Condensed Matter Physics I I partial written test academic year 2016/2017 November 10, 2016

(Time: 2 hours)

Exercise 1: Plasma frequency

In silver, the electron density n at room temperature is 5.86 10^{22} cm⁻³. The DC resistivity at room temperature is 2.04 microhm centimeters.

- 1. Find the relaxation time τ .
- 2. Find the plasma frequency ω_p using the Drude model, convert it in Hertz, and using the figure below find in which part of the electromagnetic spectrum does it fall.
- 3. Considering now that the mass density of silver at room temperature is 10.5 g cm⁻³ and the atomic mass is 107.8682 a.m.u., recalculate the electron density from these data and compare with the value previously given. What can you conclude?

Exercise 2: Free-fermions model

- 1. Most of metallic elemental solids crystallise in BCC structure. Write an expression of the valence electron density n as a function of the atomic valence Z and of the lattice parameter a.
- 2. Using a model of independent, non interacting and free electrons, calculate for which value of Z the Fermi surface touches the first Brillouin zone faces.
- 3. The He³ atom (the light isotope) has spin 1/2. The density of liquid He³ is 0.081 g/cm³ at T approaching 0K. Considering the He³ atoms as independent, non interacting and free fermions, calculate the Fermi energy E_F and the Fermi temperature T_F .

Exercise 3: Crystalline structures

Consider the Cesium Chloride (CsCl) structure. Let f_{Cl} and f_{Cs} the atomic form factors.

- 1. Specify which is the Bravais lattice and the basis. Write the primitive translation vectors \mathbf{a}_i and the vectors of the basis \mathbf{d}_j .
- 2. Write the expression for a generic vector \mathbf{K} of the reciprocal lattice (parametrized using integer numbers). Write the crystal structure factor for such vectors.
- 3. If $f_{Cl}=f_{Cs}$, for which **K** the intensity of the diffraction peaks does not vanish? Which is the lattice described by the subset of those **K** vectors? How do you explain the result?
- 4. If $f_{Cl} = -f_{Cs}$, for which **K** the intensity of the diffraction peaks does not vanish? Which is the relationship of this subset of **K** vectors with the one at the previous point?

NOTE:

- Give all the steps necessary to understand in detail the solution procedure. Answers with the final result only or with insufficient details will not be considered valid.
- When required, numerical evaluations should be given exactly with 3 significant figures, if not otherwise indicated.