claim
1.25, there is a compact K C V with u(V — K) <e. By ENK € Mp thereis HC ENK
compact with pu(ENK) < u(H) + €. We have

E=(FENK)U(E-K)C(ENnK)U((V-K).

This implies

w(E) < W(ENK) + p(V - K) < p(H) + 2,
so B e Mp. OJ
Claim 1.32. For any f € C)(X) we have Af = [ fdu.
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Proof. Tt is enough to prove
Af < /fd,u for any f € CY(X,R) (1.22)

since by A(—f) < [(—f)dp we get Af > [ fdu, and thus the equality.
Let K be the support of f and [a, b] the range. Pick

w<a<y1 <..<yp,=bwithy, —y;—1 <eforalli=1,...,n.

Set E; = f~Y(Jyi—1,y:]) N K. These are Borel, disjoint with union K. There are open sets
Vi with u(V;) < u(E;) + ¢/n and f < y; + € in V;. There are h; < V; with > h; =1 on K.

Af =D "Ahif) <> (Wi + OAh:) < (yi + (Vi)
=1 i=1 =1

<> i+ OnE) + Y i+ -
i=1

=1

< Z(yi —)p(E;) + 2eu(K) + (b+e)e < Z Yi—1 (i) + 2epu(K) + (b + €)e
i—1

=1

S;/Eifdu+e(2u(K)+b+e):/dewg(zu(KHbJrE).

Definition 1.33. A positive measure is regular if for any Borel set F,

w(E) = sup{u(K): K compact set with K C E } (F inner regular)
=inf{u(A) : A open set with A D E } (E outer regular).

Remark 1.34. In Theorem 1.22 every £ € M for the measure p, while the inner regularity
is proved for all £ € Mp.

Theorem 1.35. Let X be a locally compact, Hausdorff and o—compact space (X is a count-
able union of compact sets). Let M and p be like in Theorem 1.22. Then the following
happens.

1. For any E € M and € > 0 there evists ' C E C V, F closed and V' open, with
uw(VAK) < e.

2. w is regular.

3. For any E € M there exist A, a countable union of closed sets, B, a countable
intersection of open sets, with A C E C B, with u(B\A) = 0.

Proof. See Rudin [9)]. O
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Theorem 1.36. Let X be a locally compact and Hausdorff space where every open set
is o—compact (a countable union of compact sets). Then any Borel measure p such that
w(K) < oo on any compact set, is reqular.

Proof. See Rudin [9)]. O

2 Topological vector spaces on K =R, C

We will consider Topological Vector Spaces, that is, vector spaces, where the algebraic and
the topological structure are compatible.

Definition 2.1 (Topological Vector Space). Consider a vector space X on the field K =
R,C. A Hausdorff topological structure (X,7) on E is said to be compatible with the
vector space structure if the maps

XxX3(xy »2x+ye X and K x X 3 (\,z) > Az € X are continuous. (2.1)

n

T N——
Exercise 2.2. Given a topological vector space X show that X" = X x ... x X 3 (z1,...,zp) —
1+ ... + x5 € X is continuous for any n, for the product topology in X".

Exercise 2.3. Show that in a topological vector space X a subset U C X is a neighborhood
of a point xgp € X is an only if U = z¢9 + V, where V C X is a neighborhood of 0 € X.

Definition 2.4. Consider a vector space X on K and a subset {2 C X. Then () is said to
be

1. balanced, if x € Q and |A| < 1 imply Az € Q,
2. absorbing, if for any x € X there exists a scalar A such that x € A\Q2 .

Exercise 2.5. Any neighborhood U of 0, in a topological vector space X, is absorbing.

Answer. Consider the U, neighborhood 0 and let z # 0. Since R > A = uz € X is
a continuous map, there exists § > 0 such that uz € U for |u| < §. Pick one such p # 0.
Then puxr € U <=z € AU for A =1/p. O

Lemma 2.6. For any given neighborhood U of O of a topological vector space X, there exists
a balanced neighborhood V' of 0 such that V C U.

Proof. Fix any neighborhood U of 0 in X. By continuity, there exists an open neighborhood
V of 0 and a § > 0 such that AV C U for any [A| < 6. Let V = (J;y<5AV. Then V is an
open neighborhood of 0 contained in U, and it is easy to see that it is absorbing.

O

Remark 2.7. It is well known, and easy to check, that in a Hausdorff topological space X
every subset {z} for x € X is closed. In the context of topological vector spaces, if we
subtract from the hypotheses that X is Hausdorff, but we ask that each {z} for z € X is
closed, then in fact, X is Hausdorff.
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Lemma 2.8. Assume that X is a vector space, that it has a topology for which (2.1) is true
and that each {z} for x € X is closed, then X is Hausdorff.

Proof. Tt is enough to show that if x # 0, then there exists a neighborhoods U of 0 and V' of
x such that UNV = (). Since {x} is closed, we know that there exists a neighborhood U of
0 such that = & U;. Furthermore, there exists a neighborhood U of 0 such that U+ U C U;.
Furthermore, since Lemma 2.6 continues to hold under our hypotheses, we ca assume that
U is balanced. So, in particular, U — U Z z. It follows that UN (x +U) =0. V =2+ U
is the desired neighborhood of . O

Definition 2.9. Given two topological vector spaces X and Y we denote by £(X,Y") the set
of linear operators defined in X and with values in Y which are continuous. In particular,
for Y = K, we set X’ = L(X, K) and we call it the dual space of X. We call the elements
of X' the linear functionals on X. Finally, when X =Y we write £(X) := L(X,Y).

Exercise 2.10. Show that a linear map T : X — Y between two topological vector spaces
is continuous if an only if it is continuous in just one point z¢ € X.

Exercise 2.11. Let X be a topological vector space on C. Show that the map v: X — R
in (2.2) is an R-linear and continuous if and only if the map f : X — C in (2.2) is C-linear
and continuous,

f(x) :=v(z) — iv(ix). (2.2)

Obviously any C—vector space X is also an R—vector space. It is easy to turn an R—
vector space into a C—vector space. There are various possibilities, with the first indicated
in the following exercise.

Exercise 2.12. Suppose that X is vector space on C and that J : X — X is a linear map
such that J? = —1. Then show that C x X > (z,2) — (Re(z) + Im(z2)J)r € X makes X
into a C—vector space. If furthermore X is a topological vector space and J € £(X), then
show that the above gives X a structure of topological vector space on C.

Another possibility is the following.

Remark 2.13 (Complexification). Suppose that X is vector space on C and consider the
space C ®g X. There is an obvious identification of C®r X D R®r X = X and a complex
structure on C®g X, by A\ (A2 ®x) = (A1 A2) @ z. If X has a structure as topological vector
space, then so does C ®g X. Finally, and crucially, for any R-linear 7' : X — X, setting
TA®z) = A®T(z), a related C-linear operator remains defined, and if the initial 7" is
continuous, also the other T is continuous.

For time dependent PDE’s, especially for Hamiltonian systems, when it is necessary to
consider the spectrum of the operators, it is important to complexify.

Definition 2.14. Given a topological vector space X, a subset B C X is called bounded if
for any neighborhood V' of 0 there exists a A > 0 such that A\V O B.
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Definition 2.15. Given two topological vector spaces X and Y, a linear operator T : X —
Y is bounded if, for any bounded subset B C X, the image T'B is bounded in Y.

Exercise 2.16. Show that if X and Y are topological vector spaces and T': X — Y is a
continuous linear operator, then it is also bounded, in the sense of Definition 2.15.

The following is very important.

Lemma 2.17. Let X be a topological vector space on K and let T : X — K be a linear
map with Tx # 0 for some x € X. The following statements are equivalent:

aTelX';
b kerT is closed;
c kerT is not dense in X;

d T is bounded on some neighborhood of 0 € X.

Proof. Clearly a = b = c¢. Now assume c. It follows that there exists a point z and a
neighborhood V of 0 such that x +V NkerT = ). We can also assume by Lemma 2.6 that
V' is balanced. Then TV C K is balanced. If TV is a bounded set, d follows. Otherwise,
we claim that

TV = K. (2.3)

Indeed, if | Tz, | D220, 4 oo for {zn }nen asequence in V', for each n we have D (0, [Tz,|) C

TV by the fact that TV is balanced, thus proving TV = K.
If (2.3) is true, there exists y € V such that Ty = —Tz and so x +y € (x + V) NkerT,
giving a contradiction.

Finally suppose d. Then |[Ty| < M for all y in a neighborhood V' of 0 and for a fixed
M € Ry. Then, foer any € > 0, for xz € ﬁv, for ﬁV Sx = ﬁy, where y € V, we have
MM = ¢, hence the continuity in 0, and so everywhere. O

Definition 2.18. Let X be a topological vector space. A subset H C X is called a
hyperplane if H = f~!(a) where f: H — K is a (bounded or unbounded) linear map.

€
Tr| = —|Ty| <
Ta| = [Ty

Exercise 2.19. Let X be a topological vector space on K and let T': X — K be a linear
map. Let kg € K be kg # 0. Show that the following statements are equivalent:

aTeX
b T (k) is closed;
c T~ (ko) is not dense in X.

Answer. Notice that a == b = c¢. Assuming ¢ we have either T~!(kg) = 0, which
implies 7" = 0 and so is continuous, or there exists xg such that T'(zg) = ko. Then from
linearity it follows T~ (ko) = 2o +ker T and it is easy to conclude that T~!(kg) is not dense
in X if and only if ker T" is not dense in X. Hence ¢ = a by Lemma 2.17. 0
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Definition 2.20. A topological vector space X is metrizable if there is a metric on X which
induces the topology of X.
A metric d on a vector space is translation invariant if

d(z,y) =d(x + z,y + z) for all x,y,z € X. (2.4)

Definition 2.21. A basis of neighborhoods of a point xy in a topological space X is a
family 4 of neighborhoods of xg such that for any neighborhood V' of zy in X there exists
UeldwithU CV.

A subbasis of neighborhoods of a point xg in a topological space X is a family &l of
neighborhoods of zy such that the family of finite intersections of elements of Ll is a basis
of neighborhoods of xg.

It is obvious that if a topological vector space X is metrizable, then any point of X has
a countable basis of neighborhoods. The following converse is true, see Theorem 1.24 [10].

Theorem 2.22. If X is a topological vector space such that each point of X has a count-
able basis of neighborhoods then X is metrizable and admits a translation invariant metric
compatible to the topology such that all the balls centered in 0 are balanced. If furthermore
X s locally convex!, then it is possible to find a metric compatible to the topology which, in
addition to the above properties, is such that all the open balls are convex.

Proof. We can consider a basis {V, }nen of neighborhoods of 0. We can assume them to be
balanced and such

Vi1 + Vi1 C V,, for all n € N. (2.5)

Next we consider D := QN [0,1). Now any r € D can be written as

o
r= Z cn(r)27", with ¢,(r) = 1 for finitely many n’s and with ¢, (r) = 0 otherwise.
n=1
(2.6)

Let A(r) := X for r > 1 and set
o0
A(r) == Z cn(r)Vy, for r € D- (2.7)
n=1

Now we define f: X — [0,00) and d : X? — [0,00) by
f(z):=1inf{r:z € A(r)} and d(z,y) = f(z —y). (2.8)
Notice that if d is a metric, it is obviously translation invariant. We claim that

A(r)+ A(s) C A(r + s) for all r,s € D. (2.9)

1See later Sect. 4.
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Let us assume (2.9). We then claim that
fle+y) < f(z)+ f(y) for all z,y € X. (2.10)

This is true if the r.h.s. equals 1, so we assume we are in a case with the r.h.s. < 1. Then
for any € > 0 there exists r, s € D with

flx)<r, fly)<sandr+s<f(z)+fy) +e

Then z € A(r) and y € A(r). Then (2.9) implies that z +y € A(r + s) and

fl@+y) <r+s<fl@)+ fly) +te= flz+y) < f(z)+ fv)

Hence (2.10) is proved.

Since the {V}, }en are balanced, from (2.7) we see that the A(r) are balanced as well. Hence
f(Az) = f(x) for all |\| = 1. That f(0) = 0 follows from 0 € A(r) for all r. If x # 0, then
we must have z ¢ V;, = A(27") for some n. This implies that f(x) > 27" > 0.

We conclude that (2.8) defines a metric on X where

D(0,6) ={z e X: f(x) <} =|JA)

r<d

is a neighborhood of 0 in X. If § < 27", then D(0,¢) C V,,. This impies that the topology
induced by d, is the same of the initial one.
We now prove (2.9) by an induction argument. We consider the proposition

A(r)+ A(s) CA(r+s)if r+s <1 and ¢,(r) = c,(s) =0 for all n > N. (Pn)

For N = 1, if r = 0 then A(r) = 0 and so the formula is obvious. So we reduce to
r=s5=1/2,50 ca(r) = c2(s) = 1 and all the others are nil,

A(r)+ A(s) =Va+ V2 €W

by (2.5).
Suppose now that (Py_1) is true for an N > 1. Consider r,s € D with ¢,(r) = ¢,(s) =0
for all n > N an let 7" and s’ be defined by

r=r"+en(r)27N, s=5+en(s)27 V.
Then

A(r) = A(r") +en(r)Vn ,  A(s) = A(s") + en(s)Va.
By (Pn—_1) we have A(r") + A(s") C A(r’ + s"). Then

A(r) + A(s) C A +8) + en(r)Vy + en(s) V.
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If en(r) = en(s) = 0 from the above we get (Py). If cy(r) = 0 and ¢y (s) =1 we have
A(r)+A(s) CA(r + )+ Vn = Al +5 +27N) = A(r + 5).
Finally, for c¢y(r) = cn(s) = 1 we have

A+ A(S) CAT + )+ Vn+Vn CAW +8) + V1 = A(r + §') + A2~ D)
CA( +5 +2 VD),
where in the last step we have used case (Py_1). This completes the proof, because r’ +

s +2-N=1 =1 4 5 and we have shown that (Py_;) implies (Py).
O

Definition 2.23. A sequence {z,} in a topological vector space X is a Cauchy sequence
when for any neighborhood V of 0 in X there exists a n(V') such that for n,m > n(V) we
have x, — x,, € V. A topological vector space X is sequentially complete if any Cauchy
sequence in X is convergent in X.

Exercise 2.24. Show that if a topological vector space X is metrizable and if we consider
on it a translation invariant metric, then a sequence {x,} in X is a Cauchy sequence in the
sense of Definition 2.23 if and only if it is a Cauchy sequence in the sense in Sect. 1.0.2.

3 Norms on Vector Spaces on K =R, C

By far, the most important topological vector spaces, are the normed spaces.
The most basic notion in Functional Analysis is that of norm in a vector space X on
the field K = R, C.

Definition 3.1 (Norms). A map ||- || : X — [0, +00) is called a norm on a vector space X
if it satisfies the following properties:

L ||zl =0<=z=0
2. x4yl < |lz||+ ||ly|| for all pairs z,y € X
3. |[Az|| = |A| ||z]|| for all A € K and z € X.
A vector space X endowed with a norm || - ||x is called a normed space.

Exercise 3.2. Check that if on a vector space X there is a norm ||-||, then d(z,y) := ||z —y||
defines a metric on X.

Exercise 3.3. Check that if on a vector space X there is a norm || - ||, then for the topology
associated to the corresponding metric, we have that the maps X x X > (z,y) > z+y € X
and K x X 3 (\,z) = Az € X are continuous.

The important normed spaces, are the complete ones.

22



Definition 3.4 (Banach space). A normed vector space (X, || -||) which is complete for the
associated metric, is called a Banach space.

Exercise 3.5. Consider a non—complete normed vector space (X, || -[x) on K and let
(X d) be its completion provided by Theorem 1.5. Show that X is a complete normed
vector space.

Ezample 3.6 (Lebesgue spaces). Let us consider a measure space (X, p) with a positive
measure g and let us consider the spaces LP(X, du) for p > 1. Then, for any f € LP(X,du)
let

I Nl 2o (x,dp) (/ |f(x |pdu> for p < oo and (3.1)
[ £l oo (x ) = sup{c > 0: p({z : [f(z)] = c}) > 0}. (3.2)

These, as we will see below, are norms, by the Minkowsky inequality, see below Theorem
16.2.

Ezxample 3.7 (Spaces of Continuous functions). Let €2 be an open subspace of R?. Interesting
vector subspaces of L>°(Q2) are

C%Q) := {f € C°(Q) : f has compact support in Q} (3.3)

which is often denoted CJ(2),

BCY(Q) := C%(Q) N L™(Q). (3.4)
An important space is
CORY) = {f € CO(RY) : lim f(x) = 0}. (3.5)

Exercise 3.8. Show that for f € BC%(Q)
1f [l oo () = Sup |/ ()] (3.6)
Ezample 3.9 (H*®(12)). Let Q be an open subspace of R%. We consider the vector space
H(Q):={f € C%Q,C): fisa holomorphic function Q — C} (3.7)
We consider the following subspace of L>(£2, C),
H>(Q) := H(2) N L>®(Q,C). (3.8)

Notice that if f € H>(R?) then f(z) is a constant function.
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Example 3.10. In the notation of Example 3.7 for n € N

CHQY) :={f e€C™(Q): f has compact support in 2} (3.9)
which is often denoted Cf'(£2),
BC™(Q) :={f € C™"(Q): 9%f € BC(Q) for all |a| < n}. (3.10)
Notice that the following is a norm on BC"(2),
1 fllBemo) = Z 107 f || oo (02)- (3.11)
laj<n

For 6 € (0,1) and for f € BC™(R) let
0 (x) ~ "5 ()]

[flgno@) == sup  sup

|p|=n x#y in Q ’LL‘ - 919
Then we set
C™0(Q) == {f € BC™(Q) : [flenoq) < +0o0}. (3.12)
Notice that the following is a norm on C™((Q),
[flleney == I fllBen@) + [flenoq)- (3.13)
In particular, for n = 0 the space of globally Holder functions in €2 is
Q) := {f € BC() : [f]cooq) < +0oo} with norm (3.14)
[ fllcooy = lfllze @) + [flcoo@)- (3.15)

In the context of Lebesgue spaces, the analogue of the space of globally Holder functions
in Q is the following.

Ezample 3.11. For § € (0,1) and 1 < p < oo is, for  open subspace in R?,

WoP(Q) := {f € L’(Q) : [flwowq) < +00} where (3.16)
flx) = fy)lP .

[f]%/e'p(ﬂ) = /QXQ dedy with norm

[ fllweor) = I fllze) + [flwor(q)- (3.17)

Ezxample 3.12. A special case of Example 3.6 is obtained taking X = N, Z with p({n}) = 1.
Then we have the spaces

%
H{zn}nexllev(x) = Z |, [P for p < oo and (3.18)
neX
[{@n nex |l (x) = sup{|zn| : n € X}. (3.19)
A special vector subspace of /*°(X) is
co(X) == {{xn}nex € (°°(X) : nh_}ngo Ty = 0}. (3.20)
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Exercise 3.13. Check that for 0 < p < ¢ < oo one has (P(X) C ¢9(X), in particular with

[{zntnexlleacx) < [{antnexlerx)- (3.21)

Answer. Notice that for any ng € X and for p € (0, 00),

2ol < 3 Joal? = 2y

neX
This implies ||z.||poe(x) < ||7.[[¢r(x), and in particular (3.21) for ¢ = co. Let now 0 < p <
q < oo. Then
Iz fe0y = D lzal” < llzllfly D |zl = llz- 15 21 )
neX neX

So we conclude

q—p
[|z. HZQ(X <. Hgoo(X [|z. Hzp()Q <. ng Hx ng Hmep(Xy

Ezxample 3.14. The following are Banach spaces.
1. The Lebesgue spaces LP(X, ) for 1 <1 < +o0.

2. BC°(9). Indeed, if {f,} is a Cauchy sequence in BC%(Q), by the completeness of
n—o0

L>(Q) there exists f € L>®(Q) such that f,, —— f in L>°(Q2). Notice that by (3.6),
that is by |fn(2) — fin(2)| < |[fa — fimllLee(q) for all z € Q, it follows that {f,(7)} is
a Cauchy sequence for any x € (2. We can assume f(x) = ET fn(z) for any x € Q.

Notice that then
|f(z) = fa(@)] < |If = fallLeo (@) for any z € Q and n € N.

Indeed, for any pair pair z € 2 and n € N we have

[f(@) = fu(@)| = lim |[fin(2) = fu(@)| < lm || fo = follpe@) = [If = fallo= @)

m——+0o0 m——+00

Let us show now that f € C%(Q2). Let zo € Q and let € > 0. Then
there exists N such that n > N = ||f — fullre(q) < %
Fix now n > N and let 6 > 0 such that

€
| frn(x) — frl(zo)| < 3 for all x € Dq(xo, ).
Then we have the following, which completes the proof of f € C%(Q),

[f (@) = f(o)| < [f(2) = fu(@)[ + [ (20) = fu(zo)| + [fn(x) = fu(z0)]
< 2% + [ fn(x) — fu(z0)| < € for all & € Dq(z0,9).
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3. H®(£), where Q is an open subset of R2. Notice that H>*(Q) C BC°(2). So if {f,}
is a Cauchy sequence in H*°(), from what see above we know that there exists an
f € BC%Q) such that f, —= f in L>(Q). Notice that by Cauchy Theorem on
triangles [9, Theorem 10.13] we have (by triangle, we mean also the interior)

fn(z)dz = 0 for any triangle ' C Q2 and any n € N
orT
Since now f,, =% f in BC%(Q) implies

f(z)dz = lim fn(2)dz = 0 for any triangle T C €,
aT n—+00 Jor
by Morera Theorem [9, Theorem 10.17] we have f € H(2). Hence H*° () is a closed
subspace in L>(2).

4. BCYR) for any | € N. Let {f,} be a Cauchy sequence in BC!(£2). This is expressed
equivalently saying that {02 f,} is a Cauchy sequence in BC?(Q2) for any |a| < 1. We
know that for any |o| < I there exists a go € BC?(Q) such that 8% f, — g, in
BCY(2). We need to show that g, = d%go. It is enough to prove this for |a| = 1. Tt
is not restrictive to assume o = e := (1,0, ...,0). We know that for any x € Q there

exists a d, > 0 such that for 0 < |h| < 0, we have

fn(xl + haxl) — fn(xh‘r/)
h

x1+h
= / O1 fu(t, 2")dt for all n € N, where 2’ = (22, ..., 7).

1

Taking the limit n — +o00 the above equalities yields

go(z1+h,2’) — go(z1,2") 1 /xﬁh
xT

e, (t,2)dt for 0 < |h| < 6, .

h h

1

Hence we conclude

h,z') — ! 1
lim go(z1 + h, ") — go(w1,2") — lim =
h—0 h h—0 h

z1+h ,
/ ge, (8, 2")dt = ge, (x) =
T
ge, () = O190(x) for all x € Q.
By symmetry, ge;(z) = 9;g0(x) for all x € Q and all j =1, ..., d.

5. CL9(Q) for any I € Ny and any @ € (0,1). Let {f,,} be a Cauchy sequence in C*¢(€).
We know that f, —— f in BCY(Q). It is enough to focus on the case [ = 0. For
x # y we have

(@) =W _ (@) = @] | 1f@) = ful@)] | 1S @) = fn )]

lz =yl = Jz—yl 2 —yl® |z —yl?

2
< [falcoo) + 1f = fallLoo()-

|z —yl®
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Then, sending n — +0o0 we get

M < limsup(fn]coe(q) < +oo for all z # y in Q.
":U - y’ n—-+00
So we conclude that f € C49(Q). Let us now show that

lim [f - fn]co,e(ﬂ) =0.

n—-+o0o

For any € > 0 we know there exists n. such that for any pair n,m > n. we have
[fm — falcooq) < € Now, for z # y and n > n. we have

1@) = ful@) = (FW) = @) _ o @) = Fal@) = (fn®) = Falw)]

|z —yl? m—+00 lz —yl?

<e.

This implies that n > n. we have [f—fn]co,e(g) < e and proves f, =% fin Co9 ().

Notice that there are very natural vector spaces, for example Cgo(Rd), that do not have
an obvious norm.

4 Locally convex spaces

Normed and Banach spaces are not the only important topological vector spaces. A very
important notion is that of a convex subspace of a vector space.

Definition 4.1. 1. A subset € of a vector space is convex if for any xg,x1 € €2 we have
xp:= (1 —t)xg+teg € Qfor all t € [0,1]

2. A subset Q2 of a topological vector space is strictly convex if it is convex and if x; €

Q(:=interior of Q) for all ¢ € (0,1) for any distinct pair g, z; € Q.

Ezample 4.2. 1. Let (E, || - ||) be a normed space. Then Dg(0,1) :={x € E: ||z]| < 1}
is convex. Indeed, given any pair xo,z1 € Dg(0,1) and for any ¢ € [0, 1], we have

(1= t)xo + || < (1 —t)[lzol| + tlan || < (1 —8) + = 1.

2. Notice that in R?, ||z|| := sup{|z;| : 5 = 1, ..., d} for which
D]Rd(07 1) - [_17 l]da
which is convex but not strictly convex.

3. The previous example can be generalized noticing that any L*°(X,du) is such that
Dipeo(x,qu(0,1) is not strictly convex (except trivial cases). Indeed, consider two
disjoint measurable sets F ad F' of finite positive measure, and consider fy := 1 and
fr:==1p +27"1p. We have || foll oo (x.au) = [lf1]l(x.ap) = 1 and

11 =) fo + thillpee(x,ap = 11g + 27 1F | poo(x a0 = 1-
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Exercise 4.3. Let X be vector space and let {Q;};c; be a family of convex subspaces.
Show that ;¢ €2, is convex.

Exercise 4.4. Let X be a topological vector space and let {2 be a convex subspace. Then,
the following are true.

1. The closure ) is convex.
2. The interior €2 is convex.

Answer. Let To,7; € Q. This means that for any neighborhood V of 0, there exist
elements (Zop+ V)N Q 3 29 and (71 + V)N Q > x1. Consider 7, = (1 — )Ty + tT1 and
2y = (1 —t)xg+ta; for a fixed t € (0,1). For any given neighborhood V of 0 in X, we know
that there exists a neighborhoods U and W of 0 in X such that (1 —¢)U C W, tU C W
and W+ W C V. Then

l‘t—ft:(1—t)($0—fo)—|—t($1—f1) S (1—t)U+tU§V

So, for any ¢ € (0,1) and any neighborhood V of 0 in X we have (Z; + V) N # () and so
Ty € Q.

Let us now turn to the second part. We need to show that if xg,z1 € fcl, then for any
t € (0,1) we have z; = (1 —t)zo +1tx1 € ). We know that there exists a neighborhood U of

0 such that z; + U C Q for both j = 0,1. Then we claim that z; + U C Q. To prove this
claim notice that any element of x; + U C ) can be written as

r+u=(1—1t)(zo+u)+tlxy +u) €

O]

Definition 4.5. a A topological vector space X is said locally convex if, given any neigh-
borhood U of 0, there exists a convex neighborhood V of 0 such that V' C U.

b A topological vector space X is said a Frechét space if it is locally convex, metrizable
with a translation invariant metric and complete.

Remark 4.6. Recall that it follows by Theorem 2.22 that a locally convex topological vector
space is metrizable with a translation invariant metric if and only if 0 has a numberable
basis of neighborhoods.

Lemma 4.7. Given a vector space X and a subset Q2 C X, there exists a convex set C which
1s the smallest convex set containing €.

Definition 4.8. We call the above C the convex hull of Q in X.

Proof of Lemma 4.7. We consider € = {C : Q C C C X and C convex}. Obviously
€ > X. Then the intersection ()¢ C' is the desired set. t

Exercise 4.9. Let 2 C X and A € K. Show that if C is the convex hull of € then M\C is
the convex hull of A().
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Lemma 4.10. For any given neighborhood U of 0 of a locally convex topological vector
space X, there exists a convex neighborhood V' of O which is balanced, absorbing and such

that V CU.

Proof. Tt is not restrictive to consider U convex. For any A € Dg(0,1) we know that
there exists a neighborhood W) of A in K and a convex neighborhood Uy of 0 in X such
that W\Ux C U. If we consider now a finite cover Wy, U...UW, D Dk (0,1) and set
U :=Uy N...NU,,, then we consider V := Dg(0,1)U C U. Finally, let V be the convex
hull of V. Notice that V is a neighborhood of 0, since it contains U, V is obviously convex,
and V' C U. We know that V' is absorbing. We need to show that V' is balanced, that is
that A\V C V for any A € Dg/(0,1). Notice A\V C V C V and, by a previous exercise, the
convex hull of AV is AV. So it follows AV C V.

O

It is not clear yet why locally convex spaces are so important. To understand this point
we need to introduce the notion of seminorm.

Definition 4.11. Let X be a vector space and let p : X — [0, +00) be a function with

p(z+y) <p(x) +p(y) for all 2,y € X (4.1)
p(Az) = Ap(z) for all x € X and A > 0. (4.2)

Then p is called a seminorm.

Exercise 4.12. Let X be a vector space and let p: X — [0,400) be a seminorm. Let
C={reX:plx) <1} (4.3)

Then show that C is convex, 0 € C', C is absorbing.

Partial answer. Notice the following, which proves the convexity of C,

p(xe) = p((1 = t)ao +twy) < p((1 —t)wo) + p(tey) = (1 —t)p(wo) +tp(wy) < (1 —t) +t=1.

O]

The following lemma, shows that to any open, convex, absorbing and balanced subspace
C' C X we can associate a seminorm p : X — [0, +00).

Lemma 4.13. Let X be a topological vector space and let C' be an open convex set with
0 € C. Then there exists a seminorm p : X — [0,+00) satisfying (4.1)—(4.3).

Proof. Set
p(z) :==inf{a > 0: 2 e C}. (4.4)

First of all, it is clear that for 2 € C we have 1 € {a > 0: £ € C}, and so p(z) < 1.
Furthermore, since C' is open, then (1 + €)z € C for € > 0 small, so p((1 +¢)z) <1 and so
p(z) < 1%—5 <L

29



If for some x € X we have p(x) < 1, then for some oo < 1 we have £ € C and so by the
convexity of C'and by 0 € C' we have z = af + (1 — )0 € C.

So we have proved (4.3). Now let us prove first (4.2) and then (4.1).

For A > 0, for a = Aa we obtain (4.2) from

p()\:):):inf{a>0:%EC}:inf{)\a>O:gEC}:/\inf{a>0:2€C}:)\p(m).

Given z,y € X, then for any € > 0 we have P L c(, p(y%JrE € C. Then for t € [0, 1],

)+
€T Yy
t———+ (1 -1 eC. 4.5
ORI )
For t = % we get }m € C, as can be seen from
| _peq_ P@)te  p@)+ply) +2e—(plz)+e) _ ply) +e
p(x) + p(y) + 2¢ p(x) + p(y) + 2¢ p(x) + p(y) + 2¢

Hence we obtain the following which, by the arbitrariness of € > 0, yields (4.1),

plx+y) <plx)+p(y) + 2.

Exercise 4.14. Consider the p of Lemma 4.13 and show that p € C°(X, [0, +00)).

Answer. Notice that |p(z)—p(zo)| < p(x—1x0) for any x,x¢ € X. For € > 0 then €C is an
open neighborhood of 0 and coincides with the solutions of the inequality p(y) < €. Then if x
belongs to the open neighborhood xo+€C of zg, it follows that |p(z) —p(xo)| < p(x—z0) < €,
proving the continuity of p at the point xg. ]
Remark 4.15. Lemma 4.13 and Exercise 4.31 show that there exists a correspondence be-
tween open and convex neighborhoods of 0 and continuous seminorms.

Summing up, above we have proved the following.

Lemma 4.16. Let X be a locally conver Hausdorff topological vector space. Then there
exists a family {p;}jes of continuous seminorms (this family is called a subbasis of semi-
norms of X ) such that for any xo € X\{0} there exists a jo € J such that pj,(zo) # 0 and
such that the family {pj_l([(),r)) :r >0 and j € J} is a subbasis of neighborhoods of 0.

O

Definition 4.17. A function f : X — K is homogeneous of order a > 0 if f(Az) = A“f(x)
for any z € X and any A > 0.

Remark 4.18. Notice that a seminorm p : X — K is a homogeneous function of order 1. A
Linear map f : X — K is a homogeneous function of order 1.
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Exercise 4.19. Consider the setup Lemma 4.16, that is X with the seminorms {p;};c.
Show that a homogeneous of order 1, f : X — K, is continuous in 0 if and only if there
exist finitely many indexes ji, ..., jn, € J and a € > 0 such that

|f(x)] <1 for all  such that pj, (z) <e,...,pj,(x) < e. (4.6)

Exercise 4.20. Consider the setup of Exercise 4.19. Show that a homogeneous function
of order 1, f : X — K, is continuous in 0 is and only if there exist finitely many indexes
J1, - Jn € J and a constant C' > 0 such that

J

|f(z)] < C(pj,(z) + ... +pj,(z)) for all z € X. (4.7)

Answer. We can assume formula (4.6) is true. We claim that (4.7) is true for C := 2.

Set p(z) := pj,(z) + ... + pj, () and let C := 2. Then, for p(z) = § we have p;, (z) < § for
all k = 1,...,n and so |f(x)| < 1. So (4.7) is true for p(xz) = §. By the homogeneity this
yields automatically all cases where p(z) # 0. Notice that by linearity, if p(z) = 0 then by
(4.6) we conclude f(z) = 0. So our claim is true. O

Ezample 4.21. Consider the space LP(0,1) for 0 < p < 1. We can define a metric by setting

1
d(f,9) :z/0 |f(t) — g(t)|Pdt.

Let us see the above is a metric. First of all, it is obviously it is symmetric and d(f, g) =
0<— f=g. By

(a + b)P < aP 4+ VP for any pair a,b > 0,

(which follows by [ — P (L L — 1) we have
v R atb) “a+b atb

1 1
d(f,g) = /0 () — g(t)[Pdt = /0 L(F(t) — h(t)) + (ht) — g(t)) [Pdt

1
< / (I£(t) = RO + h(t) — g(&)]?) dt = d(f, h) + d(h, g) for any f,g,h € LP(0,1).
0
It is easy to see that with this metric, LP(0, 1) becomes a topological vector space.
We claim now that the only open convex subsets of LP(0,1) are () and LP(0,1). To see
this, let V' be open, convex, not empty and V' > 0 and let f € LP(0,1). Since V is open,
there exists g > 0 such that Dy (01)(0,20) € V. Let n € N such that nP~! fol |f(t)[Pdt < eo

and consider a decomposition tg = 0 < t; < ... < t, = 1 such that j;;;j—l |f(t)[Pdt =
n~! fol | f(t)|Pdt. Then set g;(t) := nxp,_,,f- We have

1 j 1
/0 |95 (t)[Pdt = n” /t tl |f(t)[Pdt = nP~? /O |F(8)|Pdt < =0

J
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so that we have g; € Drr(0,1)(0,60) € V for all j. Then, since

f:gl—l—...—l—gn7

n

by the convexity of V' we have also f € V. So V. = LP(0,1).

Ezample 4.22. Consider the space LP(0,1) for 0 < p < 1 of Example 4.21. Then if X is a
locally convex topological vector space, then the only continuous linear map 7' : LP(0,1) —
X is the 0 one. Indeed, for any non-empty open convex V C X, T~V is a convex open
set in LP(0,1), and so, from what we saw in Example 4.21, it is either the empty set
or the whole LP(0,1). So we conclude T~'V = LP(0,1) for any non-empty open convex
neighborhood V' C X of 0 (for which 7=V > 0), and so also TLP(0,1) C V. So in particular,
TLP(0,1) C [V where the intersection is done on all open convex sets containing 0. Since
the intersection is 0, we conclude T'LP(0,1) = 0, that is, T" is 0.

Remark 4.23. As we mentioned earlier, in Functional Analysis what matters are most of all
the linear or nonlinear operators. A consequence of Example 4.22, we have (LP(0,1))" =0
for 0 < p < 1: this makes LP(0,1) for 0 < p < 1 a not very useful space.

Exercise 4.24. Let f : [0,4+00) — [0,4+00) be a concave function with f(0) = 0. Show
that

flx+y) < f(z)+ f(y) for any z,y € [0, +00). (4.8)
Answer. Notice that f satisfies

f((X =)z +tw1) = (1 —t) f(wo) + tf (1) for any xo,z1 € [0, +00) any ¢ € [0, 1].

Now, notice that if we consider the triple 0, x, z + y we have

xT X
= +y)+({1——— |0
v x+y(x y) < I+y>

and so

f(@) > f(ﬂf+y)+<1 d )f<o>= T faty)

r+vy x+y r+vy

and, similarly,

fly) > flx+y).

r+y
So, summing up, we get (4.8) by

@)+ 1) 2 Sty + o f et y) = [ +y).
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Exercise 4.25. Consider the setup and the hypotheses of Lemma 4.16, and consider the
topological vector space X with the structure arising from the seminorms {p;}cs. Suppose
that J C N. Show that

Z o—Jj_fI\"  I) ) (4.9)

Y 1 + p] x—y)
is a translation invariant metric and that the topology this metric induces on X is the initial
one.

Answer. First of all, let us check that d is a metric. Here we check only the triangular
inequality. Here notice that

pi(r —y) <pjlx —2)+pj(z —y) = flpj(x —y)) < flpj(xr —2) +pi(z —v))

< Fli(e = 2)) + S (pi(e = ) for (1) = ——,

where we use that f is concave with f(0) = 0, and hence we can apply (4.8). The above
implies the triangular inequality. Next, let (X, 71) be the initial topology and (X, 72) the
topology induced by d. It is enough to compare the neighborhoods of 0.

Let us consider the ball D(0,¢) = {x : d(z,0) < €}. Now, if N € N is such that 27V < ¢/2,
we claim that

Un(e/2) :={x € X :pj(x) <e/2forall j=1,..,N} C D(0,¢). (4.10)

To see this, notice that for any x € X we have

22j1+p * Z ’ ]1+pg()

N
z:: ‘1+p] + Z 2]<223pﬂ +2N<;2]pj 0)+5

j=N+1

So, if x € Un(€e/2) we have

d(z,0) <22Jpj + <= ZQMF < - Zzhr—

This proves our claim and shows that the topology 7 is finer. Now we want to show they
are equal. To this effect, consider an Ups(€). It is enough to show that there exists a § > 0
such that D(0,d) C Ups(e). Now notice that if x € D(0,0), that is, if

d(z,0) = Zz—jﬂ <d= g _Pil®) < d(x,0) < ¢ for all j € N.

= ltp) 1+ pj(z)
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Now let us focus on the inequalities
Q*jM < d(z,0) for all j < M <= (1 —27d(z,0)) pj(z) < 27d(z,0) for all j < M .
1+ pj(z)
Now, if 2M d(z,0) < 2M 5 < 1 we conclude that the above inequalities are equivalent to
27d(x,0)
Pil®) < T 2954(2,0)
2Ms
1—

If now we choose ¢ so that ;=515 < ¢, it follows that x € D(0,4) imples p;(x) < e for all
j < M, and so D(0,d) C Ups(e).

forall j < M .

O]

Ezxample 4.26. Given a topological vector space X and X' its dual, then the following
topologies discussed later in these notes, the o(X, X’) topology in X and the o(X’, X)
topology in X', are examples of locally convex space structures.

A very important topological vector space of test functions, discussed in the 2nd
semester, related to the notion of tempered distribution, is the following.

Ezample 4.27 (Schwartz functions). Consider the set of Schwartz functions defined by

S(RY) = {p € C®(RY) : pus(p) := sup [2°0%4(x)| < +oo for all multi-indexes a and §}.
z€R4

Notice that the p, s(¢) are seminorms on S(R?) and, as o and 3 vary in all possible ways
among the multi-indexes, they provide S(RY) with a structure of Hausdorff and locally
convex and complete topological vector space.

Exercise 4.28. Prove the completeness of S(RY).
Exercise 4.29. Show that S(R?) with the above topology is metrizable.
Exercise 4.30. Show that the above topology of S(RY) does not come from a norm.

Answer. If it did and we had a norm || f||, then by the statement in Exercise 4.36 there
would be pairs (a1, f1),..., (an, Bn) a constant Cy > 0 such that

I£1l < Co (Parpy (%) + - + Py, (f)) for all f e S(RY). (4.11)

Furthermore, since all the seminorms p,s are continuous, for the same reason, for any of
them there would exist a a constant C,g > 0 such that

Pap(f) < Cagl f| for all f € S(RY). (4.12)

Hence for any of the seminorms p,g we would conclude
Pas(f) < CoCas (Paysy (%) + .. + Pays, (£)) for all f € SRY). (4.13)
It is easy to conclude, taking for example («a, 8) in Nd x N¢ sufficiently ”large”, that this is
false. O
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4.1 Inductive limits

The following is a supremely important space in Mathematics, treated in some depth next
semester.

Ezample 4.31 (Test functions). Consider an open set  C R? and denote D(f2) := C°(£).
For any compact K C (2 let

D () ={¢ € CZ(Q2) : supp ¢ C K7}.
In D (), for any ¢ € Dg () let
P,k (@) == sup{|0; ¢(x)| : o] <n and x € K}. (4.14)
Then the {pn i }nen are a basis of seminorms for a Hausdorff and locally convex topological
vector space structure on Dy ().

Exercise 4.32. Show that each Dy () with the above topology is metrizable and complete.

Lemma 4.33 (Inductive limit). Consider a vector space X and let { X, }nen be a growing
sequence of subspaces of X, such that | J,,cy Xn = X. Suppose that each X, has a structure
of locally convex topological vector space and that the topology on each X, coincides with
the topology induced on X, by the topology of Xy 11, for alln. Let O be the collection of all
convex subsets of X containing 0 for which each O € O is such that the set O N X, is an
open neighborhood 0 € X,, for any n € N. Then:

1. O is a basis of neighborhoods of 0 for a locally convex topology in X ;

2. the topology generated by O 1is the strongest locally convex topology such that all the
immersions X, — X are continuous;

3. the restriction of the topology of X on X, yields the topology of X,, for anyn € N;
4. if each X, is complete, so is X;
5. if each X, is Hausdorff, so is is X.

Proof. This is discussed in Treves [13] . O
Ezample 4.34 (Topology on D(2)). We consider

[o.¢]
a sequence K, of compact subsets of Q with K,, C Io(nﬂ V n and U K,=Q. (4.15)

n=1

Then we consider on D(2) the topology from the direct limit of the sequence of spaces
{Dg, (2)}. Notice that it is easy to show that for any n the topology induced on Dy, (€2)
by Dk, ., (€2) coincides with the topology of D, (€2).

It can also be shown that the topology on D(2) thus defined does not depend on the specific

sequence K, in (4.15).
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Exercise 4.35. Let X and Y be two locally convex topological vector spaces, where X
is the inductive limit of a sequence { X, },en locally convex topological vector spaces. Let
T : X — Y be a linear map. Show that the following statements are equivalent.

aTel(X)Y).
b The restriction Ty isin £(X,,Y) for any n € N.

Answer. That a=—b is true, follows from the fact that the inclusion X,, C X is
continuous. Let now V' C Y be open, convex and containing 0€ Y. Then X, NT~1(V) is
an open, convex neighborhood of 0€ X,,. Then T-1(V) € O. O

Exercise 4.36. Consider the setup of Exercise 4.19. Show that a homogeneous of order 1,
f X — K, is continuous in 0 is and only if there exist finitely many indexes ji, ..., j, € J
and a constant C' > 0 such that

|f(x)] < C(pj,(x) + ...+ pj,(x)) forall z € X. (4.16)

Remark 4.37. One of the most important modern notions in Mathematics is that of distribu-
tion. The distributions on an open set ) are the elements T' of the dual D’(€2). This means
that T : D(Q2) — R is linear and for any K compact subspace of  we have T : D (2) — R
is continuous, which, by Exercise 4.36 means that there exists an n € Ny and constant
Chik > 0 such that

|f(2)] < Chi pni(x) for all f € D (Q). (4.17)

You will see this in detail the next semester.
Remark 4.38. It can be shown that D(£2) is not metrizable, see later Exercise 7.7 .

5 Continuous linear operators between normed spaces

For linear maps between normed spaces we have the following.

Lemma 5.1. Suppose that (X, |- ||x) and (Y,||-||y) are two normed spaces. LetT : X — Y
be a linear map. Then the following two statements are equivalent.

1. T is a continuous map in X.

2. T is a bounded operator, that is

|Tz||y
1T\l zex,yy = sup

< 0. (5.1)
zeDx (0,)\{0} NlZllx

Proof. First of all, it is easy to check that T is a continuous map in X if and only if T
is continuous in the point 0 € X. Suppose now that T is continuous in 0 € X. So since
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T0=0¢€Y, for any € > 0 there is § > 0 such that ||z||x = ¢ implies [|Tz||y < e. Given any
x#0, then T = 0—z is ||:5HX:(5andTa~c:T( ¢ x) = % _Tzso

— lzlix llllx llllx

[ Tzlly _ [Tz]ly
lzllx lIZllx

IN

€
J

and hence we conclude 7' is bounded with || T']|z(x y) < 5.
Viceversa suppose T' is bounded. Then, for some constant ||T'[|(xy) we have ||[Tz|y <
IT|lz¢x,v)llx]|x for any x € X, and so we conclude that T is continuous in 0 because for

any € > 0 if we set § = m we have [|z|x < ¢ implies [|Tz|y < [|T]zxv)ll7llx <
”THE(X,Y)fS = €.
O
Exercise 5.2. Check that given two normed spaces (X, |- ||x) and (Y, ] - ||y) then £(X,Y)
with the || - ||z(x,y) in (5.1) is a normed space.
Check that if (Y, || - ||y) is a Banach space, so is £(X,Y) with the above norm.
Show that
1Tl zx,yy == sup |[[Tzfly. (5.2)
2€Dx(0,1)
In particular the dual X’ of (X, || - ||x) has a natural norm given by
| (f,2) xrex |
Ifllxr = sup =TS = sup |(f,@) x| (5-3)
z€Dx (0,1)\{0} ]| x z€Dx(0,1)

and X’ with this norm is a Banach space.

Ezample 5.3. We have (LP(X,dp)) = L¥ (X, du) with % + 1% =1for1<p< oo Wewil
discuss this later.

Definition 5.4. Given a sequence {7, }nen in £(X,Y) we say that the sequence converges
n—-+00

uniformly toa 7' € L(X,Y) if | T, —T||z(x,y) ——— 0. We say that the sequence converges
strongly to an operator 1T', a standard notation is s — lim T, =T, if T,,x D2F0 T for

n—-+0o0o

any x € X.

Ezxample 5.5. Consider XDya (0,0) thinking them as the operators f — XDRd(O«\)f' Then, for
1 < p < 0o we have that s — /\lim XDgq(0)) = 1 in LP(RY) (see later Exercise 16.13), while
—+00 ’

it is not true, in general, that )\EI-II}OO XD,q(0) = 1in L(LP(RY)).

Ezample 5.6. Consider ¢ € BC°(R? R) with ¢(0) = 1. Then, for 1 < p < oo, for the

operators f — ¢ (5) f we have that s — lim ¢ (—) = 1 in LP(R?), while it is not true, in
A——+o00 A

general, that lim ¢ (—) =1in L(LP(RY)).
A—+00 A
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Example 5.7. Other important examples are obtained with groups or semigroups of oper-
ators, like the semigroup e!”*, see Remark 7.27, which £(LP(R?)) is strongly continuous in
t € [0,400), but is not uniformly continuous.

Ezample 5.8. For f € C°([0,1]) let Bn(f)(z) := Y py f (%) (Z) zF(1 — 2)" %, see Sect.

1.0.5. The B, are called the Bernstein operators, and in Sect. 1.0.5 we showed that

s — limy 400 B, =identity. On the other hand, it is not true that B, m>identity
uniformly in £(C°([0, 1])).

Exercise 5.9. Show that in a normed space X the sets bounded in terms of the metric,
are exactly the sets bounded in the sense of Definition 2.14.

Exercise 5.10. Show that if X and Y in Definition 2.15 are normed spaces, then Definition
2.15 is equivalent to the definition inside Lemma 5.1.

Exercise 5.11. Let E,F be two normed spaces, G a dense vector subspace of £ and
T : G — F a bounded linear map and F' a Banach space. Show that T extends in a unique
way in a bounded linear map 7" : E — F and that T and T have the same operator norms.

Exercise 5.12. Let Ey,...., By, I’ be normed spaces, with n > 1. Then a map T : E; X
... X B, — F an n—th linear map is bounded if

T := sup{||T(x1, ..., zn)||F : [|z1]lE = --- = ||20n]|lE = 1} < 0.

Show that T : Fy X .... x E,, — F is continuous if an only is bounded,

Exercise 5.13. Let E,...., E,, I’ be normed spaces, with n > 1 and F' a Banach space.
Let G1 C E4, ... .G, C E, be dense vector subspaces, and let T : G1 X .... x G,, — F be a
bounded n—th linear map. Show that 7' extends in a unique way in a bounded n—the linear
map T : By X .... x E, — F and that T and T have the same operator norms.

We only consider Functional Analysis because we are interested to linear and non-linear
operators.

Ezample 5.14. Consider for z € C\[0, 00) the equation in L?(R,C)

<_dczlj2 — z) u = f where f € L*(R,C). (5.4)

It turns out that for z € C\[0, +00) we have
u=R p2(z2)= / Ro(x — y, 2) f(y)dy where Ry(z, z) := 1 ivEll where Im+/z > 0.
R 2Vz
(5.5)

Notice that the operator in (5.5) is the resolvent in the language of Sect. 5.1, where we

introduce the resolvent only for bounded operators (so, not for the operator —Céi—z?).
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To see how it comes about, consider the homogeneous equation

<_$;_z)u:o. (5.6)

It has solutions

Vi (x,/z) = etV where argv/z > 0 and where 14 (z, v/Z) Ee Ny (5.7)

Notice that, for the Wronskian w(f, g) = f'g — fg’, we have

Then set
IR CAVE) U CRVE) T y
Ro(z,y,2) =q wfji*(;yf)fjf(x(yf@) . (5.9)
WVt (y/2) - (y:v/2)) Y
If we consider now,
%@ﬂzé%@@@mwy (5.10)

:_/x Uy (2, V2) (Y, V2) 0 (@ V)4 (1, V7) F(y)dy,

—oo W (¢+ (ya \/5)7 ¢— (yv \/E)) f(y)dy - »/x w (¢+ (y7 \/2)7 1/]— (y7 \/E))

it is elementary to see that (—j—; - z) Ry(z)f = f and that Ry(z,y,2) = ﬁei\/‘g‘x_m.

Ezample 5.15. Consider for z € C\[0, +0oc) the equation in L?(R, C)

2
(—6;12+V—z>u:fwheref6L2(R,C), (5.11)

where V € CO(R,R).
In this case, if we consider the homogeneous equation

d2

it is easy to see that there are solutions

Yy +(x,v2) = e (x,/2) for z € supp V. (5.13)
Notice that, for the Wronskian w(f, g) = f'g — fg', we consider the
w (P4 (2, Vz), bv—(2,V2)) . (5.14)
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Notice that we can have w (¢Yy4(z,/2),Yv—(x,4/2)) = 0 for some z € R_. In this case
z € R_ is an eigenvalue of the (unbounded) operator —% + V. However, here we consider

only values of z so that w (Vv (x,1/2), Yy_(z,y/z)) # 0.
Then set, for w (Yyy(x,v2), vv_(z,/2)) # 0, if for

)Yy - (¥,v/2)

S

_ Yyy(z,

ifx>y
Ry (z,y,2) = w(”((z\\/ff)) v ((y\%)) y (5.15)
Tw(dvivaev @) TS Y
we consider now,
z)f :=/RRv(m,y,Z)f(y)dy (5.16)
_ [ Yva(@ VR)v—(y, V?) [T v (e VRYv (Y, V7)
S B e v e e A Ll AT e i v AL

it is elementary to see that (—j—; +V - z) Ry(2)f = f.
In other words, the operators Ry (z) defined in (5.10) or, more generally (5.16), are resolvents

2 2 .
of —dd? or, more generally, —% 4+ V', see Sect. 5.1, where, however, we consider only
resolvents of bounded operators.

5.1 Spectrum and exponential of a bounded operator
Definition 5.16. Let X be a Banach space on C, and let 7' € £(X). Then the resolvent
set of T' is

p(T) ={z € C: (T — z) is invertible and (T — 2)~! € L(X)}. (5.17)

If z € p(T) we will denote Ry (z) := (T — 2)~ L.
The spectrum of T is

a(T) = C\p(T). (5.18)
Ryp(2) is the resolvent of T

Exercise 5.17. Show that if A € C is an eigenvalue of T, that is there exists 0 # x € X
with Tax = Az, then \ € o(T).

The set of eigenvalues is called also the point spectrum, denoted with o, (7")

Exercise 5.18. Consider the space L”((0,1),C) and the bounded operator T'f := zf in
L?((0,1),C) . Show that o(T) = [0, 1]. Show that T" does not have eigenvalues.

Exercise 5.19. More generally, consider the space LP((0,1), C), a function m € C°(]0, 1], C)
and the bounded map T, f := mf. Show that o(7,,) = m([0,1]).
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Exercise 5.20. In the framework of of the above exercise, in LP((0,1),C) and with m €
C°([0,1],C), show that | Toullc(ze(0,1),c)) = Imllz<(o,0)-

Exercise 5.21. More generally, for m € L*([0,1],C) show that || Tnllz(ze(0,1),c) =
||mHL°°(0,1)-

Exercise 5.22. Consider the space LP((0,1),C) and let m(z Z Ajxi, (v), where Ii,...,

I,, are pairwise disjoint intervals contained in (0,1). Show that each of the coefficients A;
is an eigenvalue of the bounded operator T}, f := mf. Find whether or not dim(7, — A;)
is finite.

Lemma 5.23. p(T) is an open subset of C, o(T) is an closed subset of C and
o(T) € Dc(0, [T £(x))- (5.19)

Proof. Let us start with |2[c > [|T'[|z(x). Then consider

T
z—T:z<1—>.
z

Obviously the invertibility of T'— z is equivalent to the invertibility of (1 — %) Not consider
the series
o0 Tn
—.
n=0 z

Notice that this series is convergent, because the tails converge to 0:

o n & 1Ty T2 oo
Z Zn = Z B Z . l””}”am =0
n=m L(X) n=m |2
Notice also that
T\ o= T Nl T T o
<1_z> 227 = (Zw) (1_,2) =1- S ——— identity, in £(X).
n=0 n=0

So p(T) 2 C\Dc(0, [|T'[| £(x)) or, what is the same, o(T") C Dc(0, || T £(x))-
One can prove similarly that p(7") is an open subset of C. Suppose that z € p(T).
Then, for some other ¢ € C we can write

T—(=T-24+2-¢=(T—2)(1+(T-2)""(z=()).

Picking |z — (] < m we have ||R7(2)(z — ()|l zx) < 1, so again

Rr(¢) = (1+ Rr(2)(z = Q) 'Rr(2) = Y _(=1)"(Rr(2))"(z = )" Rr(2),
n=0
where the above series converges absolutely. O
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Remark 5.24. Notice that if A is an eigenvalue from |A\| < ||T'|| we can derive also |A| < HT”H%
for all n € N. So, in particular, if ||T”||% DZF0, 0, we get A = 0.

Remark 5.25. Tt is rather elementary to show that the map p(T) 2 z — Rp(z) € L(X) is a
holomorphic map from p(T") to L(X).

Remark 5.26. Notice that p(7") is non empty. Indeed, otherwise, the holomorphic function
C 3 z = Ry(z) € £(X) is bounded with Rp(z) === 0 and one can prove by Liouville
Theorem that Rp(z) =0 for all z € C, which is impossible.

Exercise 5.27. Prove rigorously the statement in Remark 5.26.

Definition 5.28 (geometric dimension). If A € 0,(T") and n := dim(T" — \) < oo, n is the
geometric dimension of .

Remark 5.29. Tt is elementary to check that the sequence of vector spaces ker(T — \)™ is
non decreasing.

Definition 5.30 (algebraic dimension). If A € 0,,(T) and if the space

Ny(T —X) == Ej ker(T — \)" (5.20)

n=1
has dimension m := dim Ny (T — A\) < oo, m is the algebraic dimension of A.

Exercise 5.31. Check that the usual definition of geometric and algebraic dimension in
the context of dim X < +oo coincide with the above ones (Hint: use the canonical Jordan
bloc decomposition).

Definition 5.32 (Exponential of an operator). X a Banach space and for A € £(X) the

exponential of A is the operator

oo An
A _ E

Exercise 5.33. a Check that the series in (5.21) is convergent in £(X).

b Check that if A, B € £(X) commute, that is [A4, B] := AB — BA = 0, then eA*8 =

€A€B = €B€A.

¢ Check that UeAU 1 = VAU,

Ezxample 5.34. Obviously, the exponentials are important because if we have for X a Banach
space and for T € £(X) and f € C°(R, X) the simple ODE

t=Tx+ f
{x(o) . (5.22)
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then the solution to (5.22) is

o(t) = eTwo + / T f(s)ds. (5.23)
0

In fact these formulas are true also for appropriate unbounded operators, like for example
. 52 52 .
the Laplacian A = 97 Tt 907 0 X = L*(RY).
Obviously, a very important topic is the study of e!” as t — 4o0.

Remark 5.35. Notice that if, for X a Banach space, for f € CO(R, X) and T(-) € C°(R, L(X)),
we consider the ODE

t=T)x+ f
{ 2(0) = o, (5.24)
then the following formula
t t t ’ /
z(t) = elo Tz / els TN 1) ds, (5.25)
0

which is valid for scalar equations, that is when X = R, is in general false.

Exercise 5.36. Show that (5.25) is correct in a Banach space X if additionally we assume
[T(t),T(s)] = 0 for all pairs ¢,s € R.

Ezxample 5.37. It is worth computing the exponential of some matrix. For

A, 0 0

0 Ay 0

A=10 0 As

0 0 0

we have
etdr 0 0
0 et 0
EtA = 0 0 €tAg;

0 0 0

So, also using the conclusions of Exercise 5.33, it can be shown that in finite dimension, it
is sufficient to understand case

A1 0 0
00X 1 0
00 X 1 0
A=10 o
0 X 1
0 0 A\
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We have A = A\ + N where

01 0 0 i
00 1 0
00 1 0
N=10 0
0 0 1
i 0 0 0
Since A\IN = NI, risulta
Gt ATHN) _ A N

Obviously et = e!*I. Notice that if N is an n x n matrix, then we have N® = 0 and

00 1 0
00 O 1 ...
00 O 0 1
N2=10 0
0 0 1
0 0 0
L 0 0 0
[0 0 0 1 T
0 00 O
N° = 0 0 1
0 0 0
0 0 0
i 0 0 0]
[0 0 1]
0 0 0
NTL—l:
: 0
10 0 0]
Since ) .
tIN 2 a72 n—1arn—1
=1 +tN + —t°N e F— N
e +1 +2!t + +(n—1)!t
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we get

M otA th 2 ix 3t "2 i Tl AT
e te 7€ 37€ =21 =1
2 n—
0 e teth Bt - t 2\
2! (n—2)!
2
0 0 eth tetr g,et’\
et(/\I+N) _ ’
0 0
O et)\ tet)\
i 0 0 et

Ezample 5.38. Notice that there is a deep connection, between resolvent and exponential,
related to the Laplace transform. Indeed, if X is a Banach space and if A € £(X), then

400
Ra(z) = / ee 2t (5.26)
0

is absolutely convergent for Rez > || A[|(x), and can be extended in a larger region in p(A).
Notice that (5.26) is the Laplace transform of ef4
Obviously, it is possible to express e/ in terms of R4(z) in terms of the Inverse Laplace
transform, which for A € £(X) can be written as

1
tA tz
= - d 2
e 5 iLe Ry(z)dz (5.27)

with v a counter clockwise oriented closed path containing in the interior a topological disk
containing o(A). In many important examples, it is possible to study e4 only by studying
R4(z). See for example, the classical paper by Jensen and Kato [5].

Exercise 5.39. Show that [le?|zx) < ellec) | where A € L£(X) for a Banach space
X. Then use this inequality to prove that for Rez > [|A[ z(x) we have ||etAe_tz||L(X) <

et(”A”“X)*Rez), which decays exponentially to 0 for ¢ — +o0.

Answer. Since by the triangular inequality

N N

A" A" ||£(X) 1Al x)
D <y e o 7 A o
n=0 L(X) n=0 n=0

we get H6A||£(X) < elAlleex) | Next,

HetAe_tz”L(X) _ HetAe_tReZHE(X) _ e_tReZ”etAHL(X) < e—tRez€||A||L(X)_
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Ezample 5.40. Notice that if X is a Banach space, and if A € £(X) and if f € H(C), then
it is possible to define the function of the operator f(A).

f(A) = 27T1/f JRA(2)dz , with v as in (5.27). (5.28)

A version of this, extends to unbounded operators. Obviously, for bounded operators, one
could use power series.

Let us check for example that for f = 1, then the right hand side of (5.28) is the
identity operator. We notice that the integral coincides for R > 1 with

R 21 1 1 21 1 1 21 1

i
_ T V9= —_—d¥ = — ——dJ 5.29
2 0 A — R@lﬂe 27 0 %e_iﬂ —1 21 0 1— %e—iﬂ ( )

1[N AT A [ A

- 14 — 71m9d19 =1 —id flnﬁdﬁ'
e n; Rr TR ), € n;) R
Now notice that
A T e A o < NAllex 2 = HAHL
—1 —17 d,l9 d'[9
9rR /0 e = 27rR
n=0 L(X) =0

_ 1Al zx) 1 R—»+00

R |l 0.
R

This implies that for the operator in (5. 30)£—>—+3°1> 1 uniformly.

More generally, if we define f(A) using the power series, we claim that then equality (5.28)
is true. In fact, using the special case f = 1 just shown,

27r1/f JRa(z 2m/(f(2) — f(A)) Ra(z)dz.

Now, if f(z) = > 77 ,anz" is the power series expansion of f

e}

2% L S (2" — A)) A %Z / Zdz. (5.30)

n=0

We have the elementary factorization formula

Hence

2%12/ 2t =AY

which proves our claim that (5.28) is true.
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Exercise 5.41. Check that if f € H (Dc(0,7)) and [|Allz(x)y < r where X is a Banach
space, then for f(z) =Y .7 anz" the power series of f, we have that

f(A) =) a, A"
n=0

is a well defined element in £(X), with the series convergent uniformly in £(X).
Exercise 5.42. Check that if A € £(X) where X is a Banach space, then o(A) # 0.

Answer. If we have 0(A) = (), then 2 — R4(z) is holomorphic over the entire C with
values in £(X). We claim that R4 (z) == 0 uniformly in £(X). Assuming for a moment
this claim, it follows that R(z) is also bounded in C and hence, by Liouville Theorem
(which is true like for scalar holomorphic functions) it follows R4(z) is constant, and so
necessarily identically equal to 0, which is absurd. Now, by a previous computation, for
|z| > [|Allz(x) we have

]- Z—00

0.
1=z~ H[Allzex)

_ -1 _
IRA()l ey < 1271 (1= 27"A) gy < J217

6 The Theorem of Hahn—Banach

Theorem 6.1 (Hahn—Banach, Analytic form). Let X be a vector space onR. Letp: X — R
be a seminorm, Y a linear subspace of X and g: Y — R a linear map such that

9(y) <ply) forally €Y. (6.1)
Then there is a linear map f: X — R such that f|y = g and such that
f(z) < p(x) forall x € X. (6.2)

Proof. If xg ¢ Y, then the elements of the vector space Rxg + Y can be written in a
unique way as * = txg +y for y € Y and ¢t € R. Then define f : Rzg +Y — R by
fltzo +y) = ta+ g(y) for a € R to be chosen. We want

ta+g(y) < pltzg+y) forallt e Rand y €Y. (6.3)
Notice that (6.3), considering only the case t > 0, is equivalent to
a+g(y) <plzo+vy) forally €Y. (6.4)

To see this, just observe that

ta+g(y) <p(txzo+y) forallt >0and y €Y <:>a+g<%)§p<a:o+%> forallt>0and y €Y

— a+g(y) <plrg+y) forallyeY.

47



Similarly
ta+g(y) <p(tzg+y) forallt <Oandy €Y <= —a+g(y) <p(—xzo+y) forally e Y.
So we are reduced to searching an « € R satisfying (6.4) and

—a+g(y) <p(—zo+y) foralye. (6.5)

In other words, we need to have

sup (—p(—20 +y) +9(y)) < a < inf (p(zo +y) — 9(y)). (6.6)
yey ye

Notice that

—p(=z0+y1) +9(y1) < p(xo +y2) — 9(y2) = 9(y1) + 9(y2) < p(xo + y2) + p(—z0 + Y1)-

The latter is true for all y1,y2 € Y. Indeed we have

9(y1) +9(y2) = g(yr +y2) < p(y1 +y2) = p(xo + y2 — 20 + y1) < p(x0 + ¥2) + P(—20 + Y1)

This implies that there exists an « € R such that (6.6) holds true.
We now define

P :={(h, D) s.t. D is a linear subspace of X with Y C D, h: D — R is a linear extension of g
with h(z) < p(z) for all z € D }.

Notice that in P there is a partial ordering
(hl,Dl) = (hQ,DQ) <— D C Dy and h2|D1 = hl. (67)

P is inductive, that is, any totally ordered subset () of P has an upper bound. Just take
for @ = {(hq, Dg)}4eq, then set D = Uge@Dy, which is a linear subspace of X, and for
any z € D set h(z) = hq(x) if x € Dgy. Then we applying Zorn’s Lemma 1.1 we conclude
that P has a maximal element (D,h). If D G X, then by the above argument, if we pick
xo € D, we can extend h : D — R into a linear map h: {tzo+y:t € Randy € D} - R
and conclude that (D, h) is not a maximal element in P for the order relation (6.7). Hence
D = X and h is the desired linear functional.

O

Let us see some corollaries of the Hahn—Banach Theorem.

Corollary 6.2. Let (X, ||| x) be a normed space and let Y C X be a vector subspace, with
respect to the field K. If g : Y — K is a linear functional, there exists a f € X' which
extends g and such that

[fllx = sup |g(y)| =: llglly- (6.8)
yEDY(Ovl)

48



Proof. Let us start considering the case K = R. Apply Theorem 6.1 using p(x) :=
llglly’||z||x. Notice that x — p(x) satisfies (4.1)—(4.2) and that by the definition of ||g||y+ we
have that (6.1) is true. Then Theorem 6.1 yields f : X — R such that f(x) < ||g]ly/||z| x
for all x € X. Notice that this implies |f(z)| < ||g|ly||z|x for all x € X and in particular

yields || fllxs < |lg|lys. We must have || f||x’ = ||g||y’ since obviously
Ifllxr=sup |f(z)[= sup [f(y)] =gy
z€Dx(0,1) y€Dy (0,1)

The statement has been proven in the case K = R. Let us consider now the case K = C.
So Y is a complex subspace of X and ¢ is linear with respect to C. Then u = Reg is a
linear operator with respect to R. Apply the first part of the theorem, and let v € X’ the
extension of u. Then, using formula (2.2),

f(z) :==v(x) —iv(iz),

It is elementary to check that f is an extension of g and that it is linear with respect to C.
Next, since |[v(x)| < |f(z)], obviously ||[v||xs < || f]lx’- On the other hand, for any x there
exists A € C with |A| = 1 such that f(Az) = |f(z)|. So |f(x)| = |[v(Az)| < ||v|lx/|l=| x,
which implies ||v||x: > || f||x’ and, so, the equality.

0

Exercise 6.3. Given a normed space X and Y ; X be a closed vector subspace, show that
there exists a continuous functional ¢ : X — K such that Y C ker ¢.

Definition 6.4. Given a topological vector space X and Y a closed vector subspace, we say
that Y is complementary in X if there is a closed subspace W of X such that X =Y + W
and YNG =0 (andso X =Y & W).

Remark 6.5. Notice that Corollary 6.2 becomes trivial if Y has a closed complementary
space such that ||y +w||x > ||y x for any y € Y and w € W. This happens always in a
Hilbert or in a pre-Hilbert space, but in general Banach spaces it is not true, see Remark
10.9.

Corollary 6.6. Let (X, | - |x) be a normed space. For any xo € X there exists a f € X’
such that

1flx: = llzollx and f(xo) = ||zo]%- (6.9)
Proof. Let Y = Rzg = {Azg : A\ € R} and let g € Y’ defined by g(Azo) = A||zo|/%. Then
lglly: = ’g (mxo)‘ = WHJUOH?X = ||zo|]|x. Applying Corollary 6.2 we obtain the

desired result.
We can define a C-linear functional using an analogue of formula (2.2).

O]

Remark 6.7. Recall that in Example 4.22 we have (LP(0,1)) = 0 for 0 < p < 1. So Corollary
6.6 shows a completely different behavior of X’ for X normed.
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Ezxample 6.8. Let T : X — Y be a continuous linear operator between two normed spaces.
Then the for any ¢y’ € Y’, that is a bounded linear map v’ : Y — R, it is elementary that
y' o T defines an element in X’. This defines a linear map

Vioy LyoTex (6.10)

which is called the dual map of T. T is a bounded map and in particular we have
1Tl ey = 1T e 0. (6.11)

To see this, notice that for ||y/||ys = 1, by the definition of the norm in X’ we have

HT*y/”X/ = sup{<T*y',x>X,xX : HxHX = 1} = sup{<y' OT>$>X/><X : ||$HX = 1}
=sup{(y, Tz)y .y lzllx =13 < Y llyr sup (| Tzlly < 1Y v 1Tl exyy = 1T ey

lzll x=1

which yields |7 sy xy < |T']|z(x,y)- Similarly, for ||z|x = 1, by Hahn-Banach we have

ITx|ly = sup{(Tz,y )y : IV ly» = 1} (by Corollary 6.6)
=swp{(T"Y,2) v xc IV lly =1}

< [l=llx o 17 | < l2llx T v xy = 1T 2orx0),
Y'llyr=

which yields HT*HE(Y/,X’) Z HTHE(X,Y)

Corollary 6.9. Let U := D¢(0,1) and T = 0U. Let A C C%(U,C) be a vector space.
Suppose that A contains the set C[z] of polynomials py(z) = anz"™ + ... + ap and that

1l ey = I lpoe(zy for any f € 4, (6.12)

(notice that any element f € C[z] satisfies (6.12) by the Mazimum Modulus Theorem,).
Then we have

s 2
f(z) = 1 / 1_7|Z|2f(eit)dt for any f € A and any z € U. (6.13)

_% - \z—eit]

Proof. Let Y be the subspace of C°(T, C) formed by the restrictions on T of the functions
in A. We fix z € U and we consider the linear map Y 3 fir — Afjr := f(2) € C. By (6.12)
it follows

|f(2)] < I firllzoe(ry for any fir € Y.

So the norm of this operator is < 1. In fact, since 1(z) = 1, the norm is exactly 1. By
Hahn-Banach there exists an extension A : C%(T,C) — C with norm

Al=1and |A| = 1. (6.14)
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We claim that

for any C(T,C) > f > 0 we have Af > 0.

(6.15)

Assuming (6.15), we can conclude that there exists a positive Borel measure du, in T, such

that by Theorem 1.22 we have
Af = /de,uzfor any f € C°(T,C).
We have
2" = /Tw"duz(w) for any n € N

0

and taking complex conjugation, for z = rel® we have

rnlein? — / w"dp, (w) for any n € Z
T

Now notice that for

—+o0 [e'e] [e%¢]
P.(6—t):= Z rile=t) — Re {1 + 22 (zeit)n} = Re {—1 +2 Z (ze
n=-—oo n=1 n=0
— Re 2 — 1l Re 1+ zejt _ Re{(1+ ze_ht).(l2 —zelt)}
1 — ze it 1 — ze it 2 — eit|

_ 1— |2+ Refze ™ —ze} 1|2

|,z—eht|2 |z — elt]

we have
1 [7 ‘ .
/ P(0 — t)edt = r"le™ for any n € Z.
2 J_,

Comparing (6.18) and (6.20) we conclude that

1 ”;He_wﬂwmwzéf@mwxw

2 J_,

for any trigonometric polynomial

flw) = Z anw’ for w e T.

j=—n

(6.16)

(6.17)

(6.18)

it)n}

(6.19)

(6.20)

(6.21)

We will see in Corollary 7.25 that the trigonometric polynomials form a dense set in
CY(T, C). We conclude therefore that the equality (6.20) is true for all f € C°(T, C). Hence

(6.17) and (6.20) yield (6.13).
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To complete the proof of Corollary 6.9 we need to prove (6.15). It is enough to assume
0 < f(2) < 1, since any C°(T,C) > f > 0 is of this type, up to multiplication by a
sufficiently small constant 0 < ¢, and if 0 < Acf = cAf, obviously also Af > 0. Set
g=2f—1. Then —1 < g < 1. Let Ag = o +if. Notice that for any r € R,

lg+ir? =g*+r2 <1472
Then,
(B+1)? <la+if +irl* = |[A(g+ir)* < 1+72

where we used Air = irAl = ir and |[A(g+ir)|? < Hg—l—ir”%oo(m < 1+7% Then 82+28r <1
for any r € R. This implies 8 = 0. We have |a| = |[Ag| < ||g[/zeo(r) < 1. Then we obtain
the desired result:
1+g _l+a_,

2 2

Af=A

Ezxample 6.10. If we set
A:={feC®U,C)NC*U,C): Af =0in U}

then A O C|[z] and, by the Maximum Modulus Theorem for harmonic functions, Corollary
6.9 applies.
1— |2

Remark 6.11. Notice that for any zg € T the function 5

| | is harmonic in U, as can be
zZ — 20
checked by direct inspection. Indeed, A = 40,0s. Then
1—|z|? 1—2z
o 1P b, =
|z — 20| (z = 20)(z — Z0)
—z 1—2z

(z—20)(Z—Z0) (2 — 20)(Z — %0)?

and
el 1 [ —z 1- 2% ]
82827 :62 — — _ - _
|z — 20\2 (z—20)Z—20) (2—20)(Z—7%p)2
IS A s .
|z — 22 (z—20)  (2—20)(Z—20) (z2—7%0)
1
B |z — 2! [ (2 = 20)(Z = Z0) + 2(Z = Z0) + 1 = |2* + Z(2 — 20)]
— 20
1 L
LA [(z = 20)Z0 + 2(Z — Z0) + 1 — |2]?] :iou:o
|z — 20] P

So all functions in the space A in Corollary 6.9 are harmonic inside U. This means that
A D CJ[z], the fact that A is a vector space and (6.12), taken together are a powerful rigidity
condition.
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6.1 Geometric form of the Theorem of Hahn—Banach

Definition 6.12. Let A and B nonempty subsets of a topological vector space X on R.
Let H = f~(a) be a hyperplane with f: X — R a linear map.

1. H separates A and B if f(A) C (—o0,a| and f(B) C [a,+00) (or viceversa f(B) C
(=00, a] and f(A) C [a, +00)

2. H separates strictly A and B if there exists an € > 0 such that f(A4) C (—o0,a — €
and f(B) C [a + €,+00) (or viceversa).

A special case of the geometric form of the Hahn—Banach theorem is the following,
which states that if A = C is an open convex set and B = {x¢} with z¢ ¢ C, then there
exists a closed hyperplane separating them.

Lemma 6.13. Let X be a topological vector space on R, let C' be an open and convex
nonempty subspace and let xo &€ C. Then there exists a bounded linear map f : X — R such
that f(x) < f(xo) for allxz € C.

Proof. 1t is not restrictive to assume 0 € C. Let us consider the seminorm p defined in
(4.4). Then p(zg) > 1 by zo & C. Set Y := Rz and on Y define the linear map g(txo) =t
for all ¢ € R. We claim have ¢g(y) < p(y) for all y € Y. Indeed, in the special case z = x,
g(zp) = 1 and p(xp) > 1 and so 1 = g(xg) < p(xp). This inequality continues to hold if we
multiply the above inequality by ¢ > 0, getting g(txo) < p(tx) for t > 0. Finally we have

t = g(tzg) < p(tzg) for all t € R

since, for t < 0, the L.h.s. is negative while the r.h.s. is non negative.

We can now apply Theorem 6.1 and conclude that there is a linear operator f : X — R
which extends g and is such that f(z) < p(x) for all z € X. Then f(z) < p(z) < 1= f(x0)
for all z € C. Notice that since f~1(1) N C = ), the hyperplane f~!(1) is not dense in X,
and so, c.f.r. Exercise 2.19, is closed and f is bounded. O

Theorem 6.14 (Hahn-Banach, Geometric form). Consider a topological vector space X .
Let A and B be nonempty and disjoint convex sets, with A open. Then there is a closed
hyperplane H separating them.

Proof. Set C:= A— B = {a —bla € Aand b € B}. Then C is convex since if ag,a; € A,
bo,b1 € B, a; € A, by € B, we have a; — by = (a — b); € C.
We notice now that C' = Upep(A — b), as a union of open sets, is open and C' 0. We
apply Lemma 6.13 to the pair C' and xg = 0. Then there exists a continuous linear map
f: X — R such that f(c) < f(0) =0 for all c € C.

This is the same as having f(a) < f(b) for any a € A and b € B. Then picking

< a< inf
i‘éljf(x) <a< ;Iele(x%

we have that H = f~1(«a) separates A and B. O
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Remark 6.15. Notice that in Brezis [3, Exercise 1.9] it is stated, and later in the solutions it
is discussed, the fact that in finite dimension the statement holds just under the hypothesis
that A and B are nonempty and disjoint convex sets, without further specifications. This
would be false in an infinite dimensional topological vector space X. Take for example a
not continuous linear map f : X — Randlet A= f~}(R_) and B = f~}(Ry). Then A and
B are nonempty and disjoint convex sets, but there is no closed hyperplane H separating
them. If fact, if it existed, it would be of the form H = g~!(«) for a nonzero g € X’ and
with ¢ < ain A and ¢ > a in B. But the set where g < « is non empty and open in X,
while B is dense in X, by Exercise 2.19. So it is impossible that ¢ > « in B, and we get a
contradiction.

Theorem 6.16 (Hahn-Banach, Geometric form, 2nd version). Consider a locally convex
space X. Let A and B be nonempty and disjoint convex sets, with A closed and B compact.
Then there is a closed hyperplane H separating strictly them.

Proof. We claim that
3 a convex balanced open neighborhood U of 0 such that (A+U)N(B+U) =0. (6.22)

Let us assume (6.22). Then, since A+ U and B+ U are easily shown to be open convex sets,
by Theorem 6.14 we know that there exists a closed hyperplane H = f~!(a) separating
A+ U and B+ U, that is

fla)+ f(z1) <a < f(b)+ f(z2) foralla € A, b€ B and all z1,29 € U. (6.23)

Notice that there exists an € > 0 such that f(U) D [—¢,€]. Indeed there exists zyp € X such
that f(zo) = 1 and there exists € > 0 such that ezg € U. Then Azg € U for any |\ < ¢
because U is balanced. Then f(U) D f({Azo: |\ <¢€}) = [—¢,¢]. Then from (6.27) we

derive
fla)<a—e<a+e< f(b) forallae Aand b€ B.

Now we turn to the proof of (6.22). Let us consider the family U of the open convex and
balanced neighborhoods of 0 in X. For any V € 9, the complement C(A + V) of the closure
A +V is obviously open. We claim

U CtA+v)2B. (6.24)
vey

To see (6.28), we consider any x € B. Since CA is an open neighborhood of z, there exists
a balanced open and convex neighborhood of 0, V, such that V + V 4 2 C CA. Since the
latter inclusion implies

v] —v2 +x # a for any a € A and v; and v in V, (6.25)
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it implies V + 2 C C(A + V). Since V + z is open, V + 2 C C(A +V)=C(A+V). This
proves (6.28).
Since B is compact, there is a finite cover

CA+WV)u...uCA+V,) 2 B.

Taking W = V1N...NV,,, we conclude C(A + W) D B. Let us consider now a convex balanced
open neighborhood U of 0 such that U + U C W. Then, like in (6.25),

BNCl(A+U+U) <= B+UCL(A+U)<= (B+U)N(A+U) =0,

thus proving (6.22) and completing the proof of the theorem. O

Remark 6.17. When X is a normed space, then the proof of (6.22) is simpler. In fact it is
easy to prove that

there is an € > 0 such that (A + Dx(0,¢)) N (B + Dx(0,¢)) = 0. (6.26)

Indeed, if this is false, for any sequence ¢, Do, 0T, there exists
zn € (A+ Dx(0,€,)) N (B + Dx(0,€,)).

Then there are sequences {ay, } in A and {b,} in B with ||a,—z,|x < €, and ||b,—z, || x < €n.

So we have ||a, —b,||x < 2€,. On the other hand, since B is compact, there is a subsequence

of {b,} in B convergent in B. It is not restrictive to assume that b, 22H0 b in B. We

n—-+o0o

have also a,, ———— b. But then b € AN B, which contradicts AN B = 0.

Remark 6.18. It is obvious that, if we replace in the hypothesis in Theorem 6.16, B compact
with B closed, then there is no hope, even in finite dimension, that in general these can
be separated strictly with a closed hyperplane H. In Brezis [3, Exercise 1.14], there is
an example of two closed convex sets inside £!(N), which cannot be separated by a closed
hyperplane H. The idea is to consider the two vector spaces

X :={(zp) : ©2n, = 0 for all n € N} and

Y :={(yn) : yon = zinygn_l for all n € N}.

These are closed vector spaces. The key point now is that X +Y = ¢(N) but X +Y B
?*(N). Let ¢ ¢ X +Y. Then there is no closed hyperplane separating ¢ and X + Y (since
the latter is dense). Now let Z = X —c¢. Then Y and Z are closed disjoint convex sets,
and the claim is that they are not separated by a closed hyperplane H. Otherwise there
would be f € (¢}(N))’ separating them, that is there would exist « € R and f < a in YV
and f > « in Z. Necessarily « > 0 and f = 0 in Y, by linearity and, similarly, f = 0 in
X. Then 0 < a < —f(c). So f(¢) < —a<0and f =0in X +Y would give us f~!(a), a
closed hyperplane separating ¢ and X + Y, which in fact cannot exist.
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Corollary 6.19. Let Y be a nonempty subspace of a locally convexr space X on R. Assume
Y ; X. Then there exists f € X' nonzero and such that

fy) =0 forallyeY. (6.27)

Proof. Take z9 ¢ Y. Then A :=Y and B := {z} satisfy the hypotheses of Theorem 6.16.
So in particular there exists f € X’ such that for some o € R

fly) <a< f(xg) forally e Y. (6.28)

But then we must have (6.27) for, if we had f(yo) # 0 for an yg € Y, then

sup f(Ayo) = sup (Af(yo)) = +00,
AeR AER
contradicting (6.28).

O

Remark 6.20. Notice that in the spaces LP(0,1) with 0 < p < 1, where (LP(0,1))" = 0, then
Corollary 6.19 is false. Take just any line Y = sp{f}, which is a closed subspace of L?(0, 1),
with 0 # f € LP(0,1). The reason why Y = sp{f}, is a closed subspace of LP(0,1), it that
it is isomorphic to R. Indeed, R > ¢t — ¢f € Y is continuous and viceversa, the map tf — ¢
is continuous since its kernel, equal to {0}, is closed in LP(0, 1), and so also in Y, and hence
is not dense in Y.

Example 6.21. An interesting result is the Miintz-Szasz Theorem which states the following:
n—-+0o

Let I =10,1] and let 0 < Ay < A2 < ... be a strictly increasing sequence with Ay,
+00. Then the closure Y of the subspace in C°(I) generated by 1,t* 122, ... is such that

(1) If i 1/M\y = +oo then Y = CO(I).

n=1

o0
(2) If Y 1/An < 400 and if X# 0 is X & {A,}5°, then t* ¢ Y.
n=1
Notice that, in the particular case A\, = n, we reobtain the Weierstrass Approximation

Theorem 1.17. The Miintz-Szasz Theorem, in particular, implies that if we eliminate any
number N of elements A,, < ... < \,, from the sequence in case (1), the set Y remains the
same and continues to coincide with C°(T).

For the proof we refer to Rudin [9]. We sketch the proof of statement (1), which is
a beautiful application of Corollary 6.19, of the fact that (C’O(I ))/ is the space of Borel
measures on I, see Theorem 16.19 later, and some basic fact on bounded holomorphic
functions in in the unit disk U.

To prove (1) it enough to prove that for any complex Borel measure p we have

An — = n n = n = .
/It du(t) —/Id,u(t) =0Vn= /It du(t) =0V 0,1, (6.29)
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But then, since Sp{1,¢,t2,...} is dense in C°(I), we conclude p = 0. Hence, since all the
elements of (C%(I))’ which are null in the closed set Y are also null on C°(I), by Corollary
6.19 we conclude that we cannot have Y & CO(I).
To prove (6.29), define
f(z):= /t'zdu(t). (6.30)
I

Then f € H({z : Rez > 0}). Indeed, f(z) is bounded and continuous in {z : Rez > 0}
and, applying Morera Theorem, is holomorphic in {z : Rez > 0}. Next, set

s =1(152).

/
Then g € H*(U), where U = D¢(0,1), with g(a,) = 0 for a,, = i\+ N Using (;—}) =

—2 > we conclude that a, is strictly increasing. So we have

(t+1)2
1/A, = 400 = /M, = = 1 —|ay|) = +oo. 6.31

o0
Hence Z(l — |ay|) = +o0. But there is a theorem which says that then ¢ = 0 (it is a
n=1
refinement of the theorem which guarantees that if g £ 0, the set of the zeros of g has no
accumulation points inside U). So f = 0 and, in particular, f(n) = 0 for all n = 0,1,2...
proving (6.29). We refer to Rudin [9] for the proof of (2), which is based on some beautiful
theory of holomorphic functions on a half-plane, and for further details.

We will see later further applications of the Hahn—Banach Theorem.

6.2 The bidual and orthogonality

Let X be a normed space and consider the Banach space X’. Then the bidual of X is
X" = (X"Y.

Lemma 6.22. Consider the map J : X — X" given by (Jz,2') iy xr = (x,2') y o x/- Then
J is an isometric immersion of X inside X" .

Proof. For ||2'||x» = 1, by the definition of the norm in X", we have

[ (T2 2" ) o | = 1@, 2) o0 | < 2l llallx =l

from which we derive that ||Jz|x» < ||z||x for any 2 € X. On the other hand, for any
x € X, by Hahn-Banach we know that there exists 2’ € X’ with ||2||x, = 1 such that

HCCHX = |<x7x/>X><X/ ‘ = ’<J{L‘,$/>X,,XX,| < Hx/HX’HJx”X” = HijX’U

so that we conclude ||Jz||x» > ||z|x for any z € X.
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Definition 6.23. Given a topological vector space X and M C X, we set

MY ={fe X :{(f,x)y,x =0forall z € M}. (6.32)
Similarly, for N C X’ we set

Nt :={zeX:(f,x)y,x =0forall fe N} (6.33)

Let X by a normed space and consider the related norm in X’.

Lemma 6.24. Given a normed space and a linear subspace M C X. Then

(M)t =M. (6.34)
Given a linear subspace N C X', then

(NHE DN (6.35)

Proof. By definition of M~ in (6.32), we have (f,z)y,x =0 for all z € M and f € M*.
So (M*)*+ D M by the definition of (M+)*, in (6.33) for N = M. Furthermore, since
the orthogonals are closed spaces, we have also (M1)+ D M. This in particular proves
also (6.35). Now let us prove the equality (6.34). Proceeding by contradiction, suppose
that there exists 29 € (M1)-\M. Then there is a closed hyperplane H separating strictly
xo and M. In particular, is not restrictive to assume the existence of a continuous linear
functional f and an a € R such that

(fsw0) xrux = f(wo) <a< f(x)=(f,2)xx for all z € M.

By linearity we need to have f(z) = 0 for all 2 € M. This means that f € M*. On the
other hand, f(xg) < 0 implies that 2o & (M*)*, which contradicts our hypothesis that
xo € (M+)*\M. So we have proved that (M+)*\M = (. O
Ezample 6.25. We will see later that (¢1(N))’ = ¢*°(N) and that (co(N)) = ¢}(N), where
co(N) is a closed subspace of ¢}(N). Now, cg(N)* = 0 C ¢}(N) and 0+ = ¢*(N), so
1

(co(N)F)™ = £2(N) 2 co(N).

Lemma 6.26. Consider a bounded operator T : X — Y between two Banach spaces and
the adjoint T : Y' — X'. Let R(T) =TX and R(T*) = T*Y'. Then we have the following:

ker T = R(T*)*; (6.36)
ker T* = R(T)*; (6.37)
(ker T)* D R(T*); (6.38)
(ker T*)* = R(T). (6.39)
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Proof. Formula (6.36) follows from (Tx,y')y .y, = (, T*Y') . - Indeed, if € ker T then
the formula yields (z,T*y')yyx = 0 for any ¥/ € F’, and so x € R(T*)*. If, viceversa,
x € R(T*)*, then (Tx,y')y .y, = 0 for all ¥ € Y', and this implies Tz = 0 by Corollary
6.6, that is, x € kerT'.

A similar discussion, in fact, simpler since it does not rely on a deep theorem like Hahn—
Banach but stems directly from the definitions, is valid for (6.37). Indeed, if 3’ € ker T*
then from 0 = (z,T*Y) . x» = (T2, ')y v for all x € X we have y' € R(T)*. Viceversa,
if ¥ € R(T)*, then 0 = (T2, y)y .y = (2, T*Y') x x for all z € X implies, by definition
of T*y' € X’ (and therefor not by any deep theorem), that 7%y = 0 and, so, 3’ € ker T*.
Turning to (6.38), we know from (6.35) that (R(T*)%)*+ D R(T*), which gives the desired

result. Similarly, we know from (6.34) that (R(T)*)* = R(T), which gives 6.39. O

Exercise 6.27. Let T € £(X,Y) and consider T* € L(Y ', X'), T** € L(X",Y") and the
maps Jx : X - X” and Jy : Y — Y” in Lemma 6.22. Then for the following two maps
X — YY", show that we have T**.Jx = Jy T or, otherwise stated, that the following diagram

is commutative,

x T vy

bl

* k.
X T vy

Answer. We have

<Tx’y/>Y><Y’ - <JYTx’y/>Y“><Y’ and
<Tx7y/>yxy/ = <$7T*y,>XXX/ = <JanT*y/>X//><X/ = <T**']X$7y/>yu><y/ .
Then

(JyTz — T**Jxm,y'>y,, =0forallz € X andy' €Y',

XY’

This by the definition of Y implies T**Jxx = Jy Tz for all z € X and so our statement.
O

Exercise 6.28. Consider the set up of Exercise 6.27 with 7' € L£(X,Y) and consider
T e LY, X"), T** € L(X",Y") and the maps Jx : X — X" and Jy : Y — Y” in Lemma
6.22. Suppose now that both X and Y are reflexive, that is, see later in Sect. 13, Jx and
Jy are isomorphisms. Then show that instead of (6.38) we have

(ker T)* = R(T™). (6.40)
Answer. We want to show that
¢’ € (ker T)F = 2’ € (ker T*)*. (6.41)

Assuming this, by Lemma 6.26 with T' (resp. T%) replaced by T* (resp. T**), we have
(ker T**)+ = R(T*). This allows to conclude that (6.40) is true.
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So let us prove 6.41 and let 2’ € (ker 7). Observe that, since J;IT**JX =T where Jyx is
an isomorphism, we have ker T** = Jx ker T". Since

0= <x,x’>Xxx, = <JX$,:):’>X,,XX, for all x € ker T

and since, by our observation, as Jxx spans all ker T** as x varies in ker T, we conclude
that

<3:”, a:’>X,,XX, =0 for all 2" € ker T**.

Hence 2’ € (ker T**)* and (6.41) is proved.

7 Theorem by Banach and Steinhaus

Definition 7.1 (Baire Spaces). A topological space X is said to be a Baire space if either
of the following two equivalent statements holds:

1. for any sequence A,, of dense open subspaces, then N>2; A, is dense;

2. for any sequence C,, of closed subspaces without interior points, then U>2,C,, has
empty interior.

A subspace of a topological space X which contains the intersection of a sequence of open
dense subspaces of X is called a G5 subspace of X.

Remark 7.2. A G5 subspace of a Baire space X is dense in X.

Exercise 7.3. Consider a compact space K and a decreasing sequence of compact sets with
MnenKy, = 0. Then only finitely many of them are nonempty.

There are two important classes of Baire spaces: locally compact spaces and complete
metric spaces.

Theorem 7.4. Fvery locally compact Hausdorff space X is a Baire space.

Proof. Take a sequence A, of dense open sets. Take any open set G;. We can take a
sequence of decreasing nonempty relatively compact open sets, with for n > 2, G,, C G,, C
A, N Gp_1, G, compact. Then it is easy to see that we have NpenGrn = NpenGrn. By
Exercise 7.3 we also know that the above infinite intersection is non empty, since otherwise
there would be N such that G,, = () for n > N, which, by construction, is not true.

Notice also that

ﬂ%ozlGn - m%OZQGn - mzoZQ(An N Gn—l) - m;.LOZQA’m

Then G1 N (NS,A4,) # 0. This implies also G1 N (NS, A,,) # 0. This implies that any
sequence A,, of dense open subspaces in X is such that N7 ; A,, is dense
O
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Ezxample 7.5. Let X be any non empty set and let us consider the topology where any
Y C X is open. Notice that X is locally compact ( for any x € X the set {z} is a compact
neighborhood of x). If A is a dense set in X, then necessarily A = X. So for any sequence
A,, of dense open sets we actually have A,, = X for all n and trivially N2 ; A,, = X, which
is obviously dense.

Theorem 7.6. Every complete metric space (X,d) is a Baire space.

Proof. Take a sequence A,, of dense open sets in X. Take any open set G;. We can take
a sequence of decreasing nonempty open balls, with for n > 2, D(zy,r,) C D(zp,rs) C
D(xp—1,mn—1) C Ap NGy with 7, \ 0 (r, a strictly decreasing sequence, convergent to 0).
Then it is easy to see that we have N0, D(xy,, ) = N2 D(xy, 7). Furthermore, since X
is a complete metric space, this intersection is non empty and, in fact, is of the type {z} for
some T € X. Here T € D(xy,ry,) for all n, and so T € A, NG, for all n. So, in particular
T e (N2, A4,) NGy.

This shows that N72; A, is dense.

Exercise 7.7. Show that D(2) is not metrizable.

Answer. As we know, D() is the direct limit of a strictly increasing sequence { D, (2)},

where {K,} is a sequence of compact subsets of 2 with K,, C Io(nﬂ Vnand |2, K, = Q.
Notice that since each D, (€2) is complete, by Theorem 4.33 also D(£2) is complete.
Each Dk, () is a closed subspace of D(€2) (since it is complete) and it has empty interior,
since there are elements ¢ € D, ., (Q2) arbitrarily close to 0 in D, ,, (€2) and with supp ¢ 2
K. Furthermore, D(Q) = ;7 Dk, (). All this implies that D(£2) is not a Baire space.
If it were metrizable, it would be a complete metric space and, by Theorem 7.6, it would
be Baire.

Definition 7.8. Let {A;};cs be a family in £(X,Y) with X and Y two topological vector
spaces. We say that {A;};cs is equicontinuous if for any neighborhood V' of 0 in Y there
exists a neighborhood U of 0 in X such that A;U C V for all j € J.

Exercise 7.9. Show that a family {A;};c; in £(X,Y) with X and Y two normed spaces
is equicontinuous if and only if there exists an M € R, such that ||T}||z(zr) < M < oo for
all j € J.

Lemma 7.10. Let {A;};cs be an equicontinuous family in L(X,Y). Then, for any bounded
set I/ in X there exists a bounded set I' in'Y such that Uje]AjE CF.

Proof. Set F :=J icg A;E and let V be any neighborhood of 0 in Y. By equicontinuity, we
know that there exists a neighborhood U of 0 in X such that A;U C V for all j € J. Since
F is bounded, we know that there exists ¢ € Ry such that £ C tU. It follows that for any
j € J we have AjE C tA;U C tV. So also F' = |J,.; A;E C tV, which proves that F is
bonded in Y.

jeJ

O]
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Theorem 7.11 (Banach-Steinhaus). Consider a family {A;}jes in L(X,Y) with X and
Y two topological vector spaces. Consider the orbits

I'(z):={Ajz:jeJ}
and set
B ={z € X :T'(z) is bounded in Y}.

Suppose that the complement of B in X does not contain a G5 set. Then the family {A;}jcs
1S equicontinuous.

Proof. Since by hypothesis (B := X\ B does not contain the intersection of a sequence of
open dense sets in X, it follows that B is not contained in the union of a sequence of closed
sets, each with empty interior.

Consider an arbitrary balanced neighborhood W of 0 in Y and let V be another balanced
neighborhood of 0 in Y with V +V C W (notice that V. C V + V| since if z € V
then (z + V)NV # () which implies x € V —V = V 4+ V, and so we can just take
VAV CVHV+VHV CW).

Set B :=();e, A;lv. Then we claim that

Indeed, for any = € B, the fact that I'(z) is bounded in Y implies that there exists an
n € N such that T'(z) C nV. So Ajx € nV or, equivalently x € nAJflV, for all j € J. Hence
T € ﬂjEJ nAj_lv = nﬂjeJ Aj_lv =nkF.

The nE are closed sets. Each of them has non—empty interior exactly if £ has a non—empty
interior. So there is an interior point z € E and a neighborhood U of 0 in X with z+U C F.
By the definition of E, this implies that Ajz + A;U C V for all j € J. Then

AMUCV —-AzCV-V=V+VCWforalljeJ.

So we have proved that for any neighborhood W of 0 in Y there exists a neighborhood U
of 0 in X such that A;U C W for all j € J and so, that {A;};c is equicontinuous.
O

An immediate corollary is hence the following .

Corollary 7.12. Let X and Y normed spaces and consider a sequence T,, € L(X,Y).
Suppose sup,, |Tnz|ly < oo for any x € X. Then | T, z(x,yy < M < oo for some M.

If it is not true that sup,, [|Thllz(x,y) < M < oo for some M, then sup, || Tz|y = oo for
all the x© in a Gy set.
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7.1 Some application of the Theorem by Banach and Steinhaus

A function f(z) = P(cosz,sinx) with P(z1,22) a polinomial is called a trigonometric
polinomial. Using repeatedly the prostaferese formulas

cos((n —m)z) — cos((n + m)x)

sin(nx) sin(ma) =

2 ?
cos(nz) sin(ma) = sin((n +m)z) g sin((n — m)x) and (7.1)
cos(nx) cos(mx) = cos((n — m)z) ;‘ cos((n + m)$)7

it is easy to see that any trigonometric polinomial can be written in the form

f(z) = % + Z(ae cos(lx) + bysin({fx)). (7.2)
=1

Lemma 7.13. Given the trigonometric polinomial (7.2), the following formulas are true,

1 ™ 1 2m
ag = — f(z)cos({z)dr = — f(z)cos(lx)dzx, £ =0,1,---
TJ_ T
- ) o (7.3)
by = — f(z)cos(fzx)dr = — (x)sin(lx)dx, £=1,---.
™ J_r ™ Jo
Proof. For 6, , the Kronecker delta, we have
1 (" . .
/ sin(nz) sin(mz)dz = 6, m
™ —T
1 ™
/ cos(nx) cos(ma)dr = 6y m (7.4)
™ —Tr

1 ™
/ cos(nz) sin(mx)dx = 0.
T

So, if we multiply (7.2) by cos(mz), obtaining

f(z) cos(mz) = % cos(mzx) + Z(ae cos(lx) cos(mx) + by sin(lz) cos(max))
=1

and if we integrate, we get

i f(x) cos(mz)dz =

= % cos(mzx) + Zn:(ag/

/=1 -

™ ™

cos({x) cos(max)dx + by / sin(fx) cos(mx)dx)‘

—T

63



By (7.4) at most one term on the left is non—zero, and we have
f(x) cos(mz)dr = ay,m.
-7

In this way we obtai deln the 1st line in (7.3). The 2nd line is obtained similarly, multiplying
(7.2) by sin(mz) and integrating. O

Definition 7.14 (Fourier Series). For any f € L!(—m,n) its Fourier series is the series
(e}
=9 cos(ma) + Z ag cos(fx) + by sin(4x)) (7.5)
=1

where the coefficients a,, and b,, are defined by (7.3). Alternatively, we can define the Fourier
series of f as the series

> F(0)e" where (7.6)

LET

flo) = o / " ite flz)da

—T

The expansions can be obtained one from the other, using '* = cos(fz) + isin(fz).

Ezample 7.15. For [a,b] C [—m, 7| and for the characteristic function x4 4, we have

. I b—
X[a,p(0) = / dx = ¢ and, for n # 0,
' a 2

2
- 1 b . ) e—inb _ e—ina
X[a,b) () = 277/(1 e "dr = S W

Definition 7.16 (Tori). For any d € N, we set T? := RY/27Z% which we call the d-
dimensional Torus. There is a natural identification of LP((—,)%) with LP(T%). For any
f € LY(T9) its Fourier coefficients are given by

Iy 1 —in-z
fl) = 53 /T () (7.7)

Notice that if f € C*(T9) for any |a| < k we have

o f (1 :L e—in~x L Vdr = (— || 1 ae—in~x 2)dx
527 (n) o / o fa)ds = (<) o [ o p(aya
_ {laln@ | n%4 F(n). (7.8)
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In other words, transformation (7.7) diagonalizes all the operators 9%. So in particular, for

d
the Laplacian A := Z 8j2- we have
j=1

Af(n) =i2(n} + .. + nd) f(n) = —|n||*f(n). (7.9)

The following lemma expresses the fact that a bounded operator remains defined by
LY T 5 f — f € co(Z?), where the latter is defined in (3.20)

Lemma 7.17. For any f € L'(T%) we have

1f(n)| < W for alln € Z%, and (7.10)
lim f(m) =o0. (7.11)

Proof. Inequality (7.10) is straightforward. Let us turn to the proof of (7.11), which we know
is true for f = X(q; b1]x...x[aqby] OF fOr [ a linear combination of functions X(a, b,]x...x[a4,ba]-
Such linear combinations form a dense set in L'((—x,7)%). So, for any e > 0 there exists

N
N v o .
g Z; ]X[agj),bgj)]X...X[a((ij),b(dj)]
J:

with || f — gl[p1(1¢) < €. By Example 7.15 we have

N d i
lim g(n) = lim ! Z/\j H ¢ —c =0,

n—oo n—oo (27T)d - ng

which implies that there exists a N such that for |n| > N, we have |g(n)| < e. This implies
that for [n| > N, we have

)] < [gm)] + 17(0) = G0)] < e+ @) 1S = gllpageey < (1420 e

We conclude that we have shown (7.11).
Ul

Let us focus in dimension d = 1. Obviously, it is interesting to get information on the
convergence of the Fourier Series, that is on the limit

. . . a0 | v .
ngrfoo Sy f(x) , with the partial sums S, f(z) := 5t ;(ag cos(lx) + bysin(lx))

Definition 7.18. For any n > 1 the Dirichlet kernel is the function

sin((n + %)x)

7.12
23111% ( )

Dy (x) = % + Zcos(ﬁx) =
=1
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Notice that the 2nd equality follows from using the telescopic sum

(e 3) ) = (5) 3 (3 (4 1)) s (1= 2) )
s (3) + 3 (3 i)

Lemma 7.19. For any f € L*(T) we have
1 ™

Spf(z) = — f(t)Dy(z — t)dt. (7.13)
Proof. Follows from
Snf(x) = %% f t)dt + Z <cos (bz)— T;f(t) cos({t)dt + sin(&v)% 7; f(t) sin(ﬁt)dt)

_ 12 /” F(t)dt+ Z = f(t)(cos(ﬁ:n) cos(lt) + sin(fx) sin(4t))dt
- (=1 o

- 71r/7r £ (; +3 " cos(U(a — t))) dt.
T (=1

We will denote by C%(T) the set of the functions f € C°(R) and 27— periodic.
Let us apply now the Theorem by Banach and Steinhaus to the Fourier series.

Theorem 7.20. For any x € T there exists f € C(T) whose Fourier series does not
converge in .

Proof. First of all, it is not restrictive to consider x = 0. Recall that the partial sums are
given by
sin((n + 1))
w(t —x)dt, Dy(z) = —————222.
Snfl@) =52 / ) z) () = < sn@/2)

Notice now that

(n+1)m
| Dnll 1t >2/ |sm n+ ’— / ’ ’sin(t)‘ait>2/ ‘Sln |—
0
. o L n—-+oo
>2;%/(k_1)ﬂ‘sm(t)‘dt_4;kﬂ' T 50

lifx>0

If we set g(t) = sign(D,(t)) with sign(z) = {_1 fr<0

then it is easy to understand

that sign(D,,) is Riemann integrable.



Notice that

1 (" 1 " 1
$:90) = 5 [ gDy IDa(t)ldt = - [ Dallusr

2 J_, "o -

By Lusin Theorem, for any 1/j > 0 there exists a function f; € C%(T) with || ;| 1oo(r) <
9]l oo (ry = 1 such that

{z: fi(z) # g(x)}] <1/j.

Hence f; 2% g in LY(T) and S, f5(0) 2% 5,9(0) = o= | Dull 1 (-

If {S,f(0)}nen for any f € C°(T) were convergent, then for any f € C%(T) we would have
sup,, |Snf(0)] < co. Now, the operators evoSy, : f — Sy, f(0) are bounded operators CO(T) —
C for any n. By Banach Steinhaus, sup,, |S,f(0)] < oo for any f € C°(T) would imply
a uniform [levoSy|co(r)y < C for all n € N. Then S, f(0)| < |levoSn |l oyl fllcor) <

n—-+4o0o

Cllfllcoer) for alln € Nand f € C°(T) and so 2xC > llevoSull(co(ryy2m = | Dallprry ——
oo, which gives a contradiction.
O

A direct consequence of Banach—Steinhaus and Theorem 7.20, is the following.

Corollary 7.21. For any x € T the subset E, formed by the f € C°(T) whose Fourier
series does not converge in x contains a Gy set, that is it contains a countable intersection
of open dense sets.

O

The fact that f € C°(T) is not the pointwise limit of its Fourier series, does not prevent

f from being the pointwise limit of another sequence of trigonometric polynomials. What
follows is related to the notion of Cesaro means. Recall that, given a sequence of numbers

T,, then
. . r1t+ax2+.. .+
lim z,=A= lim ! 2 "= A
n—+o0o n—-+o00 n

Obviously < is not true (take z,, = (—1)"). Turning to f € C°(T), instead of considering
the limit li_}In Sy f(x) we will show instead that

_ Sof(a) + S1f(@) + .+ Suf @)

nlg)go onf(z) = f(x) for any = and for o, f(z) (7.14)

n+1
Definition 7.22 (Fejer Kernel). The Fejer Kernel is given by
N N . 1
1 1 sin((n + 5)t)
KEn(t)= =) Dyt)= 2 7.15
~ () N+17;) n(?) N+1;O 25in § (7.15)

Lemma 7.23. We have the following facts.

1. Kn(t) >0 for all t.
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™

1
2. We have — Ky (t)dt = 1.

L "

3. For un(8) := max{Ky(t) : § <t <}, we have uyn(6) < 1/(2(N + 1) sin? %) Moo,
0.

Proof. We have the following formula, which shows the 1st and 3rd claim,

1 & sin((n + )t)sin £
Knlt) = N—l—l% 251112%
1 al cos(nt) — cos((n + 1)t)
T N+1 HZ:;) 4 sin? %
2
1 l-cos((N+1)t) 2 (s (%0
T N+1 4sin2% N+1 4sin%

Finally, the 2nd claim follows, using (7.12), from

1 (" 1 1 &\
T n=0"""
N n N
1 1 (1 1 1 1
TI'N—l-lnz:O/_ﬂ 2+£:1C°S( )) wN+1nZ()/_7r2
]
Here notice that for
N N
Snf(x) = ?0 + Z(an cos(nz) + fp sin(nz)) (7.16)
n=1
then
o op + o cos(z) + By sin(z
Uof(JU):?Olef(fU): e (2) Brsin(z)
3ag + 201 cos(z) + 26 sin(z) + g cos(2x) + Bo sin(2z)
o2 f(z) = 3
NH g + Nay cos(z) + NSy sin(z) + ... + an cos(Nz) + By sin(Nz)
onflz) = N+l
In particular
o' a n
onf(z) = 70 + Z <1 N+ 1) (o cos(nx) + By sin(nx)). (7.17)
n=1
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Lemma 7.24. Given f € LY(T) and a point xo where the two limits f(xF) exist and are
finite, then the sequence

. ((N+1) 2
9 T sin (Tt)

converges in x = xg with

Tim g f(ag) = L20) S 0), -
Proof. We write
o+ -
onf(xg) — f(O)_gf(O) _
o (ntD) 2
1 " sin ( 5 t)
= g, U+ 0= 16) () : 719)
1 " 3 sin (Tt>
Iy V=0~ S () "

Now, considering for instance the 1st term in the r.h.s., we have

m sin (D
1 )/O (f(xo+1) = f(zg)) ((it)) dt

2n(n+1

Sln§
2
1 5 sin <(n;rl)t>
— 5T [, a0+ = i) (Sm; at
(1) ) 2
1 ™ sin (Tt)
+27r(n—i—1)/5 (flzo+1t) — f(zg)) (smé) dt,

where the last line is in absolute value bounded above by

! /5 (17 o+ 01+ 7)) ()t < - (1 ooy + 7)) () 5250,

So for § > 0 arbitrarily small and to be chosen, we look at the limit for n — oo of

sin (24 ’
! )/Oé(f(woth)—f(wé)) (M) dt

2m(n +1 sin §
2
1 0 _ sin (wt)
+27r(n+1)/0 (f(zo —1) = f(=zg)) (smé dt.
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For ¢ > 0 sufficiently small, |f(zo +t) — f(2F)| < ¢ for any preassigned ¢ > 0 and using

2
1 sin <wt>
t )

n+1 sini

8K, (t) =

the absolute value of the previous formula is less than

. (n+1)
§ [ sin ( t) w
€ / A2 ) a <% Ko(t)de = se.
m(n+1) Jo sin 5 T ) x
So . B
lim sup |0, f (0) — f(%)"i'f(xo)‘ < 8¢
n—00 2
Since € > 0 is arbitrary, we conclude with (7.18). O

Corollary 7.25. For any f € C°(T) and any point xo we have

lim_ oy, f(z0) = f(o)- (7.20)
Furthermore, we have
onf ZZF2 fin CO(T). (7.21)

Proof. The limit (7.20) follows immediately from Lemma 7.24. Let us now prove the uniform
limit in (7.21). In analogy to (7.19)

onf(x) — f(x) =

(1)) 2
1 sm( 5 t)
T+ ) /| et = fe) | —am | e
(n+1)
1 sin (715) B
o D) o @O @) | g | e

we have

n——4o00

(Lf 1 L ery + 27| f1] oo ry) pn(6) —— 0.

R

1
I oo (m) < ilellﬂlzﬂ/t|25(|f($+t)| + [f(@)]) pn(d)dt <

On the other hand f € C%(T) implies that f : T — C is uniformly continuous. So, for any
€ > 0 there exists 6 > 0 such that on any I C T with diam(I) < § we have osc;f < e. Hence
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for such § > 0 we have

2
sin ((ngl)t>
I 700 :sup/ rz+t)— f(x —— 2| dt
11| oo ¢y Srln 1) S \tléé‘f( ) — f(z)] in t
2
. n+1
1 sin <(2—)t> de [T
e —— S| dt< = | K,(t)dt = 4e
2r(n+1) Jy<s sin 5 T J_

like in the proof in Lemma 7.24. This completes the proof of (7.21).

OJ
Exercise 7.26. Show that it is false that
onf Z2E2 £ in L°(T) for any f € L=(T). (7.22)

Remark 7.27. We will return later to the phenomenon in Exercise 7.26. Notice that the
operator defined by

w2
O () = (dnt) 3 / e~ T f(y)dy for f e LP(RY) (7.23)
Rd
solves the initial value problem
w—Au=0, ul,_o=rf (7.24)
for 1 < p < oo but not for p = co. We will prove
lime'2 f = f in LP(R?
lim e"2f = f in (RY) (7.25)
for all f € LP(R%) for 1 < p < oo and
li (ZANN . in L>® Rd f 0 Rd
lim e™f = [ in (RY) for f € C5(R?), (7.26)
where
CO(RY) == {g € C'(RY) : lim g(x) = 0}. (7.27)

While we will discuss (7.25) and (7.26), we will not discuss the above PDE (this would
require the Fourier Transform). Notice that it is not true, and we will discuss this, that

. tAN p . oo (mvd oo (mvd
}{1(1)6 f=fin L (R?) for any f € L>(R?). (7.28)
Remark 7.28. The operator defined by
. i|lz—y|2
ePlug(z) = (47Tit)7% / R uo(y)dy for f € LP(RY) for 1 < p < 2. (7.29)
Rd

solves the linear Schrodinger equation

iug + Au=0,u(0,z) = up(x). (7.30)
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8 Curiosities

8.1 Unbounded linear operators

Lemma 8.1. Let X and Y be two normed spaces. There are linear maps T : X — Y which
are unbounded.

Before proving Lemma 8.1 let us recall the following notion.

Definition 8.2 (Hamel bases). Let V' be a vector space. A set {v;}ier of elements of V
is called a (Hamel) basis of V' if for any v € V there is a unique finite subset J C I and a
unique family {\;};e in R such that

v = Z)\j@j. (8.1)
jeJ
We say that a set {v;}ier of elements of V' is linearly independent if for any finite subset
JCI

0= Z )\j?)j > )‘j =0. (82)

jeJ
The span Sp ({v; }ier) of a set {v; }ier of elements of V' is the set (it is a vector space) formed
by the vectors v which can be expressed in the form (8.1) for finite J C I and {A;};cs in R.

We have the following.

Theorem 8.3. Any vector space V' has a Hamel basis.

Proof. Let us denote by P the set of linearly independent subsets of V. It is endowed with
the C order relation. We claim thay P is inductive, that is, any totally ordered subset Q of
P has an upper bound. Just take for Q = {S;}4eq, the set S = UqgeqSq- If {v;}ics is any
finite subset of S , by the total order, there must be a S, containing {v;}ics. Then, since
S, is linearly independent, (8.2) is true. Since we have obtained that (8.2) is true for any
finite subset {v;}ics of S then S is hnearly independent. Furthermore, any R € P with
Sy € R for all g, must satisfy SCTR. SoSis an upper bound. By Zorn’s Lemma, there
exists in P a maximal element {v;};c;. We claim this gives a basis. First of all, {v;};cs is
linearly independent.
If Sp ({vi}ier) = V, then {v; }ics is a Hamel basis. Suppose now that Sp ({vi}ier) =U S V.
Then there exists v € V\U for which (8.1) is not true for all choices of J and {\;};es. This
implies that {v;}ier U{v} 2 {vi}ies is linear independent. This implies that {v;}c is not a
maximal element of P, and we get a contradiction. So we must have Sp ({vi}ier) =V. O
Proof of Lemma 8.1. Let {z;};cr be a Hamel basis of X and consider a family {y;}ier
in Y. There exists a linear unique map 7" : X — Y such that f(z;) = y; for all i € I. Let
us take y; so that sup{ Hyi”Y} = 4o00. Then

llzall x

B S 7] [

2l x il
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9 Open Mapping Theorem and Closed Graph Theorem

Theorem 9.1. Let E and F' be Banach spaces and consider a bounded linear map T : E —
F which is onto. Then there is ¢ > 0 such that

T(Dg(0,1)) > Dp(0,c). (9.1)

Proof. First we show there is ¢ > 0 such that T'(Dg(0,1)) D Dg(0,2¢). If this is not the
case, then consider X,, =n T(Dg(0,1)) = nT(Dg(0,1)) = T'(nDg(0,1)). Since F' = UX,,
since by Theorem 7.6 the space F' is a Baire space, some of the X,, must have nonempty
interior. Since X; = %Xn, we conclude that X; has non empty interior. Then , there exists
a disk

Dp(yo,4c) C T(Dg(0,1)). (9.2)
Hence yg € T(Dg(0,1)) and by symmetry
—yo € T(DEg(0,1)). (9.3)

Summing up (9.2)-(9.3), we obtain

Dr(0,4c) € T(Dg(0, 1)) + T(Dp(0,1)) C 2T(Dy(0, 1)), (9.4)

the latter inclusion by convexity of T(Dg(0,1)).
Next we want to show (9.1).
Let ||ly||r < c. We claim that

there is z; € Dg(0,1/2) such that ||y — Tz ||r < 271 (9.5)

Indeed, T(Dg(0,1)) D Dg(0,2¢), which follows from (9.4), implies T'(Dg(0,1/2)) D Dg(0, ¢).
This inclusion proves the claim, because either y € T(Dg(0,1/2)) and so there is a ||z1]|g <
271 with y = T2y, or y is in the closure of T(Dg(0,1/2)), and in this case for any ¢ > 0
there is z; € Dg(0,1/2) with ||y — T'z1||r < €. So we get the desired claim (9.5).

Suppose we have found z; € Dg(0,277) for j = 1,...,n so that [y — > i1 Tzjllr < 27
Then we claim that there exists z,4+1 € Dg(0,27""1) so that ||y — Z”H Tzjl|lp < 27" L.
Indeed on one hand we have (y—>_"_, Tzj) € Dp(0,27"¢c) and on the other T(Dg(0,1)) D

Dp(0,2¢) implies T(DE( ,27n=1)) D Dp(0,27" ) We conclude like in the proof of (9.5).

Consider now z = sz We have ||z||g < Z”ZJHE < 22 I =1,s0 2 € Dg(0,1)
J=1 J=1 J=1

n
On the other hand |[Tz —y||p = lim |y — ZszHF =0, so y =Tz. So we have proved
n—+oo

j=1
(9.1). O
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Corollary 9.2. Let E and F' Banach spaces and consider a bounded linear map T : E — F
which is onto. Then T is open, that is, it sends open sets into open sets. Furthermore, if
T is also one to one, then also T~ is bounded.

Proof. First we need to show that if U C F is open, then TU C F' is open. Let yg € TU
and z¢ € U with yp = T'z¢. Since U is open, there exists r > 0 such that Dg(zg,r) CU. It
then follows that yo + TDg(0,7) C TU. By (9.1), we know that TDg(0,7) D Dr(0,c 7).
Then yo + Dr(0,c r) = Dp(yo,c ) C TU. This proves that TU C F is open.

We prove now the last sentence in the statement. We know that T~'F — FE exists and
we have to prove that it is bounded. Form (9.1) we know that if y = Tz € Dp(0, ¢), then
necessarily « = T~y € Dg(0,1). So we conclude ||T7'y|g < L||y||r for every y € F and
T~ is bounded. O

Ezample 9.3. In Sect. 9.1 we discuss the fact the map § : f — f(n) which sends L*(T) in

co(Z) is one to one but is not onto. Notice that the operator L!(T) 3, R(F) & co(Z) is one

to one and onto on the image. Yet the inverse R(F) EIN L(T) is unbounded. Indeed, if it
were bounded, then L!(T) 3, R(F) would be an isomorphism, and R(F) would be complete,

but in fact it is not, since R(F) = ¢o(Z) inside ¢*°(Z). So in other words, in Corollary 9.2
the hypothesis that F' is a Banach space is essential, since otherwise the statement is false.

Ezample 9.4. Another example is the operator LP(R?) > f L4 ()"t f € LP(RY) where
(x) = \/1+|z|? is the Japanese bracket. This is obviously a bounded operator. Notice
that the spectrum is [0, 1] and is an obviously not invertible, since otherwise 0 would not
be in the spectrum, or, more directly, since the inverse would be f — (z) f, which is clearly
not a bounded operator in LP(R?). On the other hand R(T) > C°(R%), which is dense
in LP(R%) for p < co. So again, T~ ¢ L(R(T), LP(R?)) since otherwise R(T) would be a
closed subspace of LP(R%).

Obviously this example can be replicated using any ¢ € CO(R?, R,) with lim ¢(z) = 400

T—r0o0

and LP(RY) 5 f 55 (p(z))~' f € LP(RY).

9.1 An application of the Open Mapping Theorem to Fourier series

Theorem 9.5. The map f — f(n) which sends L*(T) in co(Z) is one to one but is not
onto.

Proof. Let us proceed by contradiction and let us suppose that the map is not one to one.
Then there exists a nonzero f € L'(—m,7) with f(n) = 0 for all n € Z. In particular this
implies that

s

F&)P(t)dt =0 (9.6)

—Tr
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for any trigonometric polynomial P(t). Then we claim that (9.6) extends replacing P by
any g € C°(T). Indeed, we have

" f(Hong(tydt =0.

On the other hand, fong Do, fg in L(T) since

n——+o0o

Ifg— fongllorr) < 1flleymyllg — ongllpe(r) 0,

by Corollary 7.25. This implies our claim:

0= lim i f)ong(t)dt = i f(t)g(t)dt for any g € CO(T).

N—+o0 J_,

Now, for any interval I C (—m, ) it is elementary to find a sequence g, € C°(T) with
lgn(z)| < 1 everywhere and lir}rl gn(z) = xr(x) for any x. Indeed, if say I = [a,b] C
n—-+0oo

(—m, ), we can take

1if x € [a, b]
Oifr ¢ [a— 1,0+ 1]
n(a:—a-i—%) ifx € [a—%,a]
—n(x—b—%) ifx e [b,b—I—%,a],

In(x) =

and we can deal similarly with other cases.
Then, by Dominated Convergence, we obtain

0= lim / f(&)gn(t)dt = ft)xr(t)dt for any interval I C (—m, ).
n—+oo J_ o o
This implies f(¢) =0 for a.a. t.
Having proved that our map is one to one, we show that it is not onto. Indeed, since it
is a bounded map, by Corollary 9.2 if it is also onto, then it has bounded inverse. Then we
would have \|ﬂ|cO(Z) > C||fllz1(ry for some fixed C. But then also Hl/)\ano(Z) > C||Dull 1t

which is impossible, since the left is 1 and the right goes to oc. O
n—+00

Remark 9.6. Notice that in the above proof we exploited HD;HEOO z) = Land || Dyl g1 () ——
+0o. The two quantities Hl/)\nH o (z) @0d || Dnl| s () are instead comparable for 1 < p < 2

and p' = Ll It is possible to prove that
p [R—
for 1 < p < 2 the map LP(T) 3 f — {f(n)}nez € 7 (Z) (9.7)

is bounded (it is an immediate consequence of Reistz interpolation theorem and the fact
that the map is bounded for p = 1 and for p = 2). Injectivity is proved in the above
theorem. Finally, for the fact that (9.7) is not an isomorphism, see later exercise 19.18.
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o0 .
sin(nx
Ezxample 9.7. It can be shown that the trigonometric series E ] (nz) is not the Fourier
ogn
. cos(nzx) "
series of an element in L'(T), while E is the Fourier series of an element L'(T).
ogn
n=2

9.2 The Closed Graph Theorem

Notice that if £ and F' are normed spaces, then E x F' can be provided with the norm

Iz )l = llellz + llyll#- (9-8)

Exercise 9.8. Show that F x F' is a Banach space if and only if both ¥ and F' are Banach
spaces.

Theorem 9.9. Let E and F' be Banach spaces and consider a linear T : E — F. If the
graph G(T') is closed in E X F then T is bounded.

Proof. Being a closed subspace in the Banach space Ex F', G(T) is also a Banach space. The
projection G(T') — E is bounded, since ||z||g < ||z||g + ||Tz||F, is one to one and is onto.
Hence it is an isomorphism by Corollary 9.2. This means that £ > = — (z,Tx) € G(T) is
a bounded map, and hence that there exists C' > 0 such that ||z||g + ||Tz||r < C||z| £, and
so [|[Tz||r < (C —1)||z||g for any x € E. This implies that 7" is bounded. O

The following are two examples of linear operators T' : & — F where F is not a Banach
space, F' is a Banach space, the graph G(T) is closed in E' x F but T is not a bounded
operator.
Ezample 9.10. Let F' = ¢}(N) with its own norm and E := {x = (z,,) € £}(N) : D% | n|z,| <
oo} with the norm of ¢}(N). Clearly, E C F is a dense subspace of F, since £ D H,
H = {x = (x,) € {*(N) : 2, = 0 except for finitely many n’s}, which is a dense subspace
of /1(N).

Consider now the map T : E — F defined by (Tx),, = nz,. It is clearly an unbounded
map, since otherwise, from

T(()?...’O’ 1 ’0’...):n(0,...’0’ 1 ’0’...),

n-th position n-th position

we would get the absurd conclusion

HT(Ov'" 0, 4 ’07"')”61(1\1)
n-th position
n——+00

:nH(O? 707 N 1 , 707'”)HEI(N) =n——— 400 < ”THE*)F < +o0.

n-th position

Yet the graph G(T') C E x F is closed. Indeed, suppose that {(x,,7X,)}nen has limit
(x,y) in E x F. Then x, D20, % in £ (N) implies that for any m € N, we have x(m) =
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lirf xp(m). Similarly, Tx, Uima N y in ¢*(N) implies that for any m € N, we have

n——+0o0

y(m) = lim Tx,(m)= lim mx,(m) = mx(m). This means that y = T'x, and so that
n—-+o0o n—-+o0o

G(T) C E x F is closed.
The map T : E — F is clearly invertible, with inverse T-! : F — E defined by
(T~ %), = In, Clearly this map is bounded. And yet T, as we saw above, is not bounded.
n

A more interesting but similar example, is the following one.

Ezample 9.11. Let F = C°([0,1]) with the norm L*>([0,1]) and E := C*([0,1]) with the
norm as subspace of F. It has been already proved that F C F' is a dense subspace of F
(Exercise:why?).

d
Consider now the map T': E — F defined by Tf = T f. It is clearly an unbounded

map, since ||Tt"|| o (0,1]) = n||t"_1||Loo([0’1]) = n and so, like above if it was bounded we
would have

Jr
HTtn”L“’([O,l]) = nthHL‘X’([O,l]) =n 2% 4o <|Tlg=F < +00.

Yet the graph G(T') C E x F'is closed. Indeed, if (fn, jtf"> oo, (f,9) in E x F, notice
that . .
f(t) =lim f,,(t) = lim f,,(0) + lim/ Tfn(s)ds = f(0) —|—/ g(s)ds

d
from which we conclude that f € C*(]0,1]) with %f =g.

Unlike in Example 9.10, here the map T : £ — F' is not invertible, since it is not one
to one.

10 Projections and complementary subspaces

Definition 10.1. A vector subspace I of a topological vector space F is said complementary
if it is closed and if there is a closed subspace G of E such that

E=FaaG, (10.1)

that is, E = F +G and FNG = 0.

Exercise 10.2. Let E be a topological vector space and £ = F'& G with F' and G closed.
Show that then F is isomorphic to the product F' x G.

In the next two lemmas, we consider to classes of examples.

Lemma 10.3. Let E be Banach and let F be a subspace of finite dimension. Then F is
complementary.
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Proof. Consider a basis fi, ..., fn, of F' and write x € F as x = 2?21 x;f;j. This defines
bounded operators ¢; : F' — K by ¢;z = x; which we extend by Hahn Banach. Set
G :=Nj_; ker ¢;. Then F'NG = 0 because if z = Z?Zl xjfj is such that ¢;x = x; = 0 then
x = 0. Furthermore, given z € E with ¢;2 = z;, set x = Z?Zl zjfj. Then ¢j(z —x) =0
for all j and so z =z + (2 — ) with x € F and (2 — z) € G. O

Lemma 10.4. Let E be Banach and let F' be a closed subspace of finite codimension. Then
F' is complementary.

Proof. The space E/F is a finite dimensional vector space and we can consider the projection
m: E — E/F. Consider elements g, ..., g, € E which project into a basis of E/F. Then
their span G is a closed complement of F'. O

Definition 10.5. Given a topological vector space E, an operator P € L(FE) is a projection
if P2 = P.

Exercise 10.6. Show that if P is a projection, also 1 — P is a projection.

Exercise 10.7. Given £ = X @Y with X and Y closed, show that the maps P(z+y) :=
and Q(z + y) = y are projections.

Exercise 10.8. Given a topological vector space E and a closed vector subspace X, then
X is complementary if and only if there exists a projection P € L(F) such that PE = X.

Remark 10.9. It will be obvious, later, that if X is a Hilbert space and Y is a closed
subspace of X, Y has a closed complement, thanks to the fact that there exists an orthogonal
projection on Y. Remarkably, it can be proved that if X is a Banach space which is
not topologically isomorphic to a Hilbert space, there exists in X a closed subspace not
complementary. For example, ¢o(N) is not complementary in ¢>°(N), see [1]. Similarly,
CJ(R) is not complementary in L>(R).

Lemma 10.10. Let T € L(E, F') be an onto bounded operator between two topological vector
spaces. Then the following are equivalent:

1T has right inverse (that is, S € L(F,E) with T o S = Idp).
2 kerT is complementary in E.

Proof. 1f we assume 1, then S(F') is such that £ = kerT + S(F') and kerT' N S(F) = 0.
By T € L(E,F) we conclude that T': S(F) — F is a bounded operator. By hypothesis,
S:F — S(F) C E is a bounded operator. Since T'oS : F' — F' is the identity, we conclude
that T : S(F') — F' is onto. We know from ker 7' N S(F) = 0 that T': S(F) — F' is one to
one. So S : F — S(F) is the inverse of T': S(F') — F. This implies that 7' : S(F) — F
is an isomorphism between Banach spaces. In particular, S(F) is closed in F, and so is a
closed complement of ker T" in E.

If we assume 2, let £ = kerT & G. Then T(E) = T(G) = F,and T : G — F is an
isomorphism. So there is an inverse. ]
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Exercise 10.11. Let E be a Banach space which is not topologically isomorphic to a
Hilbert space, and let F' be a closed subspace of E which is not complementary. Show that
the immersion j : F' — F cannot be extended into a bounded operator £ — FE.

Some of the most important projections come up when dealing with the spectrum.

Exercise 10.12 (Spectral projections). Let X be a Banach space on C, let A € L(X),
and let v an counterclockwise oriented closed path which is topologically a circle inside the
resolvent set p(A). Show that

1

P = —,/RA(z)dz, (10.2)
271 J,

is a projection. In particular, show that if o(A) is wholly contained inside the bounded

region delimited by ~, then P is the identity operator (this has already been shown in

Example 5.40).

Answer. We can represent P also using a different path o, fully contained in the region

enclosed by v. Then
2 1\’
P =|— RA(Z)R dzdz?'.
(3m) [ [

Now notice that we have the important resolvent identity
RA(Z/)RA(Z) = (Z/ — 2)71 (RA(Z/) — RA(Z)) .

So, inserting this in the previous formula, we get

1 1 1 1
pP? = —5- dZ’ Ra(2)— /(z — )tz + 2,/dzRA(z) /(z’ —2)"tdy
Y vy o

il Js 2mi Tl 27
1 1
=5 JRA(ZI)Ind(’y, 2)dz + 27Ti/AyR,Ll(z)Ind(U, z)dz.
Since each z € « is in the outer component in the complement of the path o, we have
Ind(o, 2) = 0. Since each 2’ € ¢ is in the inner component in the complement of the path
7, we have Ind(v, 2")dz’ = 1. So
1

P?=_——
27 J,

Ra(2)dz = P. (10.3)

Since the operator in (10.2) is in £(X), we conclude that (10.2)-(10.3) imply that P is a
projection. ]

Exercise 10.13. Let X be a Banach space on C, let A € £(X) and z € p(A). Show the
commutation formula [A, Rs(z)] = 0.

Then, for 7y a closed path in p(A) and for P defined by (10.2) show the commutation formula
[A, P] = 0.
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Answer. We have (A — z)A = A(A — z). So, applying R4(z) both on the right and on
the left, we have

R(2)(A—2)ARA(2) = Ra(2)A(A — 2)Ra(z) = ARA(z) = Ra(2)A

that is [A, Ra(z)] = 0. Next, [A4, P] = 0 follows by

1 1 1
AP——L 4 / Ra(2)dz ARy (2)dz = — / Ra(2)Ads— / Ra(2)dzA = PA.
2mi o Cori 5 2mi oy 2mi o
0

Ezample 10.14. Suppose o(A) = X1 U X, where 31 is wholly contained inside the bounded
region delimited by ~ of Exercise 10.12, while ¥ is in the unbounded region Then

A=PA+(1-P)A4, (10.4)
with 0(PA) =¥ and o((1 — P)A) = 3. Finally, the splitting
E =ker P& R(P), (10.5)

where R(P) = PX, is left invariant by A by Exercise 10.13.

Notice that, by iterating as much as possible (10.4)—(10.5), one gets the spectral decom-
position of A, which is akin to the decomposition (modulo conjugation) in Jordan blocks of
a matrix.

Let us show that restricting A to F':= R(P) we have 32 C p(A). Recall that, the P in
(10.2) reduces to the identity in operator in F. But then, like in the discussion in 5.40 it is
possible to show that we can define like in (5.28) the operator

1
T:=—— [(z— )\)_IRA(z)dz for any A\ € Xo. (10.6)

27 o

Then we claim that T = (A — A\)~! € L(F) for any A € X9. Indeed, for o like above

(A— A)T—i ( — A Ru(z )dz/(z—/\) "Ra(2)dz

<2m> //Z — NRa(2)(z = N\) " Ra(z)d=d?!

= dz( ~ MRA() e /(z—A) Hz— ) dz

2mi 2mi
1 1 1 / —1 3./
+— [ dz(z =N Ra(z)=— [ (' =N (¥ —2)"dz
271 J, 2mi J,,
1 1
=—— [ (¢ = NRA(Z)Ind(y, 2) (2 — N1 + — /(z — AN 'RA(2)Ind(0, 2)(z — N)dz.
2mi J, 27 J,
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Now, like before Ind(o, z) =0 for z € v and Ind(v, 2')dz’ =1 for 2’ € o . So, in F

(A= \NT = —% / Ra(z)d2 =1

Since also, by the commutations in Exercise 10.13, we have T(A — \) = (A — )T =1, our
claim is proved.

Ezample 10.15 ( Leray projector). One of the most famous projections in the theory of
Partial Differential Equations is the Leray projector. If L?(T%,R?) are the L? vector fields
on T?, and if H(T? RY) are the L? vector fields with 0 divergence, that is they satisfy (recall
from (7.8)that ¥ - w(n) = in - @(n))

d
anﬂj(n) =0, where n = (ny,...,nq),
7=1

then P : L2(T¢,R%) — L?(T? RY) is the orthogonal projection on H(T¢, R?%) and is defined

by .

- j w(0)ifn=0 107
=9y d ~ : .

(Pu)” (n) w (n) — 7”“%@ Y ket njnkuk'(n) if n # 0. ( )

p—

There is a version with T¢ replaced by R?.

Exercise 10.16. a Check that P is indeed the orthogonal projection of L?(T¢ RY) on
H(T? RY).

b Check that kerP is formed by the conservative fields in L?(T¢,R9).

Exercise 10.17. Let X be a topological vector space and P € L(X) a projection. Show
that o(P) C {0,1} and that X = ker(P)®R(P) with P = 01 is its spectral decomposition.

11  Weak o(E, E') topology
Definition 11.1. Given a topological vector space E, we consider the (weak) o(E,E")
topology, that is the topology which has as subbasis of seminorms the family {|f|}rcp.
Exercise 11.2. Show that for any z¢ € E a basis of neighborhoods of z( for the o(E, E’)
topology is of the form
Vo (f1s ey frr€) i ={z 1 |fj(x — x0)| < € for j =1,...,n} where (11.1)
neN, fi,...fn € E' and € > 0.
Exercise 11.3. Consider an infinite dimensional normed space F, and suppose that there

exists X C E’ countable and dense in E’ (i.e. E’ is separable, c.f. below). Is the topology
on E which has as subbasis of seminorms the family {|f|}sex the same as the o(E, E')?
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Answer. No, because if yes, then E with the (weak) o(FE, E’) topology would be
metrizable by Exercise 4.25. But, by Corollary 11.13 below, this is not true. O

Exercise 11.4. Show that the o(E, E’) topology is the weakest topology on E such that
all the linear functionals f € E’ are continuous functions.

Exercise 11.5. Show that if E is a topological vector space on C, the two weak o(FE,E")
topologies, one from linear functionals on R and the other from linear functionals on C,
coincide.

Lemma 11.6. If F is a locally convex space, then is Hausdorff for the weak o(E,E")
topology.

Proof. We consider first the case K = R. Let x¢p # z1 in E. Then we can apply the 2nd
geometric form of Hahn-Banach Theorem 6.16 and conclude that there exists f € E' and
a € R such that f(xg) < a < f(x1). Then f~!(—o0, ) is an open neighborhood of z¢ and
f~1(a, +00) is an open neighborhood of x; for the weak o(F, E') topology and these two
open sets are disjoint. O

Notation 11.7. When a sequence {z,} in X converges to = in a weak topology we will
write x,, — x.

Lemma 11.8. Let E be a topological vector space and let x,, be a sequence in E. Then:
1z, — x for o(E, E') if and only if f(x,) — f(x) for any f € E'.
2 If x,, — x strongly, then x, — x for o(E,E").
Suppose now that E is a normed space.
3 If v, = x for o(E, E') then {||zn|| g} is bounded and ||z||g < liminf ||z, | .
4 If x, — x for o(E,E') and if fn, — [ in norm in E’, then f,(z,) — f(z).

Proof. We prove only 3. For any f € E' we know that f(x,) — f(z) and so that {f(z,)}
is bounded. If this holds for any f € E’, this implies by Banach Steinhaus that {||z,||z} is
bounded. Next,

@)= lm [f(z,)]= Lm |f(zn,)]

n——+oo k——+o0

for any subsequence {n;}. If we take this subsequence so that ||z, ||g k20, Jim Jirnf |lxn || 2,
n—-+0oo

we conclude
F@) = Jm [f )] < 1l T o )le,

and so ||z g < liminf ||z, £.
n——+oo
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Exercise 11.9. Prove that if ' is finite dimensional, then the strong topology and the
o(E, E'") topology coincide.

Theorem 11.10. Let E be a locally convex topological vector space and consider a convex
set C C E. Then C is closed for the o(E,E") topology if and only if it is closed for the
strong topology.

Proof. Suppose C' is strongly closed. Consider zq € 0C. By the 2nd geometric form of
Hahn-Banach Theorem 6.16, there is f € E' and o € R with

f(zo) <a< f(z) forall z € C. (11.2)

On the other hand

V={y: fy) <a}

is an open set for the o(F, E’) topology containing x, and so in particular it is an open
neighborhood of zq for the o(E, E’) topology. Since by (11.2) we have V' C CC, we conclude
that any point zg € CC' is an interior point of CC for the o(E, E') topology. So CC is open
for the o(E, E’) topology and, hence, C is closed for the o(F, E’) topology.

If C is closed for the o(FE, E’) topology, it is closed also for the, stronger, strong
topology. O

Remark 11.11. There is no analogue saying that a convex C C E’ closed for the strong
topology in E' is closed also for the o(E’, E) topology introduced in Sect. 12 below. One
example is ¢(N), which is a closed vector subspace in ¢>°(N) for the strong topology but
not for the weak o(¢>°(N), /}(N)) topology. See Example 12.6 below for the reason.

Lemma 11.12. Let E be an infinite dimensional Banach space and let U be an open subset
for the o(E, E") topology. Then U contains a line.

Proof. Let zg € U. Then U contains a neighborhood of z for the o(E, E’) topology of the
form

Vi={z:|fj(x —z0)| <e j=1,..,n} for some fi,...f, € E". (11.3)

Notice that, for f : E — R" defined by f(z) = (f1(x), ...., fn(x)), ker f has finite codimension.
Since FE is infinite dimensional, this means that kerf has infinite dimension, and so in
particular it contains a line. Finally, zg +kerf CV C U. O

Corollary 11.13. Let E be an infinite dimensional normed space. It is not metrizable for
the o(E, E') topology.

Proof. Suppose by contradiction that there is a metric d and consider the balls U,, = {x :
d(z,0) < 1/n}. Then, since each U, is open, it contains a line, and in particular there exists
xn € Uy, with ||z,||g = n. Then obviously z, 27T 0 in (E,d), that is z,, — 0 in the

o(E, E") topology. But ||zy||g =n D20, 4 50, contradicting Lemma 11.8. O

83



Lemma 11.14. If E is an infinite dimension normed space, then the unitary sphere S =
{z : ||z||lg = 1} is not closed for the o(E, E') topology, and its closure is Dp(0,1) = {z :
]l < 1}

Proof. Let ||xo||r < 1 and consider a neighborhood V' of zg of the form (11.3). Let now
yo # 0 with fj(yo) = 0 for all j. Consider g(t) := ||zo + tyol|[r. We have g(0) < 1,
lim;_,o0 g(t) = 400 and so there is ¢y > 0 so that g(to) = ||xo +toyo||lz = 1. Notice now that
xo+tyg € V for any t. Hence we see that SNV # () for any Vs of the form (11.3) Since there
is a basis of neighborhoods of z for the o(FE, E’) topology of the form (11.3), we conclude
that any x¢g € Dg(0,1) is an accumulation point for S for the o(E, E’) topology. Then the

closure of S for the o(E, E') topology contains Dg(0,1) and the closure Dg(0, 1)) 5. of

Dg(0,1) for the o(E, E') topology. The latter is a closed set also for the strong topology of
E (all the closed sets for the o(F, E') topology are also closed sets for the strong topology).

Then Dpg(0,1) (5.5 2 Dg(0,1). On the other hand Dg(0,1) is closed for the o(FE, E’)
o(E,E'

topology, see in Theorem 11.10 above. Hence we have proved that the closure of S for the

o(E, E") topology coincides with Dg(0,1). O

Remark 11.15. Dg(0,1) has empty interior in the o(E, E') topology, in the infinite dimen-

sional case. Indeed, if V' is an open set for the o(F, E’) topology contained in Dg(0,1), it

contains an open set V for the o(E, E’) topology of the form (11.3) which contains a line.

Hence, for no such V' we can have V' C Dg(0,1).

Exercise 11.16. Consider a normed space F, and suppose that there exists X C FE’
countable and dense in E’ and consider the topology 7 on E which has as subbasis of
seminorms the family {|f|}sex. Show that the topology induced on Dg(0,R) and on
Dg(0,R) for any R > 0 by (E,7) coincides with the topology induced by the o(E,E’)
topology. Prove that Dg(0, R) and Dg(0, R) with the o(F, E’) topology are metrizable.

Ezxample 11.17. While Lemma 11.14 might seem surprising, in fact it is quite natural. To
see this consider f € LP(R?) for 1 < p < co with || f|» = 1 and let {x,,} a sequence in R?
divergent to infinity. Then obviously || f (- — =) ||zr = 1. We claim that f (- — x,) — 0 for
o(LP, (LP)'). We will see later that (LP(R%)’ = L¥ (R?). Then our claim is equivalent to the
following statement,

(F(-—mn),g) 227250 for all g € LY (RY). (11.4)

To prove (11.4) suppose that Qg := supp f and € := supp g are both compact. Then
supp f (- — xn) = zp + Qo and, since {x,} is divergent to infinity, then there exists ng € N
such that for n > ng we have (x,, + Qp) N Q1 = . But then we conclude that

(f (- = xn),g) =0 for n > ny. (11.5)

Now let us assume that f and g are not of compact support. Nonetheless, we will see later
that there exist f and g in C5° (R?) with

If = fllzr < eand |lg =gl <e
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Then, from

(f (=) 9)
= (FC=2).g)+ (FC=m) = FC=20),G=9) + (F (= 2) = T (= 20),9) +{f (- = 20) 9~ )

we obtain

[ C=2a) ) S (P C=20),G) [+ 16 (= 20) = F (= 20) [0llg = 3
1 =) = F = 20) lollgll + 15 ¢ = 20) 122 llg = 3l
<I(FC=20),3) |+ +ellgllw + [1fll e

By the previous argument there exists n. € N such that for n > n, we have | <f( —Ty) ,§> | =
0 we conclude

[{f (= 2n),9) | < € +ellgll o + I flLre for n > ne.

By the arbitrariness of € > 0, this implies (11.4).

Exercise 11.18. What can be said of {f (- — xy)}nen for z, 12F%0, oo in LY(R%) if
f#07

Answer. Then we cannot say that f(-—x,) — 0. If for example [, f(z)dz # 0,
then (f (- —2n),1) 11100 = Jpa f(z)dx is incompatible with f (- — x,) — 0. On the other

hand, since for any ¢ € CO(RY) we have (f (- — Zn), @) 11100 12F0 0, we cannot have

fl—zn) — g for some g € L'(R?) different from 0.
If fRd x)dx = 0 it is not restrictive to assume that in a disk D we have a :=
f D x)dx > 0. Let now

o0
U (D + )

By taking a subsequence, we can assume that the {D + z,,} are disjoint and that

1f(- = (@n —2i) L1 (D) < 2777 q for all j # n.

Then

/Rdf(:c—xn Ix(x dac—/f Ydx + Z /fx—xn 1p(x — z;)dx

jzlj#n
=a- Z Hf(~—($n—$j)HLl(D) >a— Z 277 lg =27 > 0.
Jj=21j#n j=1,j#n
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Remark 11.19. Notice that by the Theorem 13.1 and by Theorems 16.5-16.6, for 1 < p < oo
the closed ball Dypga(0,1), is compact for the o(LP(RY), (LP(R%))) topology which, by
Exercise 14.6 and the fact that the (LP(R?%))" = L” (R?) are separable, is a compact metric
space. We know that given any sequence in a compact metric space, we can extract a
convergent subsequence.

The closed ball D1 (gay(0,1), on the other hand, is neither compact, see Theorem 13.1,
nor metrizable for the o(L'(R), L>°(R?)) topology. So, given a sequence in Dpigay(0,1),
we cannot conclude that it has a convergent subsequence for the o(L'(R%), L>(R%))) topol-
ogy. See also Remark 11.29 for a simple bounded sequence in ¢!(N) which does not have
convergent subsequences in the o(¢}(N), £*°(N)) topology.

Ezample 11.20. Brezis [3, Exercise 4.38] considers the case of the sequence

n—1
Up = ”Zx[i,@rL}‘
=0 n'’n ' p2
First of all, it discusses the fact that
1 1
lim unfda::/ fdz for all f € CY([0,1]). (11.6)
n——+00 0 0

This is easy to see, because

/Olunfdxzngéi+é ( )dz%—nZ/i 12< f(i))dm.

Now, by the fact that f € C°([0,1]), it is Riemann-integrable, and so

L) B ()= [

On the other hand, f is uniformly continuous. So for any € > 0 there exists § > 0 such that
for any interval I C [0,1] with |I| < § we have osc;f < e. So in particular, if n? > 1/§ we
have

M

This proves (11.6).

If now there exists a subsequence with u,, weakly convergent to some u & L'(0,1), from
(11.6) it must be u = 1. On the other hand u,, / 1. To see this notice that [supp u,| = =
Choosing a further subsequence, we can assume that 3, [supp up, | < 1. So [J;, supp un, &

1if o & |J, supp un, _ .
(0,1). So, ifsay f(z) = {0 if 2 € L, supp we have (up, , f) = 0 for all k while (1, f) > 0.
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Ezample 11.21. Let now fo, f € Dppgay(0,1) with compact support and with || foll7, +
| fl7» = 1. Then, since for n > 1 the supports of fo and f(- — x,) are disjoint, for n > 1

o+ 6= audler = ([ 16ale) + 1o - :vn)|pdx> ’

= ([ s+ [ 156 -2 |pd:c) — /1ol + 171, =

while fo + f(- — xn) — fo for o(LP, (LP)").

Ezample 11.22. More generally, for fo, f € Dppgay(0,1) with [|foll7, + [ flI7, = 1 and
supp f compact we claim

m o+ 10— 2a)llze = (ol + 11 =1 (11.7)
Indeed, for € > 0 let g. € C°(R?) with || fo — ge||zr < €. Then

lge + f( = @n)llLe = [[fo = gellr < [[fo+ (- = @n)llze < llge + (- — 2n)llze + [[fo — gellzr

yields

gely + 171, — € < timinf || fo + f(- = o) o < limsup | fo + £ = z)llze < llge + F(- = )10 + e
n—-+4o0o

Taking the limit € — 0% we obtain (11.7).
Then

Jo+ f(-—xn)
1o+ f(- = zn)llzr
So we have proved that for any fo € Dpp(ra)(0,1) there is a sequence { f,} with || ful[zr =1
such that f, — fo for o(LP, (LP)).
Ezample 11.23. In the previous examples we exploited the group action of R% on LP(R9),
specifically spacial translations. Dilation provides another example of group action. Let for

d
example fy(z) := A7 f(Ax). Notice that ||fy|lrr = ||f||Lr and let again assume 1 < p < oc.
We claim that

— fo

fr, = 0in LP(RY) if A, 227520 00 (11.8)

Suppose that f € L'(RY)NLP(RY) and take g € L” (R?). Suppose initially that g € CO(R?).
Then by dominated convergence we have

/Rd A f ) g () = )\n—d(l—%) f(x)g (;\i) dx (11.9)

= [ M Fualgla)de = A / fa (55) *=55 [ rentrg©) tim A
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By a density argument it is easy to conclude (11.8).
We now claim that

fr, — 0in LP(RY) if A, 225225 ot (11.10)

By the above computation

(fanr9) = <f7gi> Lnary))

where g1 — 0 in L' (R%) by (11.8). This yields (11.10).

n—-+o0o

Exercise 11.24. What can be said of {\%f(A\,2)}nen for A, 2% 400 in LY(RY) if
f#07
Answer. For g € BOO(RY)

/ M () g(x)de = flx)g <f> dr 224 f(x)dzg (0). (11.11)
Rd R4 n R4

This shows that for [ f # 0, then if A, D70, Lo it is not true that M f(A\y) — 0.
Rather, as measures, A% f(\,z)dz converge to ([ fdx)§(z)dz, with §(z) the Dirac delta
centered in 0 (see next semester). Notice that for any g € BC(R?) with g(0) = 0 the limit
in (11.11) is 0, and so there cannot be any 0 # u € L*(R?) with A% f(\,-) — w.

Let now [ f = 0. It is not restrictive to assume that on a closed disk D C R? not
containing 0, we have a := [, f(x)dz > 0. Let now

X = D M\ ID

n=1

By taking a subsequence, we can assume that the {\, 1D} are disjoint and that
HfHLl()\n)\j—lD) < 2777 1q for all j#mn.

Then

/Rdng(Anan(x)dx:/Df(x)dx+ > /RdAgf(Aan(ij)dx

i>1j#n
—at 3 [ o0 hade=a+ 3 [ fada
iz tjtn R i1 #n A D
=a- Z ||f||L1(>\n/\._1D)>a_ Z 277 g =9271a > 0.
j>1j#n ! J>1j4n

Another construction is the following, if we have a nonzero f € L'(R?) with Jraf=0
and such that there exists an infinite cone C' in R? with tip 0 € R¢ such that fC f>0.
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Then, for any sequence \, notoo, +00, we do not have A f(\,-) — 0 for the (L', L>)

topology. Indeed,

d _ d _
/R X Q)o@ = /C M FOz)dz = /C F@)dz > 0.

U
Remark 11.25. Consider the sequence {\%f(A\,2)}nen for Ay D2t oo and f € LY(R%)

with || f[| ;1 (rey = 1. Notice the crucial difference between thinking D1 (a)(0, 1) in (CYRD)),
where it is relatively compact and metrizable for the o ((CJ(R?))’, C§(R?)) topology, and in
(L°°(R%))’, where it is relatively compact but not metrizable for the o ((L>(R?)), L (R?))
topology.

Corollary 11.26. Let E be a locally convex space. If ¢ : E — (—o00,+00] is convex, then it
is lower semi continuous for the o(E, E') topology if and only if it is lower semi continuous
for the strong topology.

Proof. Indeed for any a, C = {z : ¢(z) < a} is convex since ¢ is convex, and is closed in
one topology if and only if it is closed for the other.

O
Notice that in a normed space E, the fact that x,, — z implies ||z||g < liminf ||z,| g
follows from the fact that ¢(z) = ||z||g is convex and continuous (and therefore also lower

semi continuous) in the strong topology.

Corollary 11.27. Let E and F be two Banach space. Then, a linear map T : E — F 1is
continuous in the strong topologies if and only if it is continuous from the o(E, E') to the
o(F, F") topologies.

Proof. Suppose T is continuous for the strong topologies. Then, for any f € F’, the map
x — f(Tx) is continuous in E. Hence f oT € E’. Notice that if 7 is the weakest topology
in FE for which foT € FE’ for any f € F’, this is exactly the weakest topology 7/ in E
which makes T': E — (F,o(F,F’)) continuous. Indeed, the open sets for 7" are of the
form T~ A, with A open set in (F,o(F, F")), and the open sets of the latter are generated
by f~Y(I), with f € F’ and I open in R. So, the open sets for 7/ in E are generated by
T=1f=YI) = (f o T)~}(I), and hence they coincide with the open sets of 7. So 7 = 7/
So (E,T) 4 (F,o(F,F")) is continuous. On the other hand, the o(E,E’) topology is
obviously stronger than the 7 topology, so we conclude that (F,o(E,E")) 4 (F,o(F,F"))
is continuous. Notice that for this part of the proof, we did not use the Banach structure
of £ and F.

For the opposite direction, G(T") is a vector subspace and so a convex subspace of E x F'.
Furthermore, the continuity of (E,o(E, E’)) SN (F,o(F, F')) implies that G(T') is closed in
E X F for the o(E, E') x o(F, F') topology (for any continuous map f : X — Y between two
topological spaces, the graph of f is closed in X xY'). Furthermore, the o(E, E') X o(F, F")
topology coincides with the o(E x F,(E x F)') topology. Then, by Theorem 11.10, G(T)
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is closed in E x F for the strong topology. Then T is continuous for the strong topologies
by the closed graph theorem 9.9.
O

Exercise 11.28. a For 1 < p < oo find that there are sequences in ¢P(N) converging
o(fP(N), 7 (N)) weakly to 0 but not strongly.

b Show that a sequence in ¢!(N) converging o(¢!(N), £>*(N)) weakly to 0, it does so also
strongly.

Answer. For a is enough to consider sequences of the form {f(- — n)}nen.
Let us turn to b. Suppose the statement is false. Then it is easy to see that there is a
sequence {f,,(+)}nen in £1(N) such that f, — 0 but [ fallerqyy > 1 for all n € N. It is easy to

see that f,(m) D220 0 for any m € N. Then it is posmble to define a sequence of disjoint
intervals {[Nk, Mj]}ren such that My < Njy; such that there is a subsequence { fy, (+) }ren
and such that

ka > gand 3 )<

and define g € ¢>°(N) by

(j) = signfy,, (j) for j € [Ny, My]
9 0 for for j & Upey [Ni, M.

Then [|gl[¢o vy = 1 and

(s 9) = ank UED SRR ernk - Y Ul g

And so it is not true that (f,,, ) E24%0 () and that fn, — 0.

Remark 11.29. Notice that the sequence {e,}neny in £1(N) is obviously not convergent
strongly and so, by item b in Exercise 11.28, neither weakly. Notice the connection with
Remark 11.19.

12 Weak o(F', F) topology

We will consider a Banach space E. Then we know that E’ has a structure of Banach space.
On the other hand E’ has also the o(E’, E”) topology. We will consider on E’ also the weak
o(F', E) topology.

Definition 12 1. Given FE’, the weak o(E’, E) topology, has a subbasis of seminorms the
fanily {]{0, ) s

}er'
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Exercise 12.2. Suppose that F is infinite dimensional and there exists a subset X C F
countable and dense in E (i.e. E is separable, c.f. below). Is the topology on E’ which has
as sub-basis of seminorms the family {|(z,") 5, g the same as the o(E', E)?

}xeX
Answer. No, because if yes, then E’ with the (weak) o(E’, E) topology would be
metrizable by Exercise??. But, by Exercise 12.7 below, this is not true. ]

Lemma 12.3. E' is Hausdorff for the weak o(E', E) topology.

Proof. Given fo # f1 in E’, there exists x € F such that fo(x) # fi(x). It is not restrictive
to assume that fo(r) < a < fi(z) for some a € R. But then

{feE: flx)<a}resp. {feFE :f(x)>a}

are disjoint open neighborhoods of fy resp. fi. O

Exercise 12.4. Consider E’ with the weak o(E’, F) topology. Then show for any fy € F
a basis of neighborhoods of fj is of the form

Vi (@1, ooy tn,€) = {f | f(xj) = fo(x;)| < efor j=1,...,n} where (12.1)
neN, zy,...,z, € E and € > 0.

Lemma 12.5. Let f, be a sequence in E'. Then:
1 frn— f for o(E',E) if and only if fn(x) — f(x) for any z € E.

2 If fn, — f strongly, then f, — f for o(E', E)).

If fo = f for o(E',E")) , then f, — f for o(E', E)).

3 If fr, = f for o(E', E) then {||fullp'} is bounded and || f||g < liminf || f,| -
4 If fr — f for o(E', E) and if x,, — x strongly, then fn(xzy,) — f(z).

Proof. We prove only 3. For any = € E we know that f,(z) — f(x) and so that {f,(x)}
is bounded. If this holds for any « € E, this implies by Banach Steinhaus that {|| f,| g} is
bounded. Next,

[f@)l = lim [fu(z)]= lm |fn,(2)]

n—+oo k—+

for any subsequence {ny}. If we take this subsequence so that || f,,, || K220, Nim Jirnf | frll 27
n—-+0oo

we conclude

@] = Y f @) < alls | fulle = lallsl e

and so || f||g < liminf || fp| g
n—-+00
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Ezample 12.6. Let ¢o(N) 3 x,, := (1,....,1,0,...}. Then, for any £ € (co(N))" = ¢1(N), we
——
n times
have (Xn, £) ¢ (v xer () Liman > 521€(j). This implies that x, — X = (1,1,1,1,...) in
o (¢ (N), ¢}(N)). Obviously {x;, }nen is not a Cauchy sequence in c(N). Notice that co(N)
is closed for the strong topology in ¢*°(N), but not for the o(¢*°(N), /(N)) topology.

Exercise 12.7. Let E be an infinite dimensional normed space. Is E’ metrizable for the
o(E', E) topology?

Answer. Suppose by contradiction that there is a metric d and consider the balls
U, ={f :d(f,0) < 1/n}. Each U, is open. Then, each U,, must contain a line. Indeed,
each U, contains a set of the form (12.1), which in turn, is an open set also for the o(E’, E”)

and hence, by Lemma 11.12, contains a line. Then there exists f, € U, with || f,|z =
n——+oo

n.Then obviously f, ——— 0 in (E',d), that is f, — 0 in the o(E’, E) topology. But
| fnller =n m 400, contradicting Lemma 12.5. I

n—-+o0o

Ezample 12.8. Let f € L>®(R%) with supp f compact. Then if \, % 400 we have
f(Ay) = 0 in the o(L>®, L') topology. Indeed, for any g € C?(R9)

()

By the density of C?(R) in L'(R?) this yields the limit f(\,-) — 0 in the o(L>°, L)
topology.

- - -
=X, <A f lloollglloe === 0.

f(Anx)g(x)dz
R4

Proposition 12.9. Given ¢ : E' — R linear and continuous for the o(E’', E) topology, then
there is © € E such that ¢(f) = f(x) for any f € E'.

This uses the following lemma.

Lemma 12.10. Let fi,... fn, f linear forms on a vector space X such that f;j(z) = 0 for
all x implies f(x) = 0. Then f is a linear combination of the f;’s.

Proof of the Lemma. Consider the map
FiX 5 R P(2) = (f(), ful@)s.... fal2)).

Then a = (1,0,...,0) does not belong to F'(X), which is a vector space. So there exists a
linear map R*"*! — R

(20, X1y ey Tp) = AZQ + AN121 + oo + ATy
which separates a and F(X). In particular, it is not restrictive to assume for allx € X
A<a<Af(z)+ > Nfj).

Then, Af(x) + > A;jfj(x) =0 for alle € X and o < 0 and so A < 0. O
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Proof of Proposition 12.9. Let |¢(f)| < 1 for |f(z;)| <, for j =1,...,n. In particular,
if f € E' is such that f(z;) = 0 for j = 1,...,n, then we have |¢(tf)| = t|¢(f)] < 1 for all
t > 0, and this can only happen if ¢(f) = 0. Then use the lemma for X = E’ and conclude
that

o(f) = Zx\jf(xj) = f(x) for x = ij.
=1 =1

O]

Corollary 12.11. If H is an hyperplane in E' closed for o(E', E), then it is of the form
{f€FE: f(x)=a} for somexz € E and a € R.

Proof. By definition, see Def. 2.18, H is the set of solutions of ¢(f) = a for a linear map ¢
and a fixed a. By Exercise 2.19 and by the fact that (F’,o(F’, E)) is locally convex, ¢ is
continuous for the o(E’, E) topology. Then, by Proposition 12.9, there exists x € E such
that ¢(f) = f(x) for any f € F'. O

Theorem 12.12 (Banach Alaoglu). {f : || fller < 1} is compact for o(E', E) topology.

Proof. We consider the map ® : E' — R¥ defined by f — f(x) for x € E. We claim that
this map establishes a homeomorphism E’ — ®(E’), where R¥ has product topology and
®(E') is a subspace of R¥. First of all ® is continuous, because so is f — f(z) for z € E.
Next, it is easy to see that @ is injective. Obviously, ® is onto on the image. Now we
need to show that ®~! : ®(E') — (E',0(E’,E)) is continuous. To prove this we need to
show that ®~1(w)(z) =: w, is continuous for any x. But this is so, because w — w; is a
continuous projection (the restriction on ®(E’) of the continuous projection R¥ — R which
associates to each element its z—th coordinate). Hence we have proved that ® : B/ — ®(E')
is a homeomorphism.

Now we consider ®({f : ||f|lgzr < 1}) and claim it is K7 N K with

Ki={w:|w| < ||z|lg V¥V 2}, Ko = {w : Wapy = Wy + wy, wrg = A, Va,y € B, € R}

This is obvious. First of all RF can be identified with the set of the functions £ — R. K,
can be identified with the functions which are linear. Finally, K1 N K5 can be identified with
the linear operators £ — R with norm < 1. Now we show that K; N K5 is compact in R?
by showing that K> is closed and K is compact. K> is closed because Ko = NA, , N B)
with A, , defined by the scalar equation wy4, —w; —w, = 0 and B) , defined by the scalar
equation wy, — Aw, = 0, which are closed sets because involve continuous functions for the
product topology. On the other hand, K is the product of the compact sets [—||z| g, || 2] £]
({0} when x = 0) and, by Tychonoft’s theorem, K is compact.

O
Ezample 12.13. Consider E = ¢>°(N) and the sequence {e,,} in E’, where we notice that e,, €
(*(N) C E'. Then |len||g = |lenllqyy = 1. The sequence {e,} does not have subsequences
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convergent weakly for the o(E’, E) topology. In fact, for any given subsequence {e, }, let
¢ € £°°(N) be defined by
0 if m # ny, for all k

§(m) = { (1) if m = ny.

Then ||{||g = 1 and, clearly, (en,,&) pryp = <enk,£>€1(N)X€w(N) = (=1)* is not convergent.
Hence, there is no subsequence {e,, } convergent weakly for the o(E’, E) topology. This is
related to the fact that E’ with the o(FE’, E) topology is not metrizable.

Exercise 12.14. Consider a normed space F, and suppose that there exists X C F count-
able and dense in F and consider the topology 7 on E’ which has as subbasis of semi-
norms the family {| (-, %)z g |}2ex. Show that the topology induced on D/ (0, R) and on
Dg/(0,R) for any R > 0 by (F, 7) coincides with the topology induced by the o(FE’, E)
topology. Prove that Dg/(0, R) and Dg/ (0, R) with the o(E’, E) topology are metrizable.

Ezample 12.15. For n € N let ¢,, € (¢>°(N))" defined by

1
(s Phemispyimy = L 1),

There are no subsequences weakly convergent for the o ((¢*°(N))’, £>°(N)) weak topology.

Suppose, by contradiction, that ¢,, is such a subsequence. Then, by taking a further
k—4o00

subsequence, we can assume % ———— 400. Setting ng = 0, we define

£(m) = (=1)* if m € [ngp_1 + 1,n4].

Notice that [|{[|sec ) = 1 and that (¢, ,&) € [-1,1] for all k. Now we have

(g €) = En: FCIPIEIE (g, €)M (D - ((DME (1t

= (—1)* 4 o(1) where o(1) koo,
This shows that ¢, is not weakly convergent for the o ((/>°(N))’, £>°(N)) weak topology.

Remark 12.16. See also Lemma 14.8 for a result of existence of weakly convergent subse-
quences in the context of reflexive Banach spaces.

13 Reflexive Spaces

Let E be a Banach space. Let J : E — E” be the natural immersion. It is a continuous
injection for the strong topology. We say that F is reflexive if J is an isomorphism.

Theorem 13.1 (Kakutani). E is reflexive if and only if Dg(0,1) is compact for the o(E, E")
topology.
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Proof. If E is reflexive and so, by definition, J : E — E” is an isomorphism (for the
strong topologies), then J(Dg(0,1)) = Dg»(0,1). We know that Dg»(0,1) is compact for
o(E", E') by the Banach Alaoglu Theorem. So we need to show that J=1 : (E”,o(E", E")) —
(E,o(E, E")) is continuous. It is enough to show that E” > & — (f, J ') pxp is o(E", E')
continuous for any fixed f € E'. We have E” 3 ¢ — (f,J ' pwr = (£ f)prxe and
the latter is continuous in £ for o(E”, E’), by definition. This completes the proof that E
reflexive implies Dg(0,1) compact for the o(E, E’) topology.

Now we need to show that Dg(0,1) compact for the o(FE, E’) topology implies E reflexive.

Lemma 13.2 (Helly). Let E be Banach. Fiz fi,....fn in E' and aj € R, j =1,...,n. The
following statements are equivalent:

1 For any € > 0 there is . € E such that ||zc||g < 1, |fj(ze) —aj| <€ forall j =1,...,n.

n n
21> bjaj| < | bifj| forallbj€R, j=1,..n.
=1 j=1 o
Proof. We first consider 1 = 2. Indeed, it is clear that

ijaj = lim ijfj('re) < ijfj
j=1 j=1 j=1

e—0t
E/

Next us consider 2 = 1. If we set F' = (f1,...,fn) : E — R", Claim 1 means that
a:= (ay,...,an) € R"is a € F(Dg(0,1)). Proceeding by contradiction, we assume that
a ¢ F(Dg(0,1)). Then, there exists a vector b := (b, ...,b,) € R" and an o € R with

ijfj(m) <a< ijaj for all x € Dg(0,1).
j=1 J=1

Clearly, since the left hand side is 0 at x = 0, we have o > 0. Furthermore, by linearity, we
get

S bifi(@)| <a < bjag = |3 bjay| for all 2 € Dp(0, 1).
j=1 Jj=1 J=1

This implies the following, which contradicts Claim 2, and so it is absurd,

n n
ijfj <a< ijaj .
j=1 , j=1

E
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Lemma 13.3 (Goldstine). Let E be a Banach space. Then JDg(0,1) is dense in Dg» (0, 1)
for o(E",E").

Proof. Let £ € Dg»(0,1) and consider V' a neighborhood of ¢ for o(E"”, E'), given by

V={neE": |[(n=¢&fi)pxp| <€j=1,.,n}

We need to find = € Dg(0,1) with Jx € V, that is such that

[(Jox =& fiYerxe =&, i) exe — (& fj)prxp| <eforall j=1,..n.

Set aj = (&, f;j). Now, for any b;,j =1,...,n we have

> bjaj| = <§,ijfj> <D s
j=1 j=1 j=1

E"xE' E!

Then by previous lemma there is 2. € Dg(0, 1) such that |(z., fj) Exp —aj| < €,j=1,...,n.
O

Remark 13.4. Notice that, if FE is a not reflexive Banach space, by Lemma 13.3 we have
JE dense in E” for the o(E"”, E") topology, with JE a closed space of E” for the strong
topology (because J : E — E” is an isometry and F is complete). So, like in Example 12.6,
we have another example of strongly closed convex set (here in E”) which is not closed
for the * topology (here the o(E”, E') topology), in contrast to what happens in E for the
o(E, E") topology, c.f. Theorem 11.10.

End of proof of the theorem. We are assuming that Dg(0,1) compact for the o(E, E’)
topology . J : E — E” is continuous for the strong topologies and so, by Corollary 11.27, for
o(E,E") — o(E",E"). This implies that J : (E,0(E,E")) — (E",oc(E", E")) is continuous,
because the o(E”, E’) topology is weaker than the o(E”, E") topology.

Since the image of a compact set for a continuous function is compact, we conclude that

JDg(0,1) is compact for the o(E”, E’) topology. Since JDg(0,1) ( and by consequence

also JDg(0,1)) is, by the previous lemma, dense in Dg»(0,1), then JDg(0,1) = Dgn»(0,1).
But this implies that JE = E” and so, that F is reflexive. O

Lemma 13.5.

1 E Banach and M closed subspace of EE. Then if E is reflexive, also M is reflexive.
2 E is reflexive if and only if E' is reflexive.

Proof. The topologies o(E, E') and o(M, M") coincide on M (indeed at first sight o (M, M)
is stronger than o(F, E’) because any element in E’ leads to an element in M’. By Hahn
Banach the two topologies coincide). Dg(0, 1) is compact for o(E, E') implies that Dj(0, 1),
which is a closed subset of Dg(0,1), is compact for the o(FE, E’) topology, and so also for

the o(M, M') topology on M. This sets the 1st claim.
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We consider now the 2nd claim.
Assume E is reflexive. Dg/(0,1) is compact for o(E’, E) = o(E’, E") (by Banach Alaoglu
and by reflexivity). Hence E’ is reflexive.

Assume E’ is reflexive. Then, by the previous argument, E” is reflexive. JE is closed
in E” in the strong topology since J is an isometry in the strong topology. Then, by the
1st claim of this lemma, JE is reflexive, and so is E.

Lemma 13.6. Let E be Banach reflexive and let K C E be a bounded, closed convex set.
Then K is compact for o(E, E').

Proof. Since K is bounded, there is a constant m > 0 such that K C mDpg and since the
latter is compact for o(E, E’) and K, by Theorem 11.10, is closed for o(E, E’), K is also

compact. ]
n—-+00

Ezample 13.7. Notice that for f € L'(R%) and for \,, = +00 the sequence A, f(A,-)dz
converges as a measure to [pq fdzd(z)dr. Notice that L' (R%) is not reflexive and so Lemma
13.6 does not apply.

Corollary 13.8. Let E be a reflexive Banach space and let A C E be a closed, convex non
empty set. Let ¢ : A — (—00, +00| be convex lower semi continuous with

im ¢(z) = 4o0.
l|z||g—o0,z€A

Then there is a point of minimum xg € A.

Proof. If we consider any z9 € A and we set A\g = ¢(x), then Ko = AN ¢~ ((—00, o)) is
compact for the o(E, E’) topology. Indeed, the fact that ¢ is lower semicontinuous implies
that Ky is closed in A, and also in F. The behaviour at infinity of ¢ implies that K
is bounded. Finally, the convexity of ¢ and of A, imply that Ky is convex. Then, by
the previous lemma, it follows that Ky is compact. Let us take now a sequence A, :=
o(zy) DT, inf ¢(K) with {z,,} a sequence in K. We can always assume that it is strictly
decreasing, since otherwise the existence of a minimum point is obvious. Then {K,} is
a strictly decreasing sequence of compact subsets of Ko. The intersection K := (7 K,
cannot be empty, by the finite collection property, see in Exercise 1.10. So the points in K
are absolute minimums.

O

14 Separable spaces

A topological space is separable if it contains a countable dense set. For example, C°([0, 1])
is separable because R[] is dense and has a countable dense subset.

Lemma 14.1. For E a Banach space, if E' is separable, then E is separable.
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Proof. Let {f,} be dense in E’. We can consider a sequence z,, € F with ||z,| g = 1 with
Jn(2n) > || fnllEr/2. Then the closure L of the Span{x,, : n € N} is separable. If L & E there

exists f € E'\0 such that f(z,) =0 for all n. Since there is a subsequence f,, koo, fin

E’" we have

in the limit we get 0 > || f|| g, which is a contradiction.
O

Exercise 14.2. Show that F is a reflexive and separable Banach space if and only if E’ is
a reflexive and separable Banach space.

Lemma 14.3. L>°(—1,1) is not separable.

Proof. For any a € (—1,1) consider I, = (—|al, |a]) and consider Dpeo(_1,1)(X1,,1/2)-
We claim that

Dipoo(—1,1y (X145 1/2) N Dpeo(—11)(x1,,1/2) = 0 for any a # b . (14.1)

Indeed, if there was an f such that ||f — x7,llcc < 1/2 and || f — x1,]lcc < 1/2 then by
the triangular inequality would imply |x7, — X1./lcc < 1. However, we know we have
X1, — X1.ll0 = 1, s0 (14.1) is true.

So {Dpeo(=1,1)(X1a> 1/2) }ac(—1,1) is an uncountable family of open sets pairwise disjoint. If
there existed a dense countable set f,, € L°°(—1, 1) we would have an injection I — N which
of course is impossible. ]
Ezample 14.4. Notice that E := L'(—1,1) is separable while E/ = L>°(—1,1) is not sepa-
rable, so the implication E’ separable = FE separable cannot be reversed.

Ezample 14.5. Consider a space L (X, C). Then the subspace of L (X) generated by the
X E, for all measurable F, is dense in L.

Indeed let g € L>°(X, C) decompose the ball ||z]|c < ||g]|co into a finite partition A U...UA,
of disjoint measurable sets of diameter < e. Then set E; = g'(4;) and fix a; € A;. Then
lg = >25=1 aixE;llo <€

Exercise 14.6. Consider a normed space F, and suppose that there exists X C E’ count-
able and dense in E’ and consider the topology 7 on E which has as subbasis of seminorms
the family {|f|}fex. Show that the topology induced on Dg(0, R) and on Dg(0, R) for any
R >0 by (E, ) coincides with the topology induced by the o(FE, E’) topology. Prove that
Dg(0, R) and Dg(0, R) with the o(E, E') topology are metrizable.

Remark 14.7. We have discussed in Exercise 14.6 that if E’ is separable then Dg(0,1) with
the o(E, E') topology is metrizable. In fact, the viceversa is also true, so that Dg(0,1) with
the o(E, E') topology is metrizable if and only if E’ is separable, see Brezis [3, Theorem
3.29].

Similarly, we have discussed in Exercise 12.14 that if E’ is separable then Dg/ (0, 1) with the
o(F', F) topology is metrizable. In fact, the viceversa is also true, so that Dg/(0,1) with
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the o(FE’, FE) topology is metrizable if and only if E is separable, see Brezis [3, Theorem
3.28].

Lemma 14.8. Let {x,} be a bounded sequence in a reflexive Banach space E. Then there
ezists a subsequence {x,, } weakly convergent in the o(E,E'") topology.

Proof. Consider the closure F' in E of the space Sp{z, : n € N} generated by the elements
of the sequence. Then, by Lemma 13.5 the space F' is reflexive. It is obviously separable.
Hence by Exercise 14.2, F” is reflexive and separable. Then there exists a subsequence {x,, }
weakly convergent in the o(F, F’) topology. But, as we remarked in the proof of Lemma
13.5, this is the same as the convergence in the o(E, E') topology. O

Exercise 14.9. Let X be a Banach space, X' its dual space, (-, ) y/xx the duality product,
and Dx(0,1) the unit ball in X’. Consider a bounded sequence {z,,n € N} C X such that

Va' € 0Dx(0,1) the sequence (', z,)x/xx converges.

a Show that if X is reflexive, then x,, is weakly convergent in X.

b Is the above conclusion necessarily true if X is not reflexive? Prove it if it is true, or find
a counterexample if it is false.

Answer. For definiteness, let X be a Banach space. A function ¢ : X’ — R remains
defined. Tt is elementary that ¢ is a linear map. Since {z,,,n € N} C X is bounded, then the
associated sequence {Jz,,n € N} C X" is bounded. It is elementary to conclude that ¢ €
X" and that Jx,, — ¢ for the o(X"”, X') topology. If X is reflexive, then J : (X, 0(X, X)) —
(X", 0(X",X")) is an isomorphism, and thus x,, = z in X for the o(X"”, X’) topology and
for the x € X s.t. Jz = ¢.

Let us now give a counterexample for a X not reflexive. Referring to Example 12.6
let X = ¢o(N), X’ = (1(N) and X" = ¢*°(N), and recall the sequence c¢o(N) > x, :=

. IR _ . o 1 .
(1,.j..,1,0,...} for which x, = xoo = (1,1,1,1,...) in o(¢*(N),¢*(N)). Notice that {x,}
n times
is bounded in X and (x,x,)x/xx oo, Zj; 2'(j) = (X', Xeo) x'xx7 for all 2’ € X' =
¢*(N). So this gives a counterexample.

More generally, if Jz, — 2 for the o(X"”, X’) topology for a z”” & R(J), then we
get a counterexample to the claim. Then one can ask if all the not reflexive X yield a
counterexample. Notice that by Lemma 13.3 we have that JDx(0,1) is dense in Dx~(0,1)
for the o(X"”, X") topology. So, for 2" € Dx»(0,1)\JDx(0,1) we can ask if there is a
sequence {x,} in Dx(0,1) such that Jx,, — 2’ for the (X", X") topology. If Dx~(0,1) is
metrizable for the topology induced by the o(X”, X’) topology, this is the case. Notice that
in the counterexample given above, X’ = ¢!(N) is separable, and so Dx~(0,1) is metrizable
for the o(X"”, X') topology. O
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15 Uniformly convex spaces

E Banach is said uniformly convex if for any € > 0 there is 6 > 0 such that for any ||z||p < 1,
lylle <1 and ||z — y||g > € we have H%ryHE1< 1-4.

So for instance R? with |z| = (22 + 23)2 is uniformly convex while |z| = |z1] + |72] is
not uniformly convex.

Theorem 15.1 (Milman—Pettis). A uniformly convex Banach space E is reflexive.

Proof. Let £ € E” with ||&||[g» = 1. We want to show § € JDg(0,1). Since JDg(0,1)
is closed for the strong topology in E”, it is enough to show that for any € > 0 there is
x € Dg(0,1) such that || — Jz|[g» < e. Consider the 6 > 0 associated to € > 0 from the
definition of uniform convexity, and let f € E’ such that

o
(& flprxp >1 =5 and |[fller =1, (15.1)

which exists by ||£]|g» = 1. Set

5
V={neE":|[(n-¢f)< 2

V is a neighborhood of ¢ for the o(E”, E’) topology and V N Dg»(0,1) is a non-empty
open set for the o(E”, E") topology in Dg»(0,1). Since JDg(0,1) is dense (by Goldstine)
in Dgn(0,1) for o(E”, E"), there is a z € Dg(0,1) with Jz € V. We will show ¢ € Jx +
eDpn(0,1). Suppose that this is not the case and let W be the complement of Jx+eDg (0, 1)
in E”. W is open for o(E", E’), because Jx + eDgn(0,1) is compact, and so closed, by
Banach Alaoglu. Then £ € WNV and so WNV is nonempty and o(E”, E’) open. It is also
strongly open and, since £ is an accumulation point for Dy~ (0,1) in the strong topology
E", it follows that W NV N Dgn(0,1) # (. Once again, since by Goldstine JDg(0,1) is
dense in Dgn(0,1) for o(E”, E’), we have W NV N JDg(0,1) # 0. So let & € Dg(0,1) so
that Jz € W N V. We have

(2, P — (€ D] < g by Jo €V
(15.2)

. ) .
(Z, flexe — (& flerxe| < 3 by Jz € V.
Then
2-6 <2 flexe <(x+2, flexe +6 < |z +2|g +4, (15.3)

where the upper bound is obtained summing in (15.2), while the lower bound uses (15.1).
Since Ji € W we have Ji & Jr+eDgn(0,1). Since J : E — E” is an isometry, this implies
||lx— 2|/ > e. But this implies ||¥||E < 1—0 which, inserted in (15.3), yields 2—§ < 2—94,
which is absurd.
Hence we have proved that any in £ € E” with [|{||g» = 1 is in JDg(0,1). Notice that this
implies that E” = R(J). So, J is an isomorphism from E to E”. JDg(0,1)

0
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16 LP spaces

Let us consider a measure space (X, u) with a positive measure p and let let for 1 < p < 0o

LP(X,dp) = {f measurable s.t.|f|P € L'(X,du)}
L*°(X,du) = {f measurable s.t. a.e. |f(z)| < C for some C < 0o0}.

Recall that

1
1l (x,ap) = (/ |f(x |pd,u> for p < oo and

[fllzoe (x.an) 7= sup{c = 0: p({z - |f(z)] = c}) > 0}

Theorem 16.1 (Holder inequality). Let f € LP(X,du) and g € LP (X, dp) with 1 = %—i_z%
Then fg € LY (X, du) and
’f.q,Ll(X,du) < ‘f‘LP(X,du)‘g‘Lp’(X,du) (Hélder Inequality) (16.1)
Proof. Cases p=1,00 are easy. Let 1 < p < co. We have
lal”, (o] :
lab| < + —— (Young’s Inequality) (16.2)
p P
which follows from the concavity of log : R, — R and
PP ,
log ('C;‘ ‘p’ > . —log |alP + —/log la|P” = log |ab|.
So point—-wise we have
[f@)P | lg(a))”
f(@)g(@)| < +
|f(@)g(x)] ) o
which shows that |fg| € L*(X, du). Then
| f9l (x,du) < |f“zp(X7d“) |g|Lp Xdn),
( ) ,LL) - p p/
Also, for any A > 0, we have
AP ‘f|Lp (X,du) ’g’LP (X ,dp) ‘g‘i/p/(Xd )
|f9lr(x,du) < ) a Y 2 <N xap) T“ . (16.3)

Choose A so that the two terms in the r.h.s. are equal. Then

p_ ‘Q‘Lp (X du) _ |g|LP’(X,du)

ﬂ/
|f|Lp (X,dp) |f’zp(X,du)
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will do, since )\p]f\Lp (Xdp) = = |flor(x,du) |9’Lp (X,dp) and

p
|g’Lp/(X,du) . ‘g‘LP (X,dp)
o = [flerxaml9l ey (x au)

P
\gl P (X i)

|f|LP(X )

Inserting in the 1st inequality in (16.3), we obtain (16.1).

O

Theorem 16.2 (Minkowsky inequality). Let f,g € LP(X,du). Then f+ g € LP(X,du)
with

|f + g|LP(X,du) < ‘f|LP(X,du) + |9|LP(X,du) (Minkowsky Inequality). (16.4)

Proof. Case p = 1,00 easy.
Let 1 < p < co. By triangular inequality,

[f () + g(@)P < (If @)+ lg(@)))” < (2max{|f(z)], |g(=)|})"
< 27 (max{|f(z)], l9(x)|})? < 2°(If (@) + [g(x)[P). (16.5)

Then f+ g € LP(X,du). Now
J17@) + g@ipdu= [ 17)+ g@)P 1) + ool
< [17@)+ 9@ 1@ + lgta)hdn = [ 17+ gla)p (@)l
+ [17)+ @) g@)d
By Holder
1+ 8l = [ 170 + 9P
< IF + 07Uty I iy ILF 97t N0
= ||f —"_g”i;/l(p D(X,dp) (HfHLP(X,du) + HgHLP(X,du))

||f —I—gIILp (X, dp) (HfHLP(X,du) + HgHLP(X,du)) .

So, after simplification,

1+ gllzexaw < N Flleex,dw + 19l 2e(x,du)-
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Ezample 16.3. Notice that there are sequences f, notoo, fin LP(0,1) with 1 < p < oo,
with f,(z) 4 f(x) for all z € [0,1]. Indeed, consider a sequence {I,} formed by the

intervals [%, %} for j =1,...,n and for n € N. Then 1, 227 0 in LP(0,1), but for any

x € [0, 1] the sequence {15, (z )} is not convergent.

Theorem 16.4. LP(X,du) for 1 < p < oo is a Banach space.

Proof. Consider first L°°. We consider a Cauchy sequence f,,. Then for any k& € N there is
Ny such that for n,m > Ny we have ||f,, — fim|lco < 1/k. Hence for a 0 measure set E}, for
all x € X — Ej, we have |f,(x) — fm(x)| < 1/k for n,m > Ni. For any x € X — UE}, there
is a limit f(z) such that |f,(z) — f(x)] < 1/k for n > Ni. So ||fn — flleoc < 1/k for n > N,

and hence || £, — flloo “—> 0.

Consider LP with p < oo and a Cauchy sequence f,. Taking a subsequence, we can
suppose we have a sequence with [|f, — fm|p < 27" for m > n. Consider the telescopic
series

fl + Z(fn-l—l - fn) (166)

n=1

Then the partial sums gn(z) := [f1(x)| + 327, [fi+1(z) — fj(2)| are such that ||gnll, < C
for a fixed C'. By the monotone convergence theorem, then they converge a.e. and

li () [Pdu = Pdu.
Jim [ lg@Pau= [ lgta)pds

This implies the pointwise convergence a.e. of the telescopic series (16.6) to f. For m > n

m—1
[fu(@) = fn(@)] < D7 [ fi+1(2) = fi(@)] < 9(2) = gar(@) < g(a)
j=n

and so for m — oo, |fn(x) — f(z)| < g(x) a.e. Then f € LP and by dominated convergence
£ — fin LP. 0
Theorem 16.5. LP for 2 < p < oo is reflexive.

Proof. We have Clarkson inequality (see proof below)
H f—g

+ 1
15 <5+l for2<p <o

Assuming Clarkson inequality we prove that for 2 < p < oo then LP is uniformly
convex. Indeed, for || f]|, <1, lg|l, <1, and ||f — gl|, > €, then

! (69

f+yg

<l——=
2

op

2

p eP Hf—l—g

p
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so we conclude that LP is uniformly convex, and hence reflexive by Milman—Pettis.
We turn to the proof of the Clarkson inequality, which is a consequence of

p p

a—>
2

a+b
2

1
< 5 (lal? + |b|P) for 2 < p < oc.

We have
of + 8P < (0® + %)% for 2 < p < o0

which in turn is a consequence for ¢ = p/2 and for a = o and b = 2, of
a? +b? < (a+b)? for 1 < g < oo, which is equivalent to
a \? . b \1 < @ n b 1
a+b a+b) “a+b a+b

For a = ‘“TH’} and g = ‘%b‘

2

b
a+bl"  |a—blP a+b a—bl*\? a BP\: _a? W
< =\l5+t5) <5 +5
2 2 2 2 2 2 2 2
where the last inequality follows by the convexity of ¢ — t5. O

Theorem 16.6. LP for 1 < p < 2 is reflexive.

Proof. For any 1 < p < +o00, for any f € LP there is an element T'f in (Lp/)’ defined
by (Tf,9) orysw = J fg. Then by Holder [Tf] < |fll, and, setting g(z) —
F@P2f(@) € L7, we see (Tf,q) parysw = IF1 and ligly = I£15™" s0 [Tl gy >
| fllp and hence ||Tf||(Lp/), = ||f|lp for all 1 < p < +o0 and

T :LP — (L*") is an isometry for all 1 < p < ~+oc. (16.7)

So R(T) is a closed subspace of (Lp')’. Now let 1 < p < 2. By Theorem 16.5, L?' is reflexive.
By Lemma 13.5 this is equivalent to the fact that (Lp/)’ is reflexive. Furthermore, Lemma
13.5 guarantees that the closed subspaces of (L?')’, and so also R(T), are reflexive. In turn,
since T': LP — R(T) is an isomorphism, this implies that LP is reflexive for 1 <p <2. O

Theorem 16.7 (Riesz representation theorem). Let 1 < p < oo and let ¢ € (LP(X))". Then
there is u € LV (X) such that

o= [ us vrer.

Proof. By (16.7), TL* is a closed subspace of (LP)’. If TLV S (LP)', then there is a
nontrivial h € LP ~ (LP)" with (T'u, Jh)(peyx(zey = 0 for all u € LP. But

(Tu, Jh) Loy ey = (hy TU) oy Loy = /uh =0 for all u € L”.
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If we choose u(x) = |h(z)|P~2h(x) € L¥', then we obtain

Oz/uh:/\h\p_%h:/]h]p:h:Oian.

Thus we get a contradiction and we conclude TLP = (LP)'. So T is an isometric isomor-

phism.
O

Theorem 16.8 (Riesz representation theorem). Let ¢ € (LY(X))" where X is o—finite.
Then there is u € L>=(X) such that

o(f) = /uf vfe LX),

Proof. Here o—finite means that X = Uj<,<ny Xy, with N € NU {oo} and with each X,, of
finite measure. We can assume that the sequence X, is increasing with n. Then it is possible
to define a w € L?(X) such that for any n there exists C,, > 0 such that w(z) > C,, > 0 for
all z € X,,. Indeed, we can choose ¢, > 0 with 3" c2 < oo and then define w(z) = ¢; in X3
and w(z) = ¢, in X\ Xp—1.

Next, the map f € L?*(X) — (¢, Jw) (1 (x)yxri(x) is bounded. So there exists g € L*(X)
such that

(6, fw) (1 (x)y xL1(X) Z/fg Vfe LX)

Set now u = £, which is measurable. Then

|/fg| = |/fwu| = (&, fw) 1)y =il < ol oyl fwlpr.

Notice that uxy, € L?(X) for any n < N.
We claim that [|ullec < [|¢[|(z1). Indeed let C' > [¢]r1) and let

Ay ={z: tu(z) > C}.

We will show that |A;| = 0 with the argument for |A_| = 0 similar. If |A;| > 0, then there
exists n with |[A4 N X,,| > 0 and

C w < / wu = / g= /XAang = (0, XA, NX, W) (L1 (X)) x L1 (X)
A+ﬂXn A+ﬂXn A+ﬂXn

< ’¢|(L1)/ ‘|XA+ﬂan||L17

which yields C' < [¢[(z1y, and a contradiction. So now we have [[ulloc < [|@[|(z1y-
Next, we claim that

<¢), f)(Ll(X))’XLl(X) = /fu for any f € Ll(X) (168)
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We have

(D, xx0 )t (x)y st (x) = (@ XXn£w>(L1(X))’><L1(X) = /Xxnz];g = /Xxnfu- (16.9)

We have yx, f = f in L'(X), 50 (&, Xx, ) (11(x)yx01(x) > (&, ) (11 () %11 ()-

On the other hand, we already know u € L>(X), so fu € L'(X) and xx,, fu DE0 £ in
n——+0o00

L'(X) and hence we conclude that [ xx, fu —— [ fu. So we canclude that taking the
limit n — oo in (16.9) we obtain (16.8).
Finally, by Holder

(&, B (i (xyy <ol = I/hUI < [lAll1llulloo

and we conclude ||ulloc > [[l|(z1), and so [lullec = ||B]| (1)

Exercise 16.9. Given an open set Q C R? show that if u € LP(Q), then
/ufdx:()for all f € C%Q) = u=0.
Q

Answer. If u # 0, it is not restrictive to assume that there exists a compact set K
inside © with measure |K| > 0 where v > 1. For any open A with K C A C 2 there exists
fa € CY(,[0,1]) with f4 = 1 in K and supp f4 C A. We can generate a sequence of

decreasing A,, with |A,\K| \, 0 and ufa, noteo, xu by dominated convergence. Then

we get a contradiction by
Oz/qunda:M/ udx > |K| > 0.
Q K

Corollary 16.10. Given an open set Q@ C R4, C%(Q) is dense in LP(Q) for 1 < p < co.

Proof. Suppose this is not the case and consider the closure Y := C2(Q2). Then there is
0 # u € L”(Q) such that Joufdz = 0 for all u € C(). By exercise 16.9 we get a
contradiction.

O
Exercise 16.11. Show that for 1 < p < ¢ < oo, then LP(R?) N LI(R?) is a Banach
space with norm || - ||z» + || - ||z« and for any r € [p,q] we have the bounded immersion

LP(RY) N LI(RY) — L™ (RY).

Exercise 16.12. Show that for 1 < p < ¢ < oo, then LP(R?) 4+ L4(R%) is a Banach space
with norm

£l = mf{llglly + 12l : f =g+ h}

and for any r € [p, q] we have the bounded immersion L"(R%) < LP(R?) 4+ LI(R?).
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Exercise 16.13. Show that for f € LP(X) for 1 < p < oo for X of infinite measure but
o—finite, for any € > 0 there exists A C X of bounded measure such that

|l <e

Answer. Recall that X = U, X,, (numberable growing union) with all X,, of bounded
n—-+oo (X) n—-+o0o

measure. Then yx, f ——— fin LP by dominated convergence. Hence xpy, f ———
0 in LP(X), and so just take A = X, for n large enough.
Exercise 16.14. Let X be o-finite,

1 < p < oo and suppose sup,cy || fnllp < 0o and f, oo, f a.e. Show the following.
a We have f, — fin LP(X) for 1 < p < oo.
b Statement a is not true in L'(X) (if X is an infinite set).
¢ Statement a is true in L°°(X) for the o(L>, L) topology

Answer. a First of all f € LP(X) with || f||, < liminf || f, ||, by the Fathou Lemma. Let
g € LP (X). Then by Exercise 16.13, there exists A with |A| < co, such that Joa lg]? < e
Furthermore, for any € > 0 there exists § > 0 such that for any B C A with |B| < § we
have [, lg|"’ < e. Finally, By Egorov Theorem, there exists B C A with |B| < & such that

n—-+4o00o

fr 22F2 ¢ uniformly in A\B. Then

Un = .90 = (fo = F.X059) + (Jn = F.X59) + Un = f.X029)
Since

| (fo = fx59) | < 2sup || fullLre and | {fu — f,xcag) | < 25up || follLr

and

n—-+o0o

| (fa = £ X059 L < 1 = Fllpee a3 gl 222550,

n—-+4o0o
— 0.

where € is arbitrary, it follows (f, — f, g)
b As an example, we know from Exercise 11.24 that for L'(R?) > f # 0, then if

n—-+00

A = 400 it is not true that A,%f(A,-) — 0. Now take for example any f with supp f

compact, and then \,%f(\nx) 22F%0 0 for any x # 0.

Exercise 16.15. Consider L?([—,]).
a Then cos(n-) — 0 in L?([—7, 7]).

b It is not true that cos(nz) 222 0 a.e.
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Answer. We have [7_cos(nz)f(z)dz = may, 224 0 by the Riemann-Lebesgue

Lemma, see (7.11). If we had cos(nx) 2724, () ace., then also sin(nx) 2240 0 ace., but
sin?(nx) + cos?(nz) = 1.

Exercise 16.16. Show that f,,(z) := nx(,1/n)(z) converges a.e. to 0 in [0,1] but f, A 0
in any LP([0,1]).

Answer. For p > 1 we have || ful|1r(0,1) D240, 4 0o, while if f, converged weakly we
would have sup,, || fallLr(0,1) < 00. For p = 1 we have f,(x) = nyx(o,1)(nz) and we know
already by Exercise 11.24 that f, does not converge weakly.

Ezample 16.17. We have (co(N))’ = /1(N).
Indeed, First of all ¢f, D ¢1. Given ¢ € ¢, we can define u by u,, = ¢(d,,), where (n)m = dnm
the Kronecker delta. Now, if v & ¢!, for any M 3 N such that

N N N
M <Y funl = Y sign(ua)u = ¢ (Z sign(un)6n>
7]1,\[:1 n=1 n=1
= <Z sign(uy)dy, <Z>> <
n=1

coXcy)

[@lley = ll¢lley-

YAl

N
Z sign(uy)on
n=1

Obviously this is impossible, by the arbitrariness of M.
Notice that the map ¢ € (co(N)) = {¢(6n) }ney € ¢1(N) is an isometric isomorphism.

Example 16.18. Recall that the Hahn—Banach Theorem, see Corollary 6.2, implies that for
any ¢ € (co(N))" = £}(N) there is an extension in (£*°(N))’ with the same norm. It turns
out that this extension is unique. Indeed, suppose ||$||q ) = 1, where

¢(:(:1,x2, ) = qujacj.
j=1

Notice that this defines also an element in (¢*°(N))’. Now suppose that there is another
extension ¢ € (¢°°(N))’ different from ¢. It is not restrictive to assume there exists a unitary
element x = {x,} in £>*°(N) where

v = 1(x) — (x) > 0.

Let N such that Z;V:]L |¢j| > 1 — /2. By linearity, and by the fact that the functionals
coincide in ¢y(N), for xy = (1 — x[0, N])x we have

v = p(xn) — d(xN).

Now

o0

pxn) < D il < /2.

j=N+1
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Then ¢ (xy) > /2. Furthermore, for z = (sign¢y, ..., signén;, 0,0, ....)

N
1(2) = ¢(signey, ..., signgy, 0,0,....) = > [ > 1 — /2.
j=1

So

Y(xy +2) =¢(xn) +(z) >7/2+1—-7/2=1
But since [[xy + z[|s~ = 1, we contradict [|1)||(gee )y = 1.
The following important theorem holds true.

Theorem 16.19 (Reisz Representation). Let X be a locally compact Hausdorff space and
consider C(X,R). Then (CO(X, ]R))/ is isomorphic to the space of bounded Borel measures
(without sign) which are regular, see Remark 16.20. Furthermore the relation between ® €
(CX, R))/ and measure | is given by

O(f) = /deu for any f € CO(X,R). (16.10)

Remark 16.20. A Borel measure is regular if its absolute value measure

ul(E) = (16.11)

sup{z |u(Ey)| : over all disjoint finite or countable unions £ = U E,, with measurable sets},
(16.12)

is regular.

Proof of Theorem 16.19. We skip the discussion of uniqueness, which is easier, and we
discuss existence. We can assume that

1@l (coxmyy =1 (16.13)
We claim that

there exists a positive linear map A : C?(X,R) — R such that |®(f)] < A|f] < I fllcocxr)
for all f € CY(X,R) (16.14)

Let now A be the measure associated to A by Theorem 1.22. Notice that we have
AMX) =sup{Af:0< f<1with f e COX,R)} <1. (16.15)

Then

!<I>(f)!§A\f|:/X|fydA.
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Then by Hahn Banach there exists an extension ® € (L!'(X,d\) with norm 1. So there
exists g € L*>°(X, d\) such that

3(f) = /X fgdA. (16.16)

We set as our measure du := gdA. Notice that d|u| = |g|dA.
We have

1= (1]l copx.zyy = supd @0 : [ Fleooem = 1} < /X gldA = [l (X).

On the other hand, (16.15) and ||g||z= = 1 and the latter, imply |g| =1 a.e. , so d|u| = dA
and [1](X) = A(X).
We now turn to the proof of Claim (16.14). For CJ(X) the positive elements of
CY(X,R), let
Af = sup{|®(h)|: h € CY(X,R) such that || < f}. (16.17)
Then Af > 0, (16.15) is satisfied, A is order preserving and Acf = cAf for ¢ > 0. Now we
need to prove
Af+Ag=A(f +g) for f,g € CFH(X). (16.18)
Let hy, hy € CY(X,R) be such that |hi| < f and |ha| < g with
Af < |B(h1)] + ¢ and Ag < [B(ha)| +
Let a; be unitary complex numbers such that |®(h;)| = a;;®(h;). Then
Af+Ag < |q)(h1)‘ + ’(I)(hQ)| + 2¢ = alq)(hl) + a2<1>(h2) + 2¢
= (thl + Oéghg)) + 2e < A(‘h1| + |h2|) + 2e < A(f + g) + 2e.

Hence we have proved < in (16.18). Let now |h| < f + g, call V :={z : f(z) + g(x) > 0}
and set

_ _f(@)h(x)
N (R
hi(x) := 0 and ha(z) := 0 outside V.

g(x)h(z)

and ha(z) = @) + o(2) inV

Inside V' the functions h; are continuous. For zg ¢ V, we have h(zg) = 0. Furthermore we
have 0 < hq(z) < h(x) everywhere, so lim hj(z) = lim hj(xz) = 0 and we get continuity

T—T0 Tr—xTQ
also for xg ¢ V. Then,
|®(h)| =[P (h1+ he)| <|®(h1)]+|P(h2)| < A(f+ f) for any h € C’S(X,R) be such that |h| < f + g.

This implies the inequality >, and so also the equality, in (16.18).
Having proved (16.18), by linearity it is possible to extend A.

The following is discussed in Yoshida [15, p.118] .
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Ezample 16.21. (L*°(X, M, d)\))" is the space of maps u : M — R with the following three
properties:

EiNEy=0= H(El U Eg) = /L(El) + (EQ); (16.19)
sup |p(E)| < oo (16.20)
EeM

AME)=0= u(E) =0. (16.21)

Here ¢ € (L>®°(X, M,d)\) and set u(E) := ¢(xg) for any E € M and it can be
checked that properties (16.19)—(16.21) are true, see [15]. Viceversa, given p with the above
properties, for f € L>®(X, M,d)\) it is possible to define ¢ € (L°°(X, M, d\)" by setting

n—-+00 4 n—-+oo

n n
$(f) = lim > ajupu(Ej) where m [[f =" ajp(Ejn)| e =0,
j_
see Example 14.5 on the density of simple functions in L>(X, M, d\).

Theorem 16.22 (Young’s convolution inequality). Let f € LP(R?), g € L4(R?) for p,q €
[1,00]. Set

f*xgx / flz— (16.22)
Then
1 1 1
1f * gllrway < 1 fll 2oy |9l Larey for - +1= » + 7 (16.23)

Proof. We consider the trilinear form

I(f,g,h) /f Yh(z)dzdy, (16.24)

for h in an appropriate dense subspace of L" (Rd), f in an appropriate dense subspace
of LP(R%) and g in an appropriate dense subspace of L4(R?). It is enough to prove it is
bounded in a dense set, to conclude that it automatically extends, uniquely, in a bounded
trilinear form in the whole spaces, see Exercise 5.13. Notice that this, for similar reasons,
will imply that (16.22) extends to a bounded bilinear map LP(R%) x LI(R?) — L"(R%).

To bound (16.24), it is enough to show if we assume f >0, g >0, h >0, ||gllze = || f|lzr =
|h|l .+ =1, that

I(f,g9,h) < 1. (16.25)

is the same as 2 =

1 1
P !
1 1\ , 1 1
2———— =1, 2—7——/ q=1,
p q p r

The condition % +1= = + % + %. So we have
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which obviously is the same of as

Hence
1f9.0) = [ (PO - )7 (P01 (@)

Using % + ]% + % =1, by Holder inequality we obtain

‘ =

L

1(f,9.h) < ( JECE y)dmo@)i ( [ <x>dmdy>q ( [oa—wi (x)d:z:dy) "

~

From this we obtain the Young’s convolution inequality (16.23). O
Proposition 16.23. Let f € C¥(RY) and let g € L} (RY). Then f*g € C*(RY) with
VI(fxg)=(VIf)*g forj <k

Proof. For any fixed x the map F(z,y) = f(x — y)g(y) is in Lgll. For x,, — x, then there
is a compact set K such that F(x,y) = xx (y)F(x,y), F(zn,y) = XK (y)F(zn,y). We have
pointwise F'(x,,y) — F(x,y) for all y and |F(xn,y)| < XKk (¥)|fleo]g(y)|. Then we can apply
dominated convergence and conclude lim [ F(zy,,y)dy = [ F(x,y)dy. This sets case k = 0.
For the general case it is enough to prove the case k = 1 and then proceed by induction.
We have

fle+h—y)—fle—y)—h-Vfx—y)=h-I(x—y,h), where

1
I(x —y,h) ::/0 [Vf(x+sh—y)— Vf(x—y)ds.

Notice that Vf € C9(R% R?) implies that V£ is uniformly continuous. This implies that

|I(z,h)| < o(1), where o(1) is a function dependent only on h with o(1) 229 0. Then

f(x+h—y)—flx—y)—h-Vf(x—y)| <I|hlo(1).

For fixed z in some bounded set, there is a compact set K such that for |h| <1

f(x+h—y)—flx—y)—h-Vix-y)l<I|hlo(1)xk(y).
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Then
Frgleth)— frgle)—h-Vixg@)] < [ho(1) /K 19(y)Idy

and so f * g is differentiable in & with gradient Vf x g.
O

Theorem 16.24. Let p € LY(R?) be s.t. [ p(x)dz = 1. Set pe(x) := e Up(x/e). Then for
any f € LP(RY) with 1 < p < co we have

. Y d
lim pe x f = f in LP(RT). (16.26)

In particular we have, see (7.23),

lim !> f = f in LP(RY).
fm e f = fan (R) (16.27)

To prove (16.26) we start with f € CO(R?). In this case

pos fa) = 1(@) = [ (e =e) = Doty

so that, by Minkowski inequality and for A(y) := ||f(- —y) — f(*)||z», we have

loe * F(@) — F(@)l|e < / (W) Ae y)dy.

Now we have lim,_,0 A(y) = 0 and A(y) < 2| f||rr. So, by dominated convergence we get
sy | ) ~ F(a) e =ty [ 1p(0)|ACe )y =0,

So this proves (16.26) for f € C2(RY). The general case is proved by a density argument. [
Exercise 16.25. Show that the statement in Corollary 16.10 would be wrong for p = oc.

Exercise 16.26. Show that the statement in Corollary 16.10 is correct with p = oo in
(16.27)—(16.26) when taking f € CJ(R%).

Exercise 16.27. Show that if f, g € CO(R?), then

supp f * g C supp [ + supp g. (16.28)

Proposition 16.28. For any open set 2 C RY, C(Q) is dense in LP(Q) for any 1 < p <
0.
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Proof. Let us start with Q = R%. Let ¢ € C°(R?) with [¢ = 1 and R > 0 such that
Dga(0, R) D supp ¢. Consider ¢(z) = % ¢(x/e). Notice that supp ¢e C Dga(0,€R). Then
for any g € C%(R") with K := supp g we have ¢, x g — g in LP(R?) and furthermore
supp (¢e * g) € Dra(0,eR) + K is compact. By CO(R?) = LP(RY) we get the desired result
for Q = R%.

For more general €2, and for ¢ and g as above, with K C Q, then dist(K,9) =: v > 0.
Then, for € € (0,v/R), supp (¢ *g) C Q. Hence also in this case we have proved C'°(£2) D

CY(Q) and, consequently, C2°(Q) = LP().

O]

Exercise 16.29. Consider the group actions

R? x LP(RY) 5 (y, f) = 7 f = f(- —y) € LP(RY)
RY x LP(RY) 5 (A, f) = 6,0 f i= A? f(A) € LP(RY).

aShowthatfor1§p<oowehave¢fﬂfand5 ,\f—/\——ll—>ff0ranyf€Lp]Rd.
y P,

b Show that claim a if false for p = co.

¢ Show that for 1 < p < oo it is not true that 7, ﬂ>Identity in £(LP(R%)) and similarly
that it is not true that ¢, x ﬂ>Ide]atity in £(LP(R%)).

Remark 16.30. Notice that Exercise 16.29 is closely related to Remark 7.27. Notice for
example, that (y, f) — 7,f := f(- — y) is really the group e ¥V f, and similarly, o f =
dyg.
et<1’+m V) f. In other words, associated to these group actions, are certain differential oper-

ators.

Exercise 16.31. Let k& € L9(R?) and consider the convolution operator T : LP(RY) —
L"(R%), where % +1= % + %, defined by T'f = k = f. Show that this operator commutes
with translations, that is

7,T = T, for any y € RY. (16.29)

Theorem 16.32 (Kolmogorov, Riesz, Frechét). Let F C LP(RY) for p < co be bounded and
s.t. the following property is true:

for any e > 0 there is 6(¢) > 0 s.t. |h| < () = ||Taf — fllor@w) < € forall f € F.
(16.30)
Then for any open bounded Q in RY the restriction F|, is relatively compact in LP(Q).

Proof. We will prove that

Ve >0, Flg is contained in the union of finitely many balls of radius € in LP(€2).
(16.31)
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The proof is related to Ascoli’s Theorem. We first claim that

for any € > 0 there exists w CC Q s.t. [|f||zr(\w) < § for all f € F. (16.32)

We skip the proof of (16.32) for the moment. Notice now that for any a,b € R, if we set
T(a,b) = {f € C'RY) :  ||fllpoe(re) < @ and ||V f| poo(ray < b},

then T'(a,b)|, is relatively compact in C%(w,R) by Ascoli’s Theorem. Let us consider now
a standard sequence of mollifiers p,,(z) = n?p(nz), with p € C2°(Dga(0,1),[0,1]) a function
of integral 1. Then using (16.30), for n > 1/6 (§) we have

low e = Al =1 [ pu)(F@ =) = F@)olln < [ pulolim-uf = sy

€ €
< /Rd )y =
since pn(y) # 0 only if |y| < 1/n <6 (§).

Fix now n € N. We have for any = € R?

pux F@1 < [ pale =9Iy < pall gy 1| oy < an for all f € F. (16.33)
» (RY)

Similarly
Vou s F@I < [ | 1V0u(o = DILF@d < V00 11| oy < by o all f € F

So we have a sequence {(an,b,)} in R% s.t. for any fixed n we have {p, = f : f € F} C
T(an,b,). For any n the latter set, being relatively compact in C%(w,R) C L®(w) C
LP(w), is contained in a finite union of balls or radius § in LP(w). Fix ng > 1/6 (§). Let
T (ang,bny) C U‘A;VleLp(w) (uj,€/3). Then we claim

Flg € U Drwy(uj, €) (16.34)

where uj|Q\w := 0 since above we can take u; € C%(w,R) with supp (u;) C w. Indeed, let
f € F. Then there is u; s.t. ||png * f — ujl[1p() < €/3. This implies
1f = willze) < 1 fllr@\w) + I1f = willzew) < 1flle@\w) + om0 * f = willLew) + ILf = pno * fllLrmay < €.

Hence (16.34) is proved, and so also (16.31). However we need yet to prove (16.32). We
write

€ 1
[ fllr(@\w) < I = Pno * FllLe@ay + ono * fllr@\w) < i |ono * £l Lo ey [SN\w]P

< 24_ ano|Q\w|% < % for |2\w| sufficiently small.
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Ezample 16.33 (An application of the Reisz Representation Theorem 16.19). We show that
if h(z) is harmonic in U := D¢(0, 1), that is if Ah =0 in U, and if

sup / \h(rel)|do = M < oo,

0<r<1J—nx

then there is a complex valued measure pu on T := 9U such that for r < 1

. . 1 (7 :
hre) = P(u)(re”) = o= [ P60~ )dp(e")
Tr —T
with
1—r2

T 1- 2rcos(f —t) +r?
To check this, for any f € C°(T) and 0 < s < 1 we set

Pr(e_t)

As(f) = /7T h(se) f(et)dt.

-7

We have that ||Asl[(c(ryy < M. By o((C(T))’, C(T)) compactness of the unit ball in (C(T))’
(that is Banach—Alaouglu), there exists a sequence s, /1 and a A such that A;,, — A in
(C(T))’ for the o((C(T))’,C(T)) topology, that is

lim A, f=AfvYfeC%T).

n—-+00

As a consequence of Theorem 16.19, there is a complex Borel measure p with

™

ll)I_’I_l h(sne™) f(et)dt = ' feMYdu(e?).

Now, by Example 6.10, for r < 1 we have

h(rsne?) = 2i / Po(0 — t)h(spet)dt.
™ —T

For s, — 1 in the latter we get, applying previous formula for f(e'*) = P.(6 —t),

. . 1 [T . 1 /7 .
h(re?) = lim h(rs,e) = lim 2/ Pr(0 — t)h(s,e)dt Po(6 — t)du(e?).

) 2 J_,

Exercise 16.34. Prove the following, which we will use later: for f € L'(T), we have

i i _2 z)|dx
lim /T\sm(nx)f(x)dac— W/Tf( )| (16.35)

n—-+o0o
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Answer. Let us start with f = 1. Then, using a scale change and the 27 periodicity of
sinz and the 7 periodicity of |sin z,

2m 2mn 2m ™
/ |sin(nz)|dz = n~! / | sin(z)|dx = n_ln/ | sin(x)|dx = 2/ sin(z)dx = 4
0 0 0 0
4
= 5l zac)-
More generally, let f € L'(T). By density it is enough to focus on simple functions
N
f= Z )‘jX[Qﬂaj,Zwbj]a
j=1
where the intervals [27maj, 27b;] are pairwise disjoint. Then
N 2mb; N 2nmb;
/ [sin(na) f(@)ldz = 3 |Aj|/ |sin(na)dz = 3 |)\jn_1/ |sin(z)|dz. (16.36)
T i1 2ma; Y 2nma;
J J
Now, for [t] € Z the integral part of ¢t € R, defined by [t] <t < |t] 4+ 1, we have

2nmb; 2| nb; | 2mna; 27nb;
/ | sin(z)|dz :/ | sin(z)|dz —/ ]sin(m)|da:+/ | sin(z)|dz.
2 2 2

nwa; T naj | | na; | 2| nb; |

Then

2nmb; 27| nb; |
/ | sin(x)|dz — / |sin(x)|dxz| < 27 (na; — |na;|) + 27 (nbj — [nb;])
2 2

nwa; T |naj|

<21+ 27 = 4m.
Going back to (16.36), we conclude that

2| nb; |

N
i = nt sin(z)|dxz + o
/T rsm<nx>f<w>|dx—j§_;|m / |sin(z)|dz + o(1)

| na; |
N
=o(1)+ ) _ |Njln~"4([nbj] — na;))
=1
]N
=o(1) + Z IAjln 14 [nb; — na; — (nbj — [nb;]) + (na; — |na;))]
=1
]N N 4
=o(1) + Z A4 (b; — aj) 2 Z [Ajl4 (b — aj) = ﬂnf”Ll(ﬂr)-
=1 j=1

A different take of Exercise 16.34 is follows in the two next exercises.
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Exercise 16.35. Show that for any f € L!(T) we have o, f notoo, f for the Fejer series

(7.14)
The following implies Exercise 16.34.

Exercise 16.36. Show that for any f € L'(T) we have that the sequence f,(z) := f(nx)
we have f, — f(0) in L*(T). Hint, treat first the case of trigonometric polynomials, and
then use the approximation in Exercise 16.35 to obtain the result for all f € L!(T).

Exercise 16.37. Show that C := {f € L'(0,1) fo |f|?dz < 1} is a closed subset of
L'(0,1). Show that C'= () in L*(0,1).

Exercise 16.38. Show that C' := {f € L'(0,1) fo |f|?dx
L(0,1). Show that C' = @ in L*(0, 1).

IN

1} is a closed subset of

Exercise 16.39. Show that T'f(x r1 fo t)dt defines an unbounded linear operator
in L1(0,1).
Ezample 16.40. Notice that Tf(x) = o~ ! fo t)dt defines a bounded linear operator in

LP(0,1) for all 1 < p < +o0, and this is part of the famous Hardy inequality. Case
p = oo is trivial. The general case can be seen in a variety of ways. One, is to say that
|Tf| <2M(|f|) with M the Hardy-Littlewood Maximal function (see next semester), and
then use [|Tf | zr0,1) < IM(|fDllzro,1) < Cpllfllzr(0,1)-

Another possibility is the following direct computation:

T 1 1
o [ F Ot = 1| | )it < / ||f<-t>Hm<o,1>dt (by Minkowski inequality)

/ 1Ot #dt = —— | fllzson

p

Exercise 16.41. Consider a sequence x. = {z, }nen. Consider the operator

Oifn=1
(Tx.), = {xnl > 2 (16.37)

a Show that it defines a bounded operator in £*°(N). Show that o(T) = {z € C: |z| < 1}.

b Show exactly the same things in /P(N) also for 1 <p < co.

17 Hilbert spaces

Definition 17.1. A Pre-Hilbert space on R consists of a vector space H on R with a
symmetric bilinear form (u,v)g, positive, that is (u,u)y > 0, and strictly positive, that
is (u,u)g = 0 = uw = 0. Then ||ul|g := /(u,u)y defines a norm, and the space is said
Hilbert, if for this norm it is complete.
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Definition 17.2. Let X be a vector space on C. A sesquilinear form is a map B : X X
X — C such that:

a B(Az + py,z) = AB(z, 2) + uB(y, 2);

b B(z, Az + uy) = AB(z,x) + iB(z,y).

A sesquiliner for is said to be Hermitian if additionally:
¢ B(z,y) = B(y, ).

It is positive if

d B(z,z) >0 for all z € X.

Nondegenerate if

e if B(z,z) =0= 2z = 0.

Definition 17.3. A Pre-Hilbert space on C consists of a vector space H on C with a
sesquilinear for (-,-)y : H? — C satisfying conditions a—e in Definition 17.2. |jully :=
\/(u,u) g defines a norm, and the space is said Hilbert, if for this norm it is complete.

Example 17.4. Consider

(f,9) 2 (x,dp) / f(z)g(z)dp and, in particular
a b 52 Z4) Z CLn n-
neZzd

They make L?(X,du) and, in particular, £2(Z%), into Hilbert spaces,
Remark 17.5. Tt is possible to complexify H, (-, )y like in Remark 2.13 .
The parallelogram identity is

a—>b
2

a+b|?
2

2
1
= 5 (lall + 11ol7), (17.1)

H H

and can be obtained by expanding the left hand side, and observing that the mixed terms
cancel out. We claim now the Cauchy Schwartz inequality |(a,b)g| < ||a||# ||b]| z. Obviously

2(a,b) g + 2(b,a) i = lla +b|[F — lla —bll3 < 2(|lallF + [1b]F),
so that

2Re(a,b)n < llallz + [1bl[F-

119



But

1 1
2Re(a,b)y = 2Re (x\a, )\b> < N|al|F + prH% for all A > 0
H

s0 Re(a, )y < |[al| |bll i Dy taking A such that A2[al[3; = F5[[b]3, that is A? = {2,
Notice that

T

la +blI%; = (a +b,a +b)g = llalF + b7 +2Re(a, )
< llalfF + 1617 + 2llall bl = (lallz + 1]l ).

This proves Minkowski inequality
la+blly < llallg + 10l -

Proposition 17.6. H Hilbert implies H uniformly convez.

Recall that H uniformly convex means that for any € > 0 there is § > 0 such that
for any |la|lg < 1, [|b]lg < 1 and |ja — b||g > € we have H“T‘H’HH < 1 — 0. Now, using the
parallelogram identity we get

2 2 2

<1-——.
o 4

a+b / €2
<1—(1—14/1——).
2 HH_ ( 4)

Theorem 17.7 (Projection on a closed convex set). Let K C H be a closed nonempty
convez: set and fix f € H. Then there is a unique u € K such that ||f —ullg < ||f — v|lg
for allv € K. u is also characterized by

a+b a—>b

2

1
= 5 (IlallZ; + [1b17) -

H

and so

Re(f —u,v—u)g <0Vv € K.

Proof. Since the map ¢(x) = ||z — f||g is continuous and convex with lim ¢(x) = +o0 as
|z||;; — oo, the existence of a minimizer in K follows from the fact that H is reflexive.
However a more direct proof of existence of a minimizer is the following one. We consider
a sequence x, € K such that d,, := ||z, — fllg — d := mingek ||z — f||z. Now by the
parallelogram identity applied to a = f — x, and b = f — z,,, we get

2 2
Tn + Tm

-,

3 Tn+Tm
By convexity #=5*= € K and so

TIn — Tm

1
= —(d® +d>).

-

H

1
(2 +d2)—d®>= lim |z, —zm|g =0.

m,n—00




So x,, is Cauchy and converges to some u € K.

Next step is to show that the characterization holds, that is, u is a minimizer if and
only if Re(f —u,v —u)g < 0Vv € K. If for a moment we accept this equivalence, then we
can see that u is the only minimizer as follows. If we had two minimizers u; and ue, then

Re(f —ui,v—u)g <0Vv € K
Re(f —ug,v —u2)g < 0Vv € K.

In particular
0 > Re(f —u1,us —u1)g + Re(f —ug,u; —u2)y
= Re(f —u1,us —u1) g — Re(f — uz,us — u1) g = 2|lug — w1 ||%

and hence u; = ug. Now let us show the second characterization of the minimizer. Assume
u is a minimizer and pick v € K and consider for t € [0, 1]

If —u—tlw—w)lf = If —ullfy — 2t Re(f —u,v — uw)y +]jv — ul[f.

For ¢t = 0 to be an absolute minimum we need Re(f —u,v—u)g < 0, so v minimizer implies
Re(f —u,v —u)g < 0Vv € K. Viceversa, assuming this latter property, for any v € K

lu = fU7r = llo = fll7r = Jullf + 2(0 = w, ) = llollF
=2Re(v —u, f —u)g + 2Re(v —u,u) g + |lull3 — ||lv]|%
=2Re(v —u, [~y — [lu—vlff < —u—v|F
In particular ||u — f[|g < [lv — f||z unless u = v. O

Proposition 17.8. Let K C H be a closed nonempty convex set and for any f € H let
P f € K the corresponding projection in K. Then Pk is a contraction:

1P f — Prglle <|If —glla
Proof. Let u = Pxf and v = Pgg. Then

Re(f —u,w —u)g <0Vw € K
Re(g —v,w —v)g < 0Vw € K.
Then Re(f —u,v —u)y <0 and Re(g — v, u — v)g < 0 and, adding up,
0>Re(f —u,v—u)g +Re(g —v,u—v)g =Re(f —u,v —u)g —Re(g —v,v —u)y
=Re(f —g,v—u)g +Re(v —u,v —u)g
So lv —ully < Re(f —g,u—v)g < |f = gllurllv —ulm and so Jv —ullm < ||f —glla. O

Corollary 17.9. Let K C H be a closed vector subspace. Then uw = Pxf € K is charac-
terized by (f —u,v)g =0 for all v € K. Furthermore, Pk is a bounded linear operator.
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Proof. The characterization Re(f —u,v —u)g < 0 for all v € K and so by K = K — u,
Re(f —u,v)g < 0 for all v € K and the fact that v € K implies —v € K, yield Re(f —
u,v)g = 0 for allv € K, and in fact also (f —u,v)y = 0forallv € K. If (Pku—u,w)yg =0
and (Pxv —v,w)g = 0 for all w € K, then

MPgu —u,w)g + w(Pgv —v,w)g = (APgu+ uPgv — (Au+ pv),w)y = 0Vw € K.

But this means P (Au+pv) = APgu+puPrv so P is linear. We know P is continuous. [

Theorem 17.10 (Riesz Frechet). Let f € H'. Then there is y € H such that {f,x)g«yg =
(x,y)u for all x € H. Furthermore, ||f||m = ||yl m-

Proof. The map T : H — H' defined by y — (-,y)g is continuous. By |(Ty,x)y/«x| =

(@ y)ul < |yllullzlla we get [Tylla < |yllm, and by |ylF = (Ty.y)mxm < | Tyllmllylla
we get | Ty|lgr > |lyllg. So, in particular, T' is an isometry and T(H) is closed in H'.
If T(H) # H', there is by Hahn Banach a h € H” such that (Ty,h)g/wpg» = 0 for all
y € H. But H is reflexive, so h = Jz for some x € H and (Ty,h)gr«g = (Ty, Jx)gr«pgr =
(z,y)g = 0. Picking y = x we get = 0, and so also h = 0. O

Definition 17.11. A subset S C H is called orthonormal if ||z||z = 1 for all x € H and
(z,y)g = 0 for any pair z # y of elements in S.

Theorem 17.12. Let S C H be orthonormal. Then the following hold.

1 For any v € H we have

Z \(u, s)g|? < ||ull? (Bessel Inequality). (17.2)
seS

2 Let Vg be the closure of the subspace of H spanned by S. The following are equivalent:
a) u € Vs;

b) D I(u,8)ul® = l|ullF

seES

c) The series Z(u, s)gs is convergent in H with limit u.
ses

& For any uw € H the series Z(u, s)s is convergent in Vg with limit Py,u and we have
s€S

Z |(u,8)|* = || Pygull3; (Parseval Identity). (17.3)
ses
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Proof. Let, to begin with, S be at most numerable. We will suppose S is exactly numerable
and we will write the elements of S as {s;};en. Consider sy, ...,s, and let

n

Spu = Z(u, Sj)HSj- (17.4)
j=1
Then .
1SnullFr = 1w, s5)ul*. (17.5)
and
lu — Spullfy = llullF — 2Re(u, Snu)g + |Spullz = lJullzr — | Snull% (17.6)

by (u, Spu)g = Z?zl |(u, sj)HP, which follows from (u,u — Spu)g = 0. Hence ||Spullg <
|lu|lzr. Then we conclude

> lus)ul® < lulF, (17.7)
7j=1

in the case S countable. Obviously, also the case S finite set is proved.

Let us assume now that S is infinite with cardinality strictly larger than card(N). Let
S ={seS: (us)y # 0} If card(5) <card(N) there is nothing more to prove. Let
card(S) >card(N). Then it is not restrictive to assume S = S.

For any m € Nlet S(m) = {s € S : |(u,s)g| > 1/m}. It is immediately clear that S(m)
is a finite set, since otherwise we could consider a sequence of distinct terms {s;}jen which
from (17.7) satisfies

e} 1 o
me Zusj 2 < ullf < oe,

which is obviously absurd. But from S = U,,enS(m) and card(S(m)) < oo for any m imply

card(S) <card(N) yielding a contradiction. This completes the proof of the 1st claim of

Theorem 17.12.

Let us turn to the 2nd claim. Let uw € Vg. For any € > 0 there exists s5,...,54, € S
k

and \p,...,\; € K such that |ju — ZAJ'SUZHH < €. Collecting all these s,, for a sequence
=1
€ \, 0, we see that an at most countable subset S’ of S remains defined, such that v € Vg.

So, it is not restrictive to assume that the initial S is at most countable. Then we can
write S = {s;}jes, with J either finite or countable. For definiteness, let J = N. Then
u € Vg implies that for any € > 0 there exists n € N and Aq,...,\, € K such that
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n

n
lu— Z)\jstH < €. We have, for S,u := Z(u, Sj)HSj
=1 j=1
2 2

n
u—z/\jsj = Zusts]—&-Z U, S5)H — Aj) Sj
j=1 J=1 J=1

H H

2 2
= |lu = Snpullfz + Z () = AP = Jlu = Soullg -
j=1

which shows that

n
lu— Spully < u—Z)\jsj <€
j=1 H

Notice that the above implies also

m
lu — Smull g < u—Z)\jsj <eforallm>n
j=1 H
just by setting A\; = 0 for n < j < m. Then

[e.e]
|lu — Spull 5 D2H0 ) = u = Z(u, Sj)HS;-
7=1
n—-+0o

It follows that, ¢) must be true. Obviously c¢) implies a). Next, if ¢) is true, from S,u

u in H we have ||Spul|% noteo, |ul|%. So, since

I1Snullfy = Z\ (u, ;) |* we get Z! u, s3)* = [lullF,

hence proving c¢)==-b).
Now, let us assume b). By (17.5) and (17.6) we have

)HIQMU

)

lw = Swullfy = llulldr = 1Snulld = lulf =D Iu,s;
j=1

where the limit holds by b), obviously proving S,u D2EC win H, and thus c).
Notice that for v € H with have Py u € Vg and (u,s)g = (Pygu, s)y for any s € S.
So in particular c¢) is true for Py u yielding

Pyyu= Z(vau, s)gsin H
seS

(17.3) follows by b). The proof of Theorem 17.12 is completed. O
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Definition 17.13. Given a Hilbert space H, an orthonormal basis is an orthonormal subset
S C H such that Vg = H.

Theorem 17.14. FEvery Hilbert space H admits an orthonormal basis.

Proof. Tt can be proved using Zorn’s Lemma. In fact, consider
S := {5 : S is an orthonormal subset of H},

with the order relation C. Notice that & is inductive, that is given a totally ordered set

) C G, then S = UgenS is an upper bound of . By Zorn’s Lemma, there is a maximal
—P

element S € &. If Vo & H, let H > u ¢ Vs. Then setting, U Vst

= U= Tu—Pygulln
Sp = {v}US 2 S is an orthonormal set strictly larger than S, which is absurd. So
Vg =H. O

we have

il-x
Example 17.15. Consider the set S := { ¢ T:le Zd}. It is easy to conclude that it is

(2m)?
an orthonormal subset in L2(T?). We claim it is an orthonormal basis. To see this, notice
from L?(T¢) = L2(T)®c9 that it is enough to prove this for d = 1. Since CO(T) = L*(T),
it is enough to prove that C°(T) C Vg. Recall from (7.21) that for any f € C°(T) we have

onf UimAN fin C°(T), for the Féjer sequence o, f: obviously, this implies convergence also

in the weaker topology of L?(T). On the other hand, any o, f is a trigonometric polynomial
and so we have o, f € Vs. Hence f € Vg for any f € CO(T).
Having proved that S is an orthonormal basis of L?(T?), we have from Parseval Identity

eif-:p 2
2 (“ (%)z)‘ _E;Zd

Lezd
and in L?(T%) we have u = Z u(f)
ezl (2m)
Notice that we got an 1-1 map L?(T¢) — ¢2(Z%) which is an isometry with the image,
and since this image is dense in ¢?(Z%) (since it contains all the trigonometric polynomials)
and is complete (being isometric to the Hilbert space L?(T?)) we have an isomorphism

LX(T%) 5 f — f e 2(Z4).

! u(z)e T dx
(2 )% Td
s

2
= @0 S @O = ul2zpay

ez

(17.8)

el@-x

-
2

Exercise 17.16. Show that, if {e,} is an orthonormal basis of a separable Hilbert space
H, we have e, — 0.

Exercise 17.17. Show that, if {e,,} is an orthonormal sequence in a Hilbert space H, we
have e,, — 0.

Remark 17.18. Notice, by Exercise 11.28, that there is no sequence f, in ¢'(N) with
[ fullerayy = 1 and f,, — 0.
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Lemma 17.19. Consider f,g € L'(T%). Then we have

o —

fg(n) = (2r)*f(n)g(n). (17.9)
Proof. We have

x g(n) = (2m) ¢ e Tty g(x)dr = (2m) ¢ re T xr—
Fratm) = 0 [ e agloys = @n)! [ e [ @ poy
= (2m)~° / e @) eT I £ (5 — y)g(y)dwdy = (27)! f(n)g(n).

Tdx T4

O

Exercise 17.20. Consider a p € C°(R%R) s.t. [ p(x)dr = 1 and set pe(x) := e 9p(z/e).
Show that in the space

CYRY) := {f € C°(R%,R) : lim f(z) =0} C L®(RY)

Wehavepe*fi>f

Exercise 17.21. Show that it is not true that p. x f ﬂ f for all f in the space
BCY(R?) := C°(RY,R) N L=®(R?) C L>®(R%).

This exercise is better understood using the Fourier transform. Consider the formula
por £@) = Fla) = [ ot/ (1o =) = Fla))dy
and, for n € Z%, let us apply this formula to
() () = @) = [ty fe) (=) = f(@) dy

Now, we can suppose that p € C®((—m,7)% R), so that in the right we have a Fourier
coefficient. By the Riemann-Lebesgue lemma we have, for fixed e,

|pex (™ f (L)) (2) — ™ f(2))|
- '/Rd e Iply/e) (e ™V f(x—y) — f(x)) dy

2T | f(a)].

Now consider ¢ € C°((—1/2,1/2)% R), for simplicity even, and consider the function

= Zei"“cp(:v —ney), with e; = (1,0, ...,0) and with 1 = z - e;.
neZ

Then

pex f(z => / p(y/e) (7™ p(x — y — ner) — p(x — ner)) dy

nez
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and fixing m € Z we get

po f(mes) = flmer) = 3™ [ lply/e) (7ol = m)es = 9) = ol = ner) dy

nez
im?2 — —in im?2 - —im im?2
=e /Rde Yo(y/e) (e7™ p(—y) — (0)) dy = e /Rde Yo(y/e)e ™ o(—y)dy — ™ o(0)
where we used the fact that

supp e "V p(— U —(n —m)er) = (n —m)ey + supp ¢ C (n—m)er + (—1/2,1/2)¢
supp pe = esupp p C Dga(0,€) and
(n —m)er 4+ (—=1/2,1/2)4 N Dga(0,¢) =B if n # m and 0 < € < 1/2,

since x € (n —m)e; + (—1/2,1/2)% implies || > |n —m| — 1/2.
Now again, by Riemann-Lebesgue we get, for any given 0 < e < 1/2,

|pe * f(mer) — f(mer)] =2 [(0))].

For (0) # 0 this implies that [|pof — f | o (zey > Suppez |pexf (mer)— f(mey)] = [o(0)] > 0

and so [|pe * f — fHLoo(RdVGﬂO.

Exercise 17.22. Find the spectrum o(T) of the operator T : (?(Z) — (?(7Z) given by
(Tx) = xp—q for all k € Z, where x = (zg)kez.

Answer. Notice that
(2m) Y (THre™™ = (2r)71 Y Flk = 1)e = e f(z),
kEZ kEZ

so that we conclude that
Tf=cif.

This means that the o(T) coincides with the spectrum of the multiplier operator f — e\ f
inside L?([—n,7]). The latter spectrum is {€* : x € [—7, 7]} =the unitary circle centered
at the origin. O

Ezample 17.23. The operator defined in ¢2(Z%) by

d
Au(n) = Z u(m) — 2du(n) (where jn — m| = Z Inj —myl|) (17.10)
meZz4 j=
[n—m|=1
is a discrete version of the Laplacian (the finite differences Laplacian). It is a bounded
operator in ¢2(Z%).Keeping in mind the isomorphism L?(T%) — ¢2(Z%), see Example 17.15,
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we have

(2m)7 Y émrafm) = 2m) Y v [ ST f(m) - f(n)2d
neZzd nezd |nn—lr€nz|d:1

_ (27T)_d Z eim-x}-\(m) Z ei(n—m)-x —9d

meZ4 nezd
In—m|=1

= (2m) ¢ Z e F(n) Z cos(m - z) — 2d

nezd meZ?
|m|=1

d
= ¢(z)f(x) , where ¢(z) := Z cos(m-z) —2d =2 Zw(xj)
meZ? Jj=1
|m|=1

where 9(z;) = cos(x;) — 1. Here ¢(T?) = [—4d,0]. Notice that we have shown

Af(n) = ¢f(n).

Up to a conjugation by an isomorphism, the map (17.10) is equal to the multiplier operator
f — &f. These two operators have the same spectrum and so, recalling Exercise 5.19, we
have o(A) = [—4d,0]. Notice that there are no eigenvalues.

Remark 17.24 (Schmidt’s Orthogonalization). Given a finite or countable sequence {f;}
sequence of linearly independent elements of a pre—Hilbert space H, then there exists an
orthonormal set S spanning the same linear space of {f;}

Indeed, setting hy = f1 and g1 = h1/||h1||g and by recurrence

n—1

ho = fo =Y _(fn:95)9; and gn = /|| B 11,
Jj=1

It is easy to see by induction that for any n, Span{fi,..., fn} =Span{gi,...,g,} and that
{91, .-, gn} is an orthonormal set. The statement follows.

Example 17.25. By the Weierstrass Approximation Theorem we know that the span of
{1,t,t2,13, ...} is dense in C%([a, b], R) for any closed interval [a, b], and so in particular is also
dense in L?([a,b],a(t)dt), for a(t) € L'([a,b]). If we consider Schmidt’s Orthogonalization
{Py(t), Pi(t), Py(t), P5(t),...} we obtain the Tchebyschev system of orthogonal polynomials
in L%([a, b]).

Notice that if take away any finite number N of elements from {1,¢,¢2,¢3,...}, then its
span is not dense in L?([a, b],dt) and in fact its closure has codimension equal to N. This
is conspicuously different to what happens in C%([a, b]), see Example 6.21.
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Exercise 17.26. Show that if x,, — x in a Hilbert space H and ||z, | g Lima N |z ||z, then

Tn i e SN strongly in H.

Remark 17.27. The above statement continues to be true for uniformly convex Banach
spaces, see Proposition 3.32 [3].

Exercise 17.28. Let H be a Hilbert space and Y ; H a proper, nontrivial closed subspace.

a Show in an elementary fashion, without resorting to Corollary 6.2, that for any ¢ € Y’
there exists an extension h' € H' of v with [|A/|| g = ||¥/||y-

b How many such extensions exist?

Answer. Consider the orthogonal decomposition H = Y @ Y. Recall that we have
isometric isomorphisms H >z — (w2)g € H, Y >y — (y)g € Y and Y+ 3y, —
(vyL)m € (Y1), So any functional g € Y’ can be identified with a y € Y, with |g|lys =
llyllzz. Obviously y € H defines a functional (-, y)y € H' which is an extension of g and has
the same norm of g.

The question is if there are other possible extensions, and the answer is no. Any such
extension f € H' of g = (-,y)g would have to be of the form f = (-, )y for some z € H.
It is elementary that with respect to the splitting H =Y @ Y+ we would have z =y + y|
with some ¢, € Y and with the same y € Y of g = (-,y)g. It is elementary that

e = /Nyl + Nyl

So, from
VIlE + el = llzle = 1flle = lglly = llyla.
we conclude that we must have ||y ||z = 0. O

17.1  Operators in Hilbert spaces
Definition 17.29. Given a Hilbert space H, for any T' € L(H) it remains defined another
operator T € L(H) such that

(Tz,y)g = (z,T"y)g for all x,y € H (17.11)
T is called symmetric or selfadjoint if T' = T™*.
T is called unitary if it is an isometric isomorphism.

Remark 17.30. Notice that in the very important case of unbounded operators, the two
notions of symmetric and of selfadjoint operator do not coincide.

Exercise 17.31. Show that 7™ is well defined, that T** = T, that HTHE(H) - HT*HL(H)
and that | 7T | cgmy = ITT* || ey = 1T 11y

Exercise 17.32. Show that if 7" is unitary, then 7% = 7.
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Definition 17.33. Given a Hilbert space H, an operator T' € L(H) is positive if
(Tz,z)g >0 for all z € H. (17.12)

We write T" > 0.
Given T',S € L(H), we write T > Sif T'— S > 0.

Remark 17.34. 1t is easy to see using an appropriate polarization that if H is a Hilbert
space on C, then A € L(H) with A > 0 implies A = A*.

Exercise 17.35. Show that 7*T > 0 and TT* > 0.
Lemma 17.36. For T € L(H) selfadjoint, consider the orthogonal decomposition
H=%kerT @ ker"T. (17.13)
Then the above decomposition is T —invariant and, furthermore, we have
ker' T = R(T). (17.14)

Proof. The invariance is elementary and left as an exercise, while (17.14) follows from (6.40),
after the identification H = H' = H”. This can also be seen in an elementary fashion and
from scratch, from

(vay)H = (Txvy)H for all z,y € H,

where we see that if 2 € ker T', then the above is zero for any y, which tells us ker™ T D R(T).
Viceversa, if we had ker™ T 2 R(T), there would be a z € ker™ T\R(T). Furthermore, we

could take z € R(T)L. Then we would get z € ker T which would imply 0 = (2, 2)g = ||2]|%
which implies z = 0, yielding a contradiction.
O

Remark 17.37. The decomposition (17.15) extends to a general and not necessarily selfad-
joint T' € L(H) as

H = N, (T) ® (N, (T*))*, (17.15)

where Ny(T') is the generalized kernel, see formula (5.20).

Lemma 17.38. The McLaurin series of \/1 — z is absolutely convergent for all |z|c < 1.

Proof. The series is

iH)”@ 2 where @ I (57; G-1).

130



and has radius of convergence 1, so that it is absolute convergent for |z|c < 1. Let us see

case |z|c = 1. By direct inspection, we have (—1)”(%) < 0 for all n > 1. Then, for any
N e N,

i}o (—1)”@‘ - ‘é“””@ _ 2_;3{12(_1)71 @x
s2- i(_l)n @) " =2- lim Vi-o=2.

This implies the following, which completes the proof,
1
- 2] <2
car(2) <
O

Theorem 17.39 (Square root of a positive operator). Let A € L(H) with A > 0 and let
A = A*. Then there exists and is unique a B € L(H) with B > 0 and selfadjoint such that
B? = A.

[e o]

D

n=0

Proof. First of all, it is not restrictive to assume ||Al|z(z) < 1. Next, we define

(1—A)2 = i(—l)" (i)m, (17.16)

n=0

1

2
where the series is convergent in £(H). We skip the proof that <(1 — A)§> =1-A Ttis

straightforward, using the series (17.16), that (1 — A)% is selfadjoint. Similarly straightfor-
ward is the fact that (1 — A)% commutes with A. Then we can write

A(l—A) = (1 — A)ZA(L — A)z.
We next claim 2
11— Allgay <1 (17.17)
This follows from
(1= A)zl|f = (1= Az, (1 = A)x)y = (z, (1 = A)z)y — (AL = A)z,2) 4
= (z,(1— A)z)y — ((1 ~A)TA(L - A)%x,x)H

= (@, (1= A))y — (A= A)pz. (1= Apx) < (2,0 — D)y <)L= Az ulle]n,

2Operators which satisfy (17.17) are called accretive operators, which is an alternative to the notion of
positive operator in Definition 17.33. Notice that (17.17) makes sense in a general Banach space.
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where we used the fact that the operators are selfadjoint and A is positive. Claim (17.17)
follows immediately.
Notice that by [[A[ zz) < 1 we have

(1= Az, ) = |l2llfy — (Az,2) >0

andsol—A>0.
We also claim that /1 — A > 0. Indeed, using 0 < (A"z, ), < ||z|%, we have

TTns) =+ S0 () (4
H n
1

n=

N 1 N 1
> folfy + Ll S -1 (2) = il (2 - Z(—m(;)) >0

n=1

Thanks to (17.17), we can consider

1 1 ° 1
A= (1—(1—A)?2 = Z(_l)n<2

n=0

)(1 — A" (17.18)

which has the desired properties.
Notice that

ker A = ker A2. (17.19)
Indeed, ker A D ker A% follows from

1
(Az,z) = [|AZ ][,

2
and ker A C ker A3 follows from A = (A%> . Notice that this implies that, for A positive

and selfadjoint, « € ker A if and only if (Az,x),; = 0.

To conclude the proof of Theorem 17.39 we need to check the uniqueness. Let B > 0 and
selfadjoint satisfy B?> = A. Notice that B commutes with A = B?. We conclude that B
commutes with the series (17.18), and so with Az, Then we have

0:A—A:B2—<A%)2:(B—A%) (B+A%).

Then we conclude B = A3 in R (B + A%) = kert (B + A%>
So, since by (17.15) we have

H = ker (B+A%> @ kert (B+A%),
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we need to check the behavior of B — A% in ker (B + A%)

Since B + A2 > 0 and is selfadjoint, by a previous discussion we know that
x € ker (B —I—A%) = ((B —{—A%) a:,x)H =0& (Br,2)y=0= (A%ZL',$>H

Sre kerBﬁkerA%.

So, in ker (B + A%> we have B = A3 = 0 and so, again and trivially, B = A>. Hence

B= Az inall H.
O

Exercise 17.40. Show that if ' € L(H) is such that [T, A] = 0, for A the operator in
Theorem 17.39, then [T,v/A] =0

Theorem 17.41 (Polar decomposition of an operator). Any A € L(H) can be written as
A = UR with R positive and selfadjoint and U unitary. There is a unique such R positive
and self-adjoint operator, we denote it by R = |A| and we call it absolute value of A.

Proof. Let R = VA*A. We have
|Rz||% = (Rx, Rx), = (RQx,:c)H = (A*Ax,x); = (Az, Az),; = ||Az|)3; for any = € H,
that is || Rz|| g = ||Ax| g for any x € H. This implies
ker R = ker A. (17.20)

Since R* = R, by Lemma 17.36 we have the decomposition

H =ker R® R(R). (17.21)

Set now

Uz = {Azl it = R, (17.22)

x if x € ker R.

Notice that, by ker R = ker A, U is well defined in ker R & R(R).
From ||Uz||z = ||2|| &, it follows that U extends in an isometry on H = ker R® R(R). Tt is
easy to check that U is an isomorphism (left as an exercise). Then we conclude URz = Ax
for any x € H.

Now we need to show uniqueness of R. Let A = Uy R; be another polar decomposition.
Then

R? = A*A = RiU{U,R, = R} — R =Ry,

by the uniqueness of the positive square root of a positive self-adjoint operator.
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Remark 17.42. We remark that we have shown that U splits

U:ker R® R(|A|) — ker R® R(A). (17.23)

Exercise 17.43. Check whether or not the U in the factorization A = U|A| is unique.
Exercise 17.44. Show that if A, B,C € L(X) for X any topological vector space, then

[A, BC| = [A, B]C + BJA, C] (17.24)
[AB,C] = [A,C|B+ A[B, C]. (17.25)

Show also
[A,[B,C]]|+ [C,[A, B]] + [B,[C, A]] = 0. (17.26)

Exercise 17.45. Show that if A is self-adjoint then the U in the proof of Theorem 17.41
is self-adjoint.

Remark 17.46. The Spectral Theorem for self-adjoint operators (which is one of the most
important theorems in Functional Analysis, and which will be treated in the next semester
in the course named Functional Analysis) allows to define the operator f(A) for any self—
adjoint operator A and for any Borel function f : R — C. Then U = f(A), with

itz #0
f(x)_{|1|ifx:0.

Notice that the absolute value operator |A| in Theorem 17.41 is, for A self-adjoint, indeed
|A| = f(A), for f(x) = |z|. So the notation and the terminology are consistent.

17.2 Some remarks on Sobolev Spaces

Some of the most important Banach spaces are the Sobolev Spaces, which will be discussed
in some length in the 2nd part of this course. They are based on the Lebesgue spaces
LP. The simplest ones, and the most important ones, are the ones based on L?. We will
discuss them only on the tori T¢, where we will exploit the notion of Fourier Series and the
isometric isomorphism L?(T%) > f — f € ?(Z%) discussed in Example 17.15.

Definition 17.47. For £ € R? we denote by (£) := /1 + |£|? the Japanese bracket.
For any s € R we denote by H*(T%) the completion of the space of trigonometric
polynomials

R w-x
f@) =3 Jin-— (17.27)
=y (2m)2
provided with the norm
1F1Fe iy = D_OZIFOF = [0 F (Ol 0, (17.28)

Lczd
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Exercise 17.48. Prove that if sp > d then || (€)™ [|sp(za) < 00 .

Exercise 17.49. Show that if for n € N we denote by H"(T%) the completion of the space
of trigonometric polynomials (17.27) provided with the norm

1 G ray = D 102 F )l L2re) (17.29)

la|<n
then the norms (17.28) and (17.29) are equivalent and the two spaces H™(T?) and H"(T¢)
coincide.

Exercise 17.50. Show that H*(T?) has a natural structure of Hilbert space and write
explicitly the inner product.

Exercise 17.51. Show that, for A%, for any x € R, the operator defined by /T’f\f(ﬁ) =
(0)5f(€), then A~ : H*(T9) — H7(T?) is an isometry.

Example 17.52. One simple example of Sobolev’s Embedding Theorem, which is a cru-
cial theorem in Functional Analysis, discussed later in the 2nd part of this course, is the
following: if s > d/2 then there is an embedding H*(T?) — C°(T9).

To see this embedding consider for trigonometric polynomials the identity (17.27). Then,
taking absolute value of (17.27), we have

Dl < YOI Y O @ Ifor< | Y o™ PORGRNIG]k

| <N [|<N tezd ||<N
= [140)"* 2 zay L £ 1l s (ay -
By density, this yields
£l cocpay < 140> Nlgz(zay || £ | s ay for any f € H*(T?). (17.30)
Exercise 17.53. Consider for some 1 < m < n the embedding
T > (1, ooy Tm) = (21, e, T, 0,..,0,0) € T™.

Show that the restriction C*°(T",C) > f — flpm € C°(T™,C) extends into a bounded
map

H*(T™) — H* (T™)
when s > ¢ + s,

Remark 17.54. Notice that restriction theorems like the one in Exercise 17.53 play a deep
role in PDE’s. For example, the celebrated Strichartz estimates, which for example for the
group introduced in (7.29), tell that

HeiAtUOHLq(R,LT(Rd)) < Clluoll L2 (ray (17.31)
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for all pairs (g,r) which are Schrodinger—admissible, that is
4= (17.32)

grg%(2§T§ooifd:1,2§7“<ooifd:2). (17.33)
Strichartz proved the non sharp case, that is all cases except those with r = 2 for d > 3,
exactly as a restriction theorem on the paraboloid & = &7 + ... + {3 in Phase Space. The
classical paper is Strichartz [12]. The best explanation for this, as for many other topics, is
in Stein [11]. The endpoint case r = 2 for d > 3 is another classical paper, this by Keel and
Tao [6] (at the time of writing these notes, it is the most quoted paper of the 2006’s Fields
Medal laureate Terence Tao). Strichartz estimates is a very important topic and tool. A
great expert is Damiano Foschi, at the nearby University of Ferrara.

Example 17.55. Recall from the Riesz Frechét Theorem 17.10 that, given a Hilbert space
H, there is a natural isomorphism H — H’ given by u — (u,-). However, often it is natural
not to identify H and H’. A case point are the spaces H*(T%) when s # 0, which are
Sobolev spaces, that is, some of the spaces used in applications of Functional Analysis. If
we consider two trigonometric polynomials, then we have

(f, 9)prey = /T S = Y a0 = 3 0° 70 50,

LeZ4 ¢czd

Then we get

< 1l s eray gl e (ray-

‘(fy 9) 12(T4)

This shows that (-,-)z2(ay : H*(T?) x H=*(T?) — C is a bounded bilinear map. It is
easy to conclude from this that there exists an isomorphism H~%(T%) 3 g — (-, g) r2(1d) €

(H s (Td))l. This sort of identification, arising concretely from the inner product in L?(T9),
is much more common in practice than the somewhat more abstract identification of H*(T¢)
and (H*(T%))".

18 Compact Operators
Definition 18.1. A bounded linear operator T' : E — F between two Banach spaces is
said compact if it sends bounded sets into relatively compact sets.

Example 18.2. A bounded linear operator T : X — Y between two Banach spaces is a finite
rank operator if dim R(T) < co. Finite rank operators between Banach spaces are compact
operators.

Exercise 18.3. Let T' € L(X,Y) and S € L(Y,Z) and suppose that one of the two is
compact. Then S o T is compact.
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Exercise 18.4. Consider a compact operator 7' : X — Y between two Banach spaces.
Show that if 2, — x in the o(X, X’) topology then Tz, 27 T in the strong topology
inY.

Remark 18.5. Consider a compact operator T : X' — Y between two Banach spaces with
X' the dual of a Banach space X. It is not true in general that if 2/, — 2’ in the o(X’, X)
topology then T, 27 Ta! in the strong topology in Y. Indeed, consider Y = R
and consider evgf := f(0), which is bounded from CJ(RY) — R. Let T : L*(R%) — R
be an extension of evy using the the Hahn—-Banach Theorem, Obviously, T" is a compact
operator. Consider any 1 € C%(RY) with ¥(0) = 1 and let v, () = t(nz). Then, by
Dominated Convergence we have 1, — 0 in the o(L>®(R%), L'(R%)) weak topology, yet
T, = evothy, = ¥ (0) = 1 for all n. So it is not true that T, 2% T0 = 0, and this
gives a desired example.

Ezxample 18.6. Lack of compactness of an operator T : E — F' is often related to the action
by a non—compact group. For example, take a convolution

Tf=rxf.

We know that by Young’s inequality (16.23),
1 1 1
ITfll rray < I 1l Le ey 15l a(ray for ~tl= » + 7

The operator T : LP(RY) — L"(R%) is never compact if x # 0 when p > 1.
Indeed, if we take any sequence x, 220 %0 in R?, then by the commutation property
(16.29), we have T'ry, f = 7, T'f. Now, if 1 < p < 0o we have 7, f — 0 in o (LP,LP’) if

1 < p < oo for any f € LP(R?) (See Example 11.17) but, if Tf # 0, we have |7, Tf||r- =
|Tf||z+, and so T, f does not converge strongly to 0 in L"(R%).

Case p = oo is similar. Indeed, 7, f = 0in o (LOO,Ll) for any f € L®°(R?) with compact
support but, if T'f # 0, we have ||, T f|lz~ = [|Tf| r, and so T'7,, f does not converge
strongly to 0 in L>°(R%) (recall, » = co). Notice that here x € L'(R%) and, if x # 0, there
is certainly an f € L>°(R%) of compact support such that x * f # 0 in L>°(R%).

When supp « is compact, we can capture also case p = 1.

Example 18.7. A similar effect of translation invariance is obtained considering scale invari-
ance. So here, in a specific example, we will use scaling as an alternative to translation. A
very important theorem states that
o1 1 d—~
for any v € (0,d) and 1 < p < g < oo with — = — — (18.1)
p q

and for

Tfa) = [ o=l f0)dy (18.2)
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there exists a constant C s.t.

ITfllza@ay < ClFll o ra)- (18.3)

This is the Hardy-Littlewood-Sobolev Inequality. It is related to the Sobolev Embedding
Theorem, although not discussed in Brezis [3] and not in the 2nd part of this Course. We
refer for it to Stein [11]. Notice that

Té,0f(x) = / & — y| AR fO)dy = X / Az — Ay AR )N dy = VTN T S (a).
R4 R4
So we have shown that
—d—a2.4d
Toynf =N aT06,,TF.

It is easy to see (we leave this as an exercise, you'll see something similar when discussing
the Gagliardo—Nirenberg Sobolev Inequality in the next semester) that, for (18.3) to be
true, we need to have vy —d — g + % = 0, which is indeed the condition in (18.1).

So here we have that, under the conditions (18.1), then

Toprf = 42 Tf. (18.4)
n—-+o0o

This can be used to show that the operator T is not compact. In fact, taking A,, ———— 4o00.
we recall that for 1 < p < 0o we have d,, f — 0 in LP(R?) for the o(LP, L*") topology, sce

Example 11.23. If T' was a compact operator, we would have g, T f 224, 0 in norm in

L(R%), but this is not true, because [6g. 70T fll Lagray = 1T | La(ray # O for all nonzero f.
Notice that here, we could have used translation instead of dilation. But there are
examples where translation is not available but dilation is, and in fact you will see it, in
relation to Remark 10 p. 214 in Brezis [3], in the next semester.
Remark 18.8. It is an important topic to find why certain operators fail to be compact,
for example the operator ¢*® : L2(R?) — L4(R, L"(R%)) for an admissible pair (¢,r), see
Remark 17.54. There are results which state that there is a sort of compactness up to scaling
and translation. An important paper is Bahouri and Gerard [2], but there are earlier papers.
The most famous paper exploiting these facts in PDE’s is probably Kenig and Merle [7].
An expert on the failure of Sobolev Embeddings to be compact is Sergio Solimini, now in
Bari but many years ago professor at SISSA.

Exercise 18.9. Prove that (?(Z%) C (9(Z%) for p < q and check if the immersion ¢?(Z9) —
09(Z%) is compact, at least for some p < q.

Answer. One can exploit the existence of translation in Z% which induces translation
in the above spaces, to exclude that these embeddings are compact operators.

Exercise 18.10. Check if the immersion L?(0,1) < L'(0,1) is compact.
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Answer. It is not compact. Notice that we have

L?(0,1) —— L0,1)

| |

2(Z) —— £°(Z)

and if our map is compact, then also the immersion ¢?(Z) < ¢>°(Z) is compact, while we
know from Exercise 18.9 that the latter immersion is not compact.

Exercise 18.11. Check if, for some pair p > ¢ other than the previous one, the immersion
LP(0,1) < L9(0,1) is compact.

Answer. They are never compact. It is equivalent to consider LP(T) — L4(T). It is
not restrictive to pick ¢ = 1 (since we have a continuous embedding L9(T) < L(T) for
all ¢). From Exercise 18.10 we suspect that translations in phase space are equivalent to
multiplications by €*™. So, for any f € LP(T) consider the sequence " f. If a subsequence
e f is convergent in LI(T), then for any e > 0 there exists N(e) such that

) 1| | f(a)|dx < e

j k> N(e) = /T | — e | | f(z)|da = /T

But, using (16.35),

6>/
T

Z/FNMW—%DM@W%%Jiigz/U@W%
T T JT

el (me—ng) _ 1’ |f(z)|dx = /T |(cos(z(nk —ny)) — 1) +isin(z(ng — ny))| |f(z)|dx

which yields

iAuwmea

Obviously, by the arbitrariness of ¢ > 0, this implies f = 0. O

Lemma 18.12. The space of compact operators K(E, F) is closed for the uniform norm,
in the space of bounded linear operators L(E, F)

Proof. Consider Dg(0,1) the unit closed ball in E and let T € K(E,F). To show that
TDg(0,1) is relatively compact it suffices to show that for any € > 0 we can cover TDg(0, 1)
by a finite number of balls in F' of radius €. Let S € K(E, F) with |S —T| < €/2 and cover

SDEg(0,1) by balls Dp(fj,€e/2) for j = 1..n. Then Dp(fj,€) for j =1...n cover TDg(0,1).
O

Theorem 18.13. Given two Banach spaces X and Y, T € K(X,Y) if and only if T* €
K(Y', X')
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Proof. Assume that T' € K(X,Y). We need to show that T%(Dy/(0,1)) is compact. Let
K := T(Dx(0,1)). We know that K is compact. Consider a sequence y/, in Dy (0,1).
Obviously {y,|,} are elements of C°(K,R). It is easy to see that we can apply Ascoli—
Arzeld and conclude that there is a subsequence, which is not restrictive to assume equal
to the initial sequence, such that y;, | D20, o in C°(K,R). So

n=too .

sSup ‘<y;L7T"’U>Y/><Y - QO(TJ“)
z€Dx (0,1)

This implies

n—-+o00,m—+00

0.

N AV S N SO
wGDx(O,l)

This is equivalent to

n——+00,m—-+00
—_—

1Ty, — Ty || x7 0.

This implies that 7*(Dy(0, 1)) is compact.

Let now T* € K(Y’, X'). Then, by the first part of the proof we have T** € K(X" Y").
Recall that from Lemma 6.22 we have T**Jx = JyT. Since T*[; y € K(JxX,Y") and,
having image in JyY, it is T**|JXX € K(JxX,JyY), and since Jy : Y — JyY and
Jx : X — Jx X are isometries and isomorphisms, 7' = J;! T, x Jx € K(X,Y). O
Theorem 18.14. If F is a Hilbert space, then any T € K(E,F) is the uniform limit of
finite rank operators.

Proof. Let TDg(0,1) C U1 Dr(fj,€). Let G be the space generated by the f;, j = 1..n,

and Pg the orthogonal projection on G. Then for any x € Dg(0,1) there is f; such that
|Txz — fi|lF <€ So|PgoTx — fj||r < eandso || PgoTx—Tx|r < 2e. This implies that
||PGOT_TH£(E,F)S2€ L]

Exercise 18.15. Show that, for x € L'(T%), the operator
Tf=krxf (18.5)

is a compact operator T : L2(T¢) — L?(T4).

Remark 18.16. The crucial difference between Example 18.6 and Exercise 18.15 is that T¢
is a bounded manifold.

Exercise 18.17. More generally, show that, for k € Lq(Td) with ¢ < oo, the operator
T.f=kxf (18.6)

is a compact operator Ty : LP(T?) — L"(T9), where 1 +1=1 4

1,1
P q
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Answer. Let us consider the case x € C°(T?). Then & is uniformly continuous and for
any € > 0 there exists § > 0 s.t., if O C T¢ is such that diamQ < &, then oscor < e. So,
let us consider Uj\/:el Dra(y;,8/2) a covering of T¢ and a partition of unity Z;V:el xj(z) =1
such that x; € C°(Dra(y;,6/2),[0,1]). Then

Ly f(z)
Ne
ke fe) = 3o ne=w) [ )y
j=1
N
+3° [ (st =) = =) s () F )y
j=1
SN f(x)
Now, Ly, is a finite rank operator, while
Ne 1
158 oy < €[> / W@y = el fllpame (volUTD)” < evol(T)] ]l o rey-
= Lp(T4)

So || Ly, — Tkl £(Le(Td)) < evol(T?) <29, 0 and we conclude that T, is compact. In general,
if ¢ < oo, we can take C%(T?) 3 &, D20 1 in L4(T%), and then

+
1T, _TKHL(LP(’IN)) < [l&n — HHLQ(’]I‘d) 0

and so, since all the T, are compact, also T} is so. ]

Lemma 18.18. Let W & X, W closed and X Banach space. Then there exists a sequence
vy, such that ||v,||x =1 and

dist(vy, W) 2252 1.
Proof. Given v € X\W, there exists a sequence w,, € W such that

v — wllx 225255 dist(v, W) > 0.

Let v, = % Obviously dist(v,, W) < dist(v,,0) = ||vn]|x = 1. Suppose now that

S := liminf dist(v,, W) < 1. (18.7)

n—oo
Let S < a < 1. Then there would be a subsequence of n and @, € W such that

~ + .
v = wn — (J[v— wp|lx)nllx < allv —wn||x =25 adist(v, W).
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So, setting W > u,, := wy, + ||v — wy || xUn, there is a subsequence of n and wu, € W such
that
lv —up|lx < dist(v, W) —€

for a fixed small €. Absurd. This means that we have S = 1.
O

Exercise 18.19. Let X be an infinite dimensional Banach space. Show that for any
r € (0,1/2) there exists a sequence {v,} in X such that [|v,|x = 1 and the closed balls
Dx (v, r) are pairwise disjoint. Show also that (J72 ; Dx (vp,7) is a closed set in X.

Corollary 18.20. V' Banach with Dy (0,1) compact. Then dimV < oo.

Proof. If dimV < oo we know Dy (0,1) compact. Let us prove the opposite. Suppose
dimV = oco. Then there is a strictly increasing sequence E, of closed vector spaces such
that for any n there is a u,, € E,, — E,,—1 with ||u, ||y = 1 and with dist(uy,, Fp—1) > % Then
[tn — umllv > 3 for n # m, and in particular this sequence does not admit a convergent
subsequence. This implies that Dy cannot be compact.

]
Remark 18.21. The following theorem is a very important tool. As we know, if T € L(R9),
then R(T) = R? <= ker T' = 0. This is not true if 7' € £(X) with dim X = co. However
Theorem 18.22 implies that if 7' = A+ K with A an isomorphism in £(X) and K a compact
operator, then in fact R(T) = X <= kerT = 0.

Theorem 18.22 (Fredholm alternative ). Let X be a Banach space. Let K € K(X) and
set T'=1— K. Then:

1 dimkerT < oo

2 R(T) = (ker T*)*

3kerT=0< R(T)=X

4 dimker T" = dim ker T™.
Proof.

1 For N := ker(I—K), we have Dx(0,1) € KDx(0,1) and so Dn (0, 1) is relatively compact.
Then, by Corollary 18.20, N is finite dimensional.

2 We have R(T) = ker' T* by (6.39), so here we need to show that R(T) = R(T). Consider a
sequence Tz, notoo, fin X, we need to show that f € R(T'). Notice that x,, = Tz, + Kx,,.
If {,,}nen is @ bounded sequence in X, then up to a subsequence, which is not restrictive
to assume equal to the whole series, we have Kz, noroo, g in X. Then z, LimaN f+g

and hence, by continuity, Tz, notoo, f=T(f+g),and so f € R(T).
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The whole point in the above argument was the boundedness of the sequence {z,},
which in general is not true a priori. However we claim that

3 a sequence {y,} in ker T" s.t. {x;, — Yn }nen is a bounded sequence in X. (18.8)
This in turn yields Claim 2 of the statement, because
Txy =T(xn — yn). (18.9)

Notice that kerT'= N and has finite dimension. Let d,, := dist(x,,, V). It is an elementary,
by the Weierstrass Theorem, that since ||z, —.||x € C°(N,R) with limy e ||zn—y||x = +00,
there is an absolute minimum y, € N, with therefore d,, = ||x,, — yn|/x. It is enough to
prove now that {d,} is a bounded sequence. Suppose that this is false, and that there is a

subsequence with limit +oo. It is not restrictive to assume d,, Uima NS By (18.9) and
n—o0 .
Tx, —— fin X,

TCCn n—-+o0o Tn — Yn

— _ —w, - Kw, —— 0 where w,, ;= ———— 2. (18.10)
70 — ynllx |20 — ynllx

By compactness, up to a subsequence which, again, is not restrictive to take the whole
sequence, Kwy, UimAN g in X. By (18.10) we get wy, oo, gin X and g € N. This

obviously implies

n—-+o0o

dist(wp, N) < |Jw, — gllx 0. (18.11)
However
— dist — N dist N d
dlSt(’an,N) = dist (ML’N> _ 1S («'Ifn Yn, ) _ 1S (-’L'nv ) _ % _ 1.
Zn — ynllx |Zn — ynllx dp dp,

So we get a contradiction to (18.11), and this shows that {d,,} is a bounded sequence. This
completes the proof of the claim in (18.8).

3 Assume T is injective. Suppose T is not surjective. We know X; = R(T) ; X is
closed. Then T : X — X is an isomorphism between Banach spaces. Set by induction
Xnt1 =TX,. By induction, this is a strictly decreasing sequence of closed spaces. Indeed
if X, ; Xp—1, then by injectivity X,,+1 = TX, ;Cé TX,_-1 = X,. Next consider z,, € X,
such that ||z,||x = 1 and dist(xy,, X,41) > 1/2, see Lemma 18.18. Now for n > m

Kxp — Kxy = T + [—2p — (Top — Txp)] = T + Tnm

with x,, ;€ Xp41. Hence

|Kxy — Kxp||x > dist(zm, Xm+1) >

N |

But then {Kz,} is not a relatively compact sequence, contradicting the compactness of the
operator K. We conclude that T" injective implies T" surjective.
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Now we consider the opposite implication assume that T is surjective. Then, by
ker T* = R(T)*, see (6.37), the dual T* = I — K* is injective. Since K* is compact
and X' is a Banach space, we conclude R(T*) = X’ and, therefore, from ker T' = R(T*)*,
see (6.36), that T" is injective.

4 Let d = dimker T" and d* = dim ker T*. We have already proved that both are finite. Let
us show first d* < d. If not, d < d*. Notice that codimR(7T") = d*, since there is a natural
identification (X/R(T)) ~ ker T*. Indeed, there is a natural embedding (X/R(T))" — X’
with image in (R(T))", which by (6.37), equals ker T* and, viceversa, given any element of
X’ in (R(T))*, it induces an element in (X/R(T))’. The above algebraic isomorphism is
continuous, and so it is an isomorphism between Banach spaces.

So we conclude that both ker 7" and R(T") are complementary and we have

X=kerT® E=F&R(T), where dim F' = d". (18.12)

So there is a map A € L(ker T, F') with ker A = 0. Let then S = K + APy, 7, with Pyer 7 the
projection on ker T associated to the first splitting. Notice that S is a compact operator.
Then we claim that ker(1 —.S) = 0. Indeed, if (1 — S)x = 0, then

0=01—-K)x — APy =Tx — APy = T2 = 0 = APjer 70,

by the 2nd splitting in (18.12). From ker(1 — ) = 0 we conclude R(1 — S) = X. But this
is not possible because there exists an element f € F which is not of the form APy, rx for
all x € X. So we proved d* < d. Similarly

dim ker 7** < dim ker 7" < dim ker 7. (18.13)

But it is obvious from T%*Jx = JxT and the fact that Jx is an isometry, that we have an
embedding Jx : ker T' < ker 7", and so that dimker 7** > dimkerT". Then in (18.13) we
have equalities. O
Remark 18.23. A consequence of the Theorem 18.24 below, is that, given K € K(X), there
is a K—invariant decomposition

X=Xo @ NJK-N (18.14)
Ao (K)\{0}

where o (K|y,) = {0} and where inside each Ny(K — X), up to an appropriate choice of
basis, K decomposes in a finite direct sum of finite rank Jordan blocks like in Sect. 5.1. So
one can get a sense of the meaning of some of the statements in Theorem 18.22 splitting
and looking singularly at 1 — K|y and at each 1 — K|N9(K_/\) with A € o(K)\{0}, further
splitting the latter in the Jordan blocks. The idea is that, up to the 0 spectrum part, K is
a (possibly infinite) sum of finite dimensional operators.
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So, for example, if we focus on a Jordan block, K leaves a space Sp{ey, ..., e, } invariant
and for this basis has associated matrix

A 1 0 0 1-x -1 0 0
0 x 1 0o ... 0 1-— -1 0
0 0 X 1 0 0 0 1-Xx -1
K=10 o and 1-K = 0 0
0 X 1
L 0 0 Aj i
The interesting case is when A = 1. So, in Sp{ey, ..., e, },
0 -1 0 0 i
O 0 -1 0 ...
0 0 0 -1 0
T=1-K= |9 o
0o 0 -1
I 0 0 0,
Now, let X’ = Sp{ei,...,en} @D Splel, ..., e%} with
<€j’ez’>X><X’ = 5jk~
Then notice that
ik = (ejrer) xxxr = (—Tej1€x) xoxr = — (€41, T7€x) o v
implies T"ej, = —ej ; with Te; = 0. In Sp{ej, ..., e}, }, for this basis, T acts as
[0 0 0 0 i
-1 0 0 0
0 -1 0 0
"=10 o
-1 0 0
I 0 -1 0]

So R(T') = Sp{ei,...,en—1} and ker T* = Sp{e}} and, by (18.15), they are orthogonal to

(18.15)

each other, as indicated in Theorem 18.22; but here, in this example, one can see it!

Theorem 18.24. Let K € K(X) and let dim X = oco. Then:
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10€0(K);
2A€o0(K) and A # 0= X is an eigenvalue;
3 Either o(K) is finite or o(K)\{0} is a sequence convergent to 0;

4 Each X € o(K)\{0} has finite algebraic (and so, also geometric) multiplicity.
1If0 ¢ o(K) then I = K o K~! is compact, which is incompatible with dim X = co.

2 Let A € o(K) and X # 0. If \ is not an eigenvalue then ker(K — \) = 0 and, by Fredholm
alternative, R(K — \) = X. Then, (A"!K — 1)7! is well defined, with domain X. The

graph of A 'K — 1) ' ={(z, N\ 'K - 1)) :2 e X} = {( A\ 'K - 1)z,2) : v € X}
is closed, because, by the fact that R ((A™'K — 1)) is closed, the graph
graph of A 1K — 1) = {(=, - Daz):ze X}

is closed. But then by the Closed Graph Theorem we have (A\™"1K — 1)~ € £(X). Hence
(K—-)\)"1eL(X)andso A ¢ o(K).

3 Suppose o(K)\{0} is infinite. Then, since K is bounded we have o(K) C {z € C: |z| <
[ K[z(x)}- So o(K) is compact. Consider a sequence A, of distinct elements in o(K) and
suppose A, — A # 0. Let Kx,, = Az, and let X, be the span of {z1,...,z,}. There exists
Yn € X, llynllx = 1, dist(yn, Xn—1) > 1/2. Now, for n > m

(K — M)y _ (K — Am)Ym
An Am

Ky, Kyn -
A, Ao —yn+|: Ym +

=Yn + Znm

with zp, mm, € X1 since (A, — K)y, € X,,—1. Hence

K n K m 1
Un _ Zm = Hyn + zn m”X > dlSt(me”—l) >1/2
An Am X 7

and this contradicts the compactness of K.

4 Tt is easy to see that if A € o(K)\{0} then dimker(K — \) < co. Otherwise we could
consider the usual sequence X,, = span{xy,...,x,} C ker(K — \) with dist(z,, X,—1) > 1/2
and ||z,||x = 1. But then ||[Kxz, — Kzy| > |A|/2 > 0 for n # m and we contradict
compactness of K.

Ezample 18.25 (Compact operator without eigenvalues). Let f,, be an orthonormal basis

in a Hilbert space H, and a decreasing sequence in R with a strictly decreasing sequence
n—0o0

ap — 0. Then

A=Y anls fa)ifar

n=1
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has no eigenvalues and o(A) = {0}. It is easy to see that A

N

Z (, fo) i fosr

N—o0
— ans1 220

L(H)

and so A € K(H). It is also easy to see that ker A = 0. Next, we claim

A =3 [T an-ge1(Fommrrs oo (18.16)

n=m j=1

Formula (18.16) is trivially true for m = 1. Suppose it true for m. Then, for fo = 0, we
have

A" =3 T anejit (Foemits Af) m frgr =

n=m j=1
o m
=> Jlanjm (fn m+1,zaz(f7 fl)Hfl+1> frs1
n=m j=1 =1 H
o oo m
= > > T om0 fa-mrr, i) u(f, i) i faa
n=m =1 j:1 6m—n l
co m+l
= Z Han j4+10n— m(f7fn m an+1 Z H Qp—j4+1 f fn m)anJrl
n=m j=1 n=m+1 j=1

where in the last line we used that fy = 0. This yields (18.16) is trivially true for m + 1
proving it for all m.
We have

1
A™ % _ = " <l @ m—0o 0
147 gy = ( TLlanl | < Janl 220,
n=1

n=1

where the inequality follows from,

log (H |an|> = Z %log|an| < log%Z lan|,

n=1 n=1

1
that is, the fact that log (with basis e) is strictly concave and increasing. So ||A™ HE( e moee

0. This implies that there are no nonzero eigenvalues and so o(A) = {0}.
Remark 18.26. Notice that, if X is an eigenvalue from |A| < ||T|| we can derive also |\| <

HT”H% for all n € N. So, in particular, if HT"Hf 21200, we get A = 0.
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Exercise 18.27. Suppose that T' € £(X) is an operator with o(T") = {0}. Is necessarily T
compact?

Answer. No. Take in ¢?(N) the operator

T(Q?l,l'z,...) = (xg,o,x4,0,...., xgn,o ,)
N——

at 2n — 1 and 2n place

It is trivial that 72 = 0. Notice that if A # 0, then

1 T 1 1
_ - =14+ (T —-T)— —-T2 =
(\ T)(A—F)\z) LT -T) - 5T =1

which means that A\ € o(T). O

Exercise 18.28. Consider the operator T f(x) = 2~} fox f(t)dt, that, as we saw in Example
16.40, defines an bounded linear operator in LP(0,1) for all 1 < p < +oo. Show that it is
not a compact operator.

Answer. For any A > 0 let f\(x) := 2> then Ay = a1 fy or also, at east formally,
Tfy=Afi.

Notice that for A € (0,1) we have f} = %a:%*l € L*(0,1). So o(T') 2 [0, 1],in contrast to
Theorem 18.24. ]
Ezample 18.29. For s > o, the inclusion H*(T%) ¢ H?(T?) is compact.

Indeed, let 7 = s — 0. Then notice that A™ : H*(T%) — H(T?) is a bounded operator.
Next, we claim that A=7 : H?(T?%) — H?(T9) is compact. Assuming the claim, the lemma
follows by the fact that the immersion coincides with A™" o A7. So let us prove the claim.
Let us split

il-x il-x

A= 07TF) + > 07O

0<R (2m)2  sr (2m)

(&

= T\rf+Tirf.

[NJisH

Then, for any R the operator T1r has finite rank while

ITorf 1o pay = D (O OX IFO < (R)TZT D" (0¥ |F(0))°

[4|>R tezd
= <R>_2T HfHJ%Icr(']rd)

80 | T2rll gepro(may < (R)7 H2H%0 0. Hence, since Tip ——+2% A~ in L(H(T9)), it

follows that A~7 is a compact operator.

Exercise 18.30. Show that the embedding the embedding in Example 17.52 is compact
for any s > d/2.
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Remark 18.31. Notice that the following statement is true:

1 1
for any s € (0,d/2) we have an embedding H*(T%) — LP*(T%) for P 2 (18.17)
Notice that there is a natural analogue
for any s € (0,d/2) we have an embedding H®(RY) < LP:(R%) (18.18)

with natural analogue H*(R?) space which can be defined using the Fourier transform.
There is also H*(Q2) < LPs(2) for  open in RY (where H*(2) for s ¢ N is more delicate to
define). Usually the proof of (18.17), or of the Sobolev embedding theorem in the context
of more general Riemannian manifolds than the tori T¢ := R?/27xZ? is obtained using
coordinate charts and (18.18).

Ezample 18.32. Notice that the Sobolev Embeddings in (18.17) are not compact. Since we
don’t have at disposal the Fourier transform, it is easier for us to check this in the special
case s € N. Take any u € C®((—m,m)%) and for A > 1 consider 6, \u € CZ((—m,m)%).
Then using the equivalence in Exercise 17.49 consider the equivalent norm

18p 3l s pay = > N0%6pnull p2iray = Y A1 ||0 ot L2 (e

lal<s la|<s
L l
Z )\ ps 2 A‘“'Hég,\aﬁuHLz(W)
la|<s
= S G ) om i a2 S 080 2,
lor|<s lo|=s

)—Hoz| A—~400

d(L- d(L-1)+lal
where we exploited that A ————= 0for |a] < sand A"\ps 2 = 1for |a| = s.

On the other hand we know that

H(S S)\uHLps((,ﬂ.’ﬂ.)d) == HUHLps((,ﬂ.’ﬂ.)d) for all A Z 1. (1819)
Consider A, 2252 400, Then the sequence § A, u is bounded in H*(T%). If the above
embedding is compact, then d,_x, u is relatively compact in LPs((—n,7)%). But in fact, we
know 2 < ps < oo and &, u — 0 in LPs((—m,7)%) so, if a subsequence converges strongly
somewhere, it must converge to 0. But by (18.19) we know this is not the case if u # 0 and
we conclude a contradiction, and therefore that the embedding in (18.17) is not compact, at
least in the case s € N. The argument used is similar to that in Example 18.7. In Example
18.7 we exploited the scale equivariance (18.4). Here we used V4, ) = 02\ V?.
The case s ¢ N is similar, but requires the use of the Fourier transform, which will be intro-
duced next semester. This argument is used in Brezis [3] to show that Sobolev Embedding
WHL(T) — L(I) is always not compact, for any interval I, and will be discussed in the
next semester.
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Exercise 18.33. Establish if the operator Ry(z) in Example 5.14 is in K(L?(R)).
Exercise 18.34. Establish if the operator Ry (z) in Example 5.15 is in K (L?(R)).

Ezample 18.35. The operator
Tu(at):/ u(t)dt (18.20)
0

defines a compact operator T' : L'(0,1) — L'(0,1). To get a sense whether or not is
compact, it makes sense to consider sequences like f,,(z) := nx(_1,0/(n(z —1)) = nX}1—1/n1]-
Then

0ifo<z<1-1/n
Thnlz) = {n(z (l—1/n) ifl-1jn<z<l.

Then

: [ _w—a-ym?] 1
/O!Tfn\dx—n/l_l/n(t—(1—1/n))dt_n 5 =

1-1/n

So T fullz1(0,1) 12720, 0, and this is compatible with T’ being compact.

In fact, in the Spring Semester you will see that the embedding W1(0,1) < L(0,1)
is compact and it happens here that T € £ (Ll(O7 1), wti(o, 1)) However this is not an
adequate answer now, since in this moment we don’t even know what Wh1(0,1) is .

Let us see if we can use the compactness criterium by Kolmogorov, Riesz, Frechét. Let

us consider
/ f(t dt—x/ (@) (18.21)

Notice that S € £(L'(0,1),C%([0,1])) and that Sf(0) = Sf(1) = 0 for all f € L(0,1).
Extend Sf(x) =0 for x € R\[0, 1] and let

F={SfeL'R): feDnpun01)}
Let us check that condition (16.30) is satisfied. For definiteness let h > 0. Then

1-h 1 h
1SF(-+h) — Sfll ) = /0 SF(e +h) — Sf(x)|dz + /1 18 fa)lde + /0 1SF(2)|de.
Since [|S ]|z ®) < 2/1fllz1(0,1), the sum of the last two terms is bounded by 2|h[. Next
1-h 1-h
/0 Sf(x+h) — SF(@)ldz < Bl o + / dz / (t)|dt

= Al o + /0 dtlf(2)] / o = 2101y < 2

This yields (16.30) taking A > 0. With a similar argument we can consider the case h < 0,
obtaining the desired compactness.
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Exercise 18.36. Let I =[0,1] C R, X = C°(I) and Y = L(I). Set

Tu(z) == /Ox xyu(y) dy.

a) Prove that '€ £(X) and T' € L(Y).
b) Establish if 7" is compact in X and in Y, justifying the answer.

18.1 Hilbert—Schmidt operators
The following is a very important class of operators.

Definition 18.37. A linear operator T : L?(X,du) — L*(X,du) is a Hilbert-Schmidt
operator if it is of the form

Tf(x)= /XK(:U,y)f(y)d,u(y) with K € L?(X x X, dp x du).

We denote ||T|us := || K||L2(x xx)-
It is straightforward that T' € L£(L*(X,du)). Indeed

t/du@anum2gh/duuﬂurufﬂ&axwfﬁﬂX)=ka%qumnﬂ&qu

so that in particular we obtain

I TN zez2(xap)) < NTNms-

It turns out that T is also compact.

Notice that there exists a sequence of K, € L*(X,du) ® L*(X,du) with K,
in L?(X x X). But, then, if we set

n—-4o00 K

nﬂ@5AM@wmmw»

we have

+
IT = Tallerex.apy) < 1T = Tullgs = 1K — Knllr2(xxx) ——— 0.

Now, for each n, we have dim R(T},) < oo, so T), is compact. Then also T is compact.

Exercise 18.38. Let T'f :/ f(#)dt in L*(0,1).
0

a) Find T*.
b) Show that T is Hilbert—Schmidt operator.
c) Find o(T).

151



Remark 18.39. Notice that T is compact in L?(0,1) but f — %Tf7 while bounded, is not
compact, see Example 16.40 and Exercise 18.28. Notice also that it is possible to compute

T f(a /f xn__tl dt.

. o +
Notice that this implies |77 z(zr(0,1)) < ﬁHTHE(Lp(O’l)) 2272 0 and in particular,

shows in the previous exercise, that o(7T") = {0}.

Exercise 18.40. Let A, B € £(X) with X a Banach space..

a) Show that if either A or B is compact, the composition AB is compact.

b) Is the condition that one of A and B be compact, necessary in order for the com-
position AB to be compact?

18.2 The Lax—Milgram Theorem

Definition 18.41. Let H be a Hilbert space on K = R (resp. C). A bilinear (sesquilinear
if K =C) form B: Hx H— K is said bounded if there is a v € R, such that

1Bz, y)| < lalla Iyl for all 2,y € H. (18.22)
and coercive if there is a € R4 such that
§||z)|3 < |B(z,z)| for all z € H. (18.23)
Ezample 18.42. Let V € C°(T?, [0, +00)) with V positive and V # 0 and consider the

HY(T4,C) x H'(T%,C) > (u,v) — B(u,v) € C
B(u,v) = (Vu, Vv) r2(pa cay + (Vu, v) 201 o) (18.24)
By the simple fact that V € £ (H(T¢, C), L*(T? C%)) and that the multiplier operator

u — Vu is bounded from L?(T¢,C) into itself, we obtain that the above sesquilinear map
is bounded. Now let us check that it is coercive. We have

(Vu, Vo) gt ety = IVl 72 pa cay = [I080) |70 0oy = D (0

nezd
~ _ d_.
= 2m)* " Inflam)? = 27" (1 + [nf)fam)|* = 27 lu — (27) 7 28(0) |31 pa ¢y = 0.
n#0 n#0
(18.25)
We have
|<VU7U)L2(’JTCI,(C)‘ < ”VHLOO(Td,(C)‘|UHL2(’J1“17(C)HUHLQ('M,C) (18.26)

Notice that [|u]%pa e = [GO0)? + u — (27)~2a(0

( )Hill(’]l‘d,(C)' Since V' > 0, we have

(VU U)L2(Td,(C) 2 O
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If say [@(0)[> < C?||u — (2r)~2a(0)
(18.25) we conclude

|2 1 (T4,0) for a C' > 0 to be defined momentarily, from

— _d .
Buyu) 2 |Vl aa ey 2 27" |lu = 2m) 7280 771 ra )
2! g _d
= 17 gz (= @m) 320 o o) + llu = @0 280) 1 )
27! S0 (2 _d 2-1
> s (190)P + llu = ) 250) By gy ) = 11Nl ooy

. ~ _d_.
If instead [@(0)[2 > C2||u — (2m) "2 6(0) |21 g

|(Vu, ) p2pa )| > (2m)~4(VE(0), 6(0)) 2 o)
d__
= 2||V|[ oo (ra,cyllu — (2m) "2

we can consider

&.

d

B0) | 2,0y 12m) 2 TO) 2z ) — IV Lzoe oyl = (27) 30D |2
> (@0 UVl gregy = 220) " E IV e,y O = IVl ooy C72) [@(O)]2,

d .~
2

So, choosing C > 1, for [6(0)|? > C?|lu — (27) " 2u(0 )HHl(’]I‘d c) we get

(V) p2gpa ¢y 2 271 @27) |V || e gy [@(0)

27 2m) W) (oo 271 2m) IV oy
- ———— T (@O + CaO0)) 2 —— gl oy

So we get the lower bound in (18.23) for

0 5 < . 2_1 1.(2 —d Vv
< _m1n1+02{ ,(2m) 4| ||L1(Td,<C)}'

Notice that

B(u,v) = (Vu, Vo) p2(ra cay + (V, v) p2(pa ¢y = (AU, 0) p2(pa cay where A := —A +V,
(18.27)

where A € L(H(T¢,C), H~Y(T¢,C)).

Example 18.43. Recall from the Riesz Frechét Theorem 17.10 that, given a Hilbert space
H, there is a natural isomorphism H — H’ given by u — (u,-). However, often it is natural
not to identify H and H’. A case point are the spaces H*(T?%) when s # 0, which are
Sobolev spaces, that is, some of the spaces used in applications of Functional Analysis. If
we consider two trigonometric polynomials, then we have

(f, 9) 2oy / f@g@dz = 3" F0F0 = 3 07 Fo) ()~ 500).

Le74 Lczd
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Then we get

< 1l ezs (vey 19 g1 =5 (ay -

’(fy 9)L2(1rd)

This shows that (-, ) 2(a) : H* (T4) x H=%(T%) — C is a bounded bilinear map. It is easy to
conclude from this that there exists an isomorphism H~%(T¢)g 53— (-, 9)r2(14) € (H® (Td)),.
This sort of identification, arising concretely from the inner product in L?(T9), is much
more common in practice than the somewhat more abstract identification of H*(T?) and
(H*(T%)".

Theorem 18.44. Let B be like in Definition 18.41 . Then there exists S € L(H) which is
invertible, S~' € L(H), such that

(z,y)n = B(z, Sy). (18.28)

We have ||S| zry < 071 and |S7 oy < - If B is a symmetric (or Hermitian) bilinear
form, then S is a symmetric operator.

Proof. Let
D :={y € H: thereis ay” € H such that (z,y)g = B(z,y")g for all z € H }.

Obviously 0 € D, with 0* = 0. y* if it exists is unique, since 0 = B(x,y; — y5) for all z,
and so in particular for x = y} — y3, implies 0 = |B(y} — v, yf — v3)| > ||y — v3|% and so
lyT = y3llm = 0.

So we have a well defined function S : D — H defined by Sy = y*. It is easy to see that S
is linear and that

3lISyliE < 1B(Sy, Sy)l = [(Sy,y)u| < 1Syl|allylar-

So ISl zpa) <671 B
Next, we claim that D is closed. First of all, we have an extension S : D — H. For
D>y, UimaaN z, then by continuity Sy, D2H% w for some w € H with, by the continuity

of B,

(x,2)p = lim (x,yp)g = lim B(z,Syn) = B(z,w).

n—-+o0o n—-+oo

So z € D with w = Sz.

It remains to be shown that D = H. Suppose D ; H and consider wy € D+ nonzero. Then,
by |B(z,wo)| < v||z| m||wol m, the Riesz Frechét Theorem 17.10 guarantees the existence of
a w € H such that B(z,wg) = (z,w)y for all z € H. This implies wg = Sw. Then

l|woll?; < |B(wo,wo)| = |(wo, w)r| =0 = wy = 0.
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The above argument shows that D = H but also that S(D) = H. Since S : H — H is both
surjective and injective, and since it is bounded, it follows that S~ : H — H is a bounded
operator. We have |(z, 5~ 1y) | = |B(z,1)| < lsllallyller and s0 5 cqany <
Finally, from (18.28) and if B is Hermitian, cf. Definition 17.2, we have

B(:z:,y) = (:1:7 Sily)H = ((5*1)*:1:73/)}1 = B(yvx) = (y7 S_lx)H = (Silxa y)H7

from which we read that (S71)* = S~!. From this we conclude also S* = .

O

Corollary 18.45 (Lax-Milgram). Under the previous hypotheses, let f' € H' and consider
the problem of finding u such that

B(v,u) = <v,f’>HxH, for any v € H. (18.29)

Then there exists exactly one solution and is given by u = Sf, where f € H and f' € H’
are related by (-, f") oy = (5 fH-

Proof. We know there is an isomorphism f' — f such that (-, /) ;. v = (-, f)a. We also
have

o)y = (0. f)a = B(v,Sf) for all v € H.

Sou=Sf.
O

Lemma 18.46. Let T' € L(H) be selfadjoint. Then o(T) C R.
Proof. Let A € C\R. Then, for

B(u,v) == ((T — M, v)m, (18.30)
obviously B satisfies (18.22) for v = |||l 2z + |-
From

B(u,u) = (T — Nu,u)g = (T — Ar)u,w) g —iAr(u, u) g
€R €R

we obtain

|B(u,w)] > iy

and so we get the lower bound (18.23) with = |A\;| > 0. So there exist the S, S~ € L(H)
with

B(u,v) = (T — Nu,v)g = (u, S™ )y for all u,v € H.
Then (T —A) = (S71)* and so (T —A\)~! = §*. Then A\ € o(T) if A ¢ R, and this completes
the proof o(T) C R. O
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Exercise 18.47. Let U € L(U) be self-adjoint and unitary. Show that o(U) C {—1,1}.
Furthermore we have

P ker(U - ). (18.31)
Ao (U)

In particular show that for U # 41 then we have a nontrivial orthogonal decomposition
H =ker(U + 1) P ker(U - 1). (18.32)
Proposition 18.48. Let T € L(H) be selfadjoint. Then
inf o(T) = m where m := inf{(Tu,u)y : w € H with ||ul|g = 1} (18.33)
supo(T) = M where M := sup{(Tu,u)g : v € H with ||u| g = 1}. (18.34)
Furthermore ||T|| z(gy = max{|m|, M}.

Proof. We know already that ¢(7") C R by in Lemma 18.46. By proceeding like in Lemma
18.46 for

R>\¢&[m,M]

we get A € o(T'). Indeed, for B like in (18.30), B satisfies (18.22) for v = ||T'|| z(g) + [A[- If
say, A < m, we have

B(u,u) = (Tu,u)ir = Allullf; > (m = A) Jul

and so we get (18.23) with 6 =m — A > 0. We conclude that if A < m then A\ & o(T).

The proof for A > M can be done similarly or, alternatively, one can observe that case
A < m implies case A > M by replacing T~ —T.

We now need to show that m, M € o(T') and it is not restrictive to reduce to the proof
of m € o(T). Let us consider B(u,v) := ((T'— m)u,v)y. Since T — m is symmetric and
positive, by B(u,u) > 0 for all u € H, by Theorem 17.39 it has a positive and symmetric
square root. So we have

|B(u,v)| = |((T = m)u,v)u| = (T —m)zu, (T —m)2v)p| (18.35)
< (T - m)%UHHII(T m)2vl|g = /Bu,u) /B(v,v) < v/Blu,u)y/Alvln.
Then,
(T = m)ullr < vAVB(u,u) = AV (T — m)u,u)p. (18.36)

Then, there exists a sequence {up bneny With [[un || = 1 such that ||[(T — m)un || g ~=2=5 0.

This implies that m € o(T). Indeed, if m & o(T) then (T —m)~! € L(H) and

L= Junlli = 1T = m) (T = m)ugllir < |(T = m) ™ e (T = m)unllr “= 0,
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yielding a contradiction.

Finally, we need to show that ||T'||zg) = max{|m|, M}. It is not restrictive to assume
M > |m| (otherwise, by the replacement T' ~» —T we can get to this case). By (5.19) we
already know that M < ||T| zg). If T > 0, then ||| zq) = ||\/TH%(H) and

1Tl ey = sup{||Tullr < lullzr = 1} = sup{|[VTull% : llullr = 1} = sup{(Tu, w)n : |lulm = 1} = M.

If T is not positive, then by Polar Decomposition Theorem 17.41 we have T' = U|T|, with
U unitary. Since T is self-adjoint, by Exercise 17.45 the U introduced in Theorem 17.41
is self-adjoint. If U = 1, then T is positive, so here U # 1. If U = —1 then it is not true
that M > |m|. So in our case U # =£1 and, by the solution of Exercise 18.47 we have the
orthogonal decomposition

H =ker(U + 1) P ker(U — 1). (18.32)
Since [T, U] = 0, T leaves the above decomposition invariant. Then,

T\ker(Uq) = U’Terr(Ufl) = |Terr(U71)
Tlerw+1) = UlTllkerw41) = = T llker(w1)
Then

1Tl 2y = max{ [ T]|| £erw—1y)> 1T £(ker(—1))} < M.
O]

Theorem 18.49 (Spectral decomposition of a selfadjoint compact operator). Let T € L(H)
be selfadjoint and compact operator and let H be separable. Then there exists an orthonormal
basis of H formed by eigenvectors of T'.

Proof. Using T' = U|T| and the decomposition (18.32), it is easy to show that it is not
restrictive to assume T > 0. So, assuming 7" # 0, we have M > 0 in (18.33). Notice
that m > 0 in (18.34), and since 0 € o(7") by Theorem 18.24, we have m = 0. Since
o(T) 3 M > 0 it follows that M is an eigenvalue, which has finite multiplicity. Let now
My := M. Then

H = ker(T — My) @ ker (T — M)

Then the restriction of T in kerl(T — M) is again a compact positive self-adjoint operator.
Let My = supo (T’kerL(T7M1)>. Then Ms < Mj. One gets a sequence, finite or infinite
My > My > ... of strictly positive numbers. Finally we consider

H = @31 ker(T — My) @) (@1 ker(T — M)+

Then for the operator T in (®,>1 ker(T' — M,))" we must have m = M = 0, that is T = 0.
So
H = @y ker(T — M,) @ ker T.

157



Theorem 18.50. Consider Example 18.42. Then there exists a sequence of strictly positive

numbers A\, D2H0 5 and functions e, € HY(T?, C) which form an orthonormal basis of

L*(T?,C) s.t. Aey = Anen, where A is the Schrédinger operator in (18.27).

Proof. Let us consider the operator f € L*(T¢,C) — Sf € HY(T?¢ C) ¢ L*(T%,C) which
associates to each f € L2(T9,C) the solution u of (18.29). This means that

(VSf, VU)LQ(Td@d) + (VSf, U)LQ('JTd,(C) = (f, U)LQ(Tcl’C) for all v € Hl(Td, C) (1837)

Notice that here v is the so called test function.
Let g € L%(T¢,C). Then, for v = Sg, from (18.37) we obtain

(fs89)L2(racy = (VSF,VSg)p2(racay + (VSF,59) 12(1a c)
= (VSf,VSg)2(racay + (Sf,VSg) p2racy = (S, 9) 1201 o)

where the last equality follows reversing the roles of Sg and Sf and thinking of the latter
as the test function.

We also know that ker S = 0. Then, there exists a sequence of non-zero numbers p,, — 0
and a corresponding orthonormal basis {e,,} of L?(T%, C) with Se,, = pne,. So we have, for

An =1/ pin,
(ASen — €n,v) p2(1a,cay = (1/pnAey — en,v) p2(re cay = 0 for all v € HYT? C).
That is
(Aen — Anen,v) p2(pa,cay = 0 for all v € HYT? C) = Ae, — Apen, =0 in H (T4, C).

O]

19 Exams
Exercise 19.1. Consider the operator T'f(z) = %f (i)
a Show that it is a bounded operator of L?(R.) into itself.

b Find the spectrum of T. In particular, check if there are eigenvalues and if there are
eigenvalues of finite multiplicity.

c Establish if T" is a compact operator.

Exercise 19.2. Consider a Banach space X and its dual space X’.

a Prove that the o(X’, X) topology is the weakest topology in X’ which makes the maps
X' s 2" — (x,2') v x/ continuous for all z € X.
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b Show that for dim X = 400 also dim X’ = +00

¢ Show that for dim X = +oo the closure of S := {2’ € X' : ||2/||x» = 1} for the o(X', X)
topology coincides with {2’ € X' : ||2/||x» < 1}.

d Find a sequence (fn) in LOO([O, 1]) with ||anLoo([071D =1 Converging Weakly to 0 for the
o(L>([0,1]), L*([0,1])) topology.

f Show that if X is a Hilbert space and (x,) is an orthonormal sequence in X, then x,, — 0
in X.

e Find a sequence (f,,) in L>°([0, 1]) with [|fn|lpec(j0,1)) = 1 and dist(fn, Vo-1) = 1 for V,
the space spanned by f1,...f, such that it is not true that f, converges weakly to 0
for the o(L>°(]0,1]), L([0,1])) topology.
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Exercise 19.3. Consider a Banach space X and let T' € £(X).

a Show that if A € C is such that |A| > ||T" for an € N, then A € p(T).

1
120

b Consider the space X = LP((0,1),C) for some p > 1, a function m € C°([0,1],C) and
the operator T;,f := mf. Show that it is a bounded operator and that its spectrum
o(T,,) satisfies o(T,) = m([0,1]).

¢ When is the operator 1), of (b) compact?

d Recall the exponential of T’

[oe)
TTL
€T = —_—.
n!
n=0

Show that if A, B € £(X) commute, that is [A, B] := AB — BA = 0, then eA*F =

EAGB = GBGA.

Exercise 19.4. Recall that H'(T%, C) is the completion of the set of trigonometric poly-

nomials using the norm
2~
llps oy = 3 ()2 fim) 2.

nezd

il ey = 3 InfPlan) .

nezd

Consider

a Show that || - |’H1(Td7(c) is a continuous seminorm in H'(T%, C).

b Prove the following Poincaré inequality:

3C >0s.t. ||u udx

1 1/md
~ Yol(T9) /Td < Cllull ga(pacy¥ u € H(T?,C).

L2(T4,C)
¢ Let X be a topological vector space which is a Banach space for two distinct norms ||z||;

and ||z||2. Show that the norms are equivalent, that is that there exists a C' > 1 such
that

1
6”1‘”1 < |lz|l2 < C||z||; for all z € X.

d Can we drop the hypothesis of completeness implicit in question (c)?
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Exercise 19.5. Consider the operator T'f = / f@t)dt for f € L1(0,1).
0

a Prove by induction the formula

— )"
" f(x / F(t) (z dt.
(n— 1
b Show that the above implies that o(T") = {0}.

¢ Show that for any g € L'(—1,1) then the map

1
f—>g*f=/0 gz — ) (t)dt

is a well defined bounded operator of L!(0,1) into itself.
d Show furthermore that the operator in (c) is a compact operator of L(0,1) into itself.

e Use statement (d) to conclude that T is a compact operator of L1(0,1) into itself.

Exercise 19.6. Let for f € L?(T% R), ¢ (Zd) > f(n) = (277)_d/2/ e M f(2)dx. Then
Td
consider the Leray projection P : L?(T%, R%) — L?(T%,R%) defined by

e j w(0)ifn=0
(Pu) (n) = w’ (n) — W S nyng@* () if n = (ny,...,ng) # 0
R
where ||n||]§d =n?+ .. +n2
a Show P is a projection.

b Discuss in what sense ker P is formed by the conservative fields in L?(T¢9, R9).

¢ Show that R(P) is formed exactly by the divergence free fields in L?(T%, R?), that is the
fields such that
anaj(n) =0, for all n € Z%

d Let X be a Banach space on C and P € £(X) a projection. Show that o(P) C {0,1}.
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Exercise 19.7. Consider in ¢! (N) = {f :N— Cs.t. Z lf(n)] < oo} the operator 7 €
neN
L (¢*(N)) defined by
ODifn=1
mf(n) = {f(n—l) if n > 2.

a Show that, for the spectrum, we have o(71) C D¢(0,1).
b Show that 0 € o(71), because 71 is not algebraically invertible.

¢ Prove that for z #£ 0, there exists an algebraic inverse linear operator of 71 — z. In fact,
for (11 — z)f = g, prove that for z # 0 we have the formula

n

F(n) = —2;14 gn+1-10). (19.1)

/=1

d Show that the operator in (19.1) is unbounded for 0 < |z| < 1.

e Prove directly on formula (19.1), that for |z| > 1 it yields a bounded operator.

f What changes about o (1) if we consider instead the operator in ¢! (Z) defined by 71 f(n) :=
f(n—=1) for any n € Z?

Exercise 19.8. Consider Ry 3 A — dg\ € L(LP(R?)) defined by §qp 2 f(z) := )\%f()\x).

a Show that Ry > A — 64\ € L(LP(RY)) is, for p < oo, strongly continuous, that is
daprf AZdo, ddp o f for any Ao > 0 and any f € E(Lp(Rd)).

b Do we have 04 x 27, Sd.p.xe in norm inside £(LP(RY)) for p < 0o? Justify the answer.

¢ Consider the induced map &1 2, : L*(Ry) — L?(R4). Show that U : L*(Ry) — L*(R)
defined by U f(z) = e*/2f(e®) is an isomorphism . Show that U2 U™t = 7 1082,
where 7,g(z) := g(x — h) for g € L? (R).
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Exercise 19.9. Consider a p € C°(R%,R) s.t. [ p(z)dr = 1.

a Establish if the map L? (R?) > f — pf € LP(RY), where (pf)(z) := p(z)f(z), is compact
for any 1 < p < .

b Establish if the map L? (R?) > f — px* (pf) € LP(R?) is compact for any 1 < p < occ.
¢ Consider p(z) := ¢ p(x/¢). Establish if in the space

CORY) := {f € CO(RL,R) : lim f(x) =0} L®°(RY)

+
we have pg*fi>f.

d Establish if we have po+ “— Identity, in £ (CO(R?)).

e—0t

e Establish if we have p. * f —— f in the space BC?(RY) := CO(R? R) N L=®(R?) C
L>®(RY).

Exercise 19.10. Consider the space £*°(N) = {f : N — R : sup,y |f(n)| < oo}

a Show that ¢*°(N) is not separable.
b Show that there exists an isometric embedding ¢*°(N) < BC?(R) := L*°(R) N C°(R).

¢ Show that BC°(R) is not separable.
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Exercise 19.11. Let X be a Banach space, X’ its dual space, (-, ) x'x x the duality product,
and Dx/(0,1) the unit ball in X*. Consider a bounded sequence {z,,n € N} C X such
that

Va' € ODx/(0,1) the sequence (', x,)x/xx converges.

a Show that if X is reflexive, then z,, is weakly convergent in X.

b Is the above conclusion necessarily true if X is not reflexive? Prove if it is true, or find
a counterexample if it is false.

Exercise 19.12. Let [ := [0,1] and let I} := [, £] for k € Nand i = 1,..., k. For every
k€ Nlet T): L'(I) — L'(I) be the linear operator defined by

k
(TUN)a) = kY xigla) [ Sy for every f € L(D).
i=1 k

a Prove that
1Tk (M ry < NSl
for every f € L(I).

b Prove that
Ti(f) = f in LY(I)

for every f € C(I).

c Prove that
Ti(f) = f in LY(I)
for every f € LY(I).

d Is it true that

lim  sup || Tk(f) = fllpyay =07
k—+o00 feLl(n
Hf”Ll([)Sl
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Exercise 19.13. Consider the operator T : CY([0,1]) — C°([0, 1]) defined by

Tf(z) = /Ox e’ f(t)dt.

1. Compute the norm ||T°|.
2. Prove that T is compact.
3. Compute the spectrum of T

Exercise 19.14. 1. Consider the space CY([0, 1], L?(T, C)) with norm

1Glcoqo,ay,z2(r,cy) = sup{l|G (@)l 2(r,c) : T € [0,1]}.
Show that it is a Banach space.

2. Denote by S, : L?*(T) — L?(T) the operator that associates to any f € L*(T) its
Fourier polynomial of order n € N and consider an F € C°([0, 1], L*(T)). Show that

SpF 22 Fin €0([0, 1], L2(T)).
3. Consider for any n € N the ordinary differential equation (ODE) in L?(T),

Uy = Sp02up + Sy F
u,(0) = 0.

Show that S,,02 is a bounded operator from L?(T) into itself and that the solution of
the ODE can be written as

t
U (t) = /0 =952 g F(s)ds. (19.2)

Show that u,, € C°([0, 1], L*(T)).
4. Show that there exists u € C°([0, 1], L2(T, C)) so that u, ———= 4 in C°(]0, 1], L2(T, C)).
5. Check for the equation

i, = Sp0%u, + Sp F
un(0) =0

what the analogue of (19.2) is and if statement 4 continues to be true.
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Exercise 19.15. Consider the operator T : CY([0,1]) — C°([0, 1]) defined by

716 = (155 )

1. Compute the norm ||T7|.

2. Show that 1 is an eigenvalue and determine explicitly ker(7" — 1)

3. Show that 0 is an eigenvalue of T" and determine explicitly all elements of ker T
4. Check if T is a compact operator (without using any of the statements below).
5. Check that if A € C is an eigenvalue and if A # 1, then |A| < 1.

6. Show that any A € C with || < 1 is an eigenvalue.

7. Find the spectrum o(T).

Answer. Tt is obvious that ||T'|] < 1 and by T'1 =1 it follows ||T'|| = 1. Notice that we
have shown that 1 is an eigenvalue. Notice that if T'f = f, then for any x € [0, 1] we have
T"f(z) = f (zn(x)) = f(x) for the continuous fraction

xo(z) =2
_ 1
14 a(z)

5—1 ~
\[2 . So by continuity f (z) = f(z)
for any x € [0,1]. So ker(7T" — 1) is formed exactly by the constant functions.

mn—l—l(x)

This sequence for any = converges to the value 7 :=

1
Notice that z — ¢(z) = T is a homeomorphism from [0, 1] into [1/2,1]. So
x

Tf(x)=f (1%}:) = 0 if and only if f|[1/271} = 0. So ker T can be identified with the space
of all continuous functions in [0,1/2] equal to 0 at the extreme point 1/2. In fact, each of
these functions can be extended into a function in C°([0, 1]) identically equal to 0 in [1/2, 1].

By a general result we know that o(7") C Dc(0, |T]|) = Dc(0,1). So all eigenvalues
satisfy |A| < 1. Next, suppose that A # 1 and |A| = 1. Then, since the sequence xz,(7) is
constant, from T'f(z) = f () = Af(Z), we have necessarily f(z) = 0. But now, since by
continuity, for a nontrivial eigenfunction we have

Y. o n _ . n
0=1@) =l f (snle) = Jim T"f(x) = i), i X"
which in turn requires that f(z) = 0 for all z € [0, 1], that is a contradiction. So we need
to have |\| < 1.
So, now let us pick a 0 < |A\| < 1 and let us set Iy := (0,1/2) and I, := " ({p).
Notice that I, NI, = 0 for n < m. For n = 0 < m follows immediately from the fact that
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In N ([0,1]) = 0 and that ™ (Iy) € ¢ ([0,1]) for m > 1. On the other hand, if n > 0, for
y € I, N I, there exists a unique z s.t. y = ¢(x). We need to have x € I,,_1 N I,,,—1 and so,
going backwards, we reduce to the case n = 0.

Having established that I, N I,,, = 0 for n < m, let 0 # fy € C? (I, R). Then let

fo(z) for z € I
f(x) =< A" fo(y) for z € I,, with z = p"(y) with y € I
0 for z € [0, 1\ U;~( In-
Then we have f € C?([0,1],R). Indeed, either a point z is in the interior of (J)2, I, or
of its complement, and then f is continuous at that point, or in the frontier, where f has
value 0. In this last case, if 2o <= z, it is enough to focus on the case when f(za) #0.

Then we must have o € I,(o) With n(a) 27#%0, | 0. But then

[F@a)l < A foll oo () <= 0 = f(z).
It is possible to show that T'f = Af. Indeed, T f(z) = f (¢(x)) and p(z) € [,41 <= z € I,
and, by the definition
Tf(x) = A" fo(y) = Mf(x) for z € I, with 2 = ¢"(y) with y € I,.

At other points, T'f(x) = f(z) = 0.
Finally, since the spectrum o(T) is closed, we have o(T) = D¢(0,1). This implies that
T cannot be compact.

Exercise 19.16. Let [ := [0,1] and let I} := [}, £] for k € Nand i = 1,..., k. For every
k € Nlet Tj,: L*(I) — L'(I) be the linear operator defined by

k
TN @)= kY @) [ )y for every £ € L(D).
=1 k

a Prove that
1T (Nlzray < 1f 2
for every f € LY(I).
b Prove that
Ti(f) = f in LY(I)
for every f € CO(I).

¢ Consider the space CY(I, L*(I)) with the norm sup ||F(t, ) |21 (r)- Show that if we define
tel0,1]

for any function F(t,x) in C°(I, L*(I))

k
T F(t,x) =k Z X1i (x)/ F(t,y)dy
i=1

I

k

this defines a bounded operator of CO(I, L!(I)) into itself.
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d Show that
Tw(F) — F in C°(I, L}(I)).
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Exercise 19.17. Show the following
1. Both ¢2(N) and L?(RY) are separable for any d > 1.
2. Show that for any d > 1, the spaces ¢*(N) and L?(R%) are isomorphic.

3. Establish, justifying the answer, which of these pair of spaces are formed by isomorphic
spaces.

a cg (N) and £2(N)
b co (N) and /}(N)
¢ ?(N) and ¢}(N)

4. Show that for 1 < p < oo a bounded linear operator T : /7 (N) — ¢}(N) is compact
(Hint: exploit that a sequence in ¢!(N) converging o(¢1(N), ¢>°(N)) weakly to 0, does
so also strongly?®).

Answer to the third question. Let Y := TDpa)(0,1) be the closure in ¢'(N) of
TDgr(n)(0,1). Since T Doy (0, 1) is bounded in £*(N), also Y is bounded. Let {y,} be a se-

quence in Y. Then there exists a sequence z,, in Dgp(y) (0, 1) 8.t [|yn — Twn g ) LimasoNy(}

On the other hand, since ¢? (N) is reflexive and separable, and so Dyr () (0, 1) is a relatively
compact metrizable space for the o(¢7(N), /7' (N)) topology, there exists a subsequence of
Ty, that it is not restrictive to assume the whole sequence, such that z, — T € D) (0, 1)

weakly o(f’(N),¢” (N)). Then, by the continuity of T : (Ep (N),U(EP(N),KPI(N))> —
(¢* (N), (€1 (N),£>°(N))), it follows that Ta, — TZ weakly o(¢'(N),¢*(N)). But this
implies that |72 — Txy[ ) DZF20 0. In turn, this means that y, = Tz’ in ¢* (N).

So we have shown that Y is sequentially compact. This implies that Y is compact and the
operator T' is compact.

Exercise 19.18. It is a known fact, called Pitt’s Theorem (partially contained in the
previous exercise and proved in the general case in [1]), that if T : (2 (Z) — (*(Z) with
oo > a >b>1is a bounded linear operator, then T' is compact.

1. For 1 < p < 2 give at least one example of non compact bounded linear operator
defined in LP(T) with values in L?(T).

2. Use Pitt’s Theorem and the conclusion of the previous answer to show that the map
LP(T) 3 f — {f(n)}nez € ' (Z) is not an isomorphism for 1 < p < 2.

Answer to Ezercise 19.18. Consider the map (18.2) for d = 1, ¢ = 2 and T multiplied
by the characteristic function x[g 25 if we identify T with [0, 27]. The operator obtained in

~

this way, which we denote by S, is not compact. If now the map LP(T) > f — {f(n)}nez €

3See Exercise 11.28
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LP(T) —— L%(T)

' (Z) is an isomorphism, then we would have a commutative diagram lﬁ lw

' (Z) —— 2 (2)
with the horizontal arrow in the bottom necessarily a compact operator, by Pitt’s Theorem.
Since the vertical arrows are isomorphisms, then S would be compact. This is a contra-
diction and, since we know that L2(T) > f — {f(n)}nez € ¢*(Z) is an isomorphism, we

-~

conclude that LP(T) > f — {f(n)}nez € ' (Z) is not an isomorphism for 1 < p < 2.
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