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II GEOMETRICAL DESCRIPTION OF CRYSTALS
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Fig. 21 Schematic representation of two isoenergetic surfaces in the k space.

Press. B. P. Flannery. 5. A. Teukolsky and W. T. Vetterling “Numerical Recipes”
(Cambridge University Press 1936): J. L. Martins and M. L. Cohen. Phvs. Rev. B37.
6134 (1938) and references quoted therein).

7 Density-of-states and critical points

In several problems the primary interest is not in the detailed wavevector dependence
of the erystal hand structure but only on the density-of-states in a given energy range.
Counsider for simplicity a non-degenerate bawd E(k): the corresponding density-of-
states for this band is given by
_ : ' 3 s : -

D{E)= 4 E o(E(k)—-E)=2 =g OLEAR) — B Flk 5 (50)
JB.z (2=) :
= Z.

where dk is the voluue clewent of the reciprocal space and the factor 2 accounts
for the spin degeneracy (we suppose this degeneracy is not removed). Equation (50)
shows that contributions to the densityv-of-states D(E) at energy E oceur from the
band states (if any) such that E(k) = E: the factor V/(27)% gives the wniform density
of allowed k vectors in k-space. as discussed in Fq. (43).

In Fig. 21 we indicate schematically the two isoenergetic surfaces (k) = E and
Elk) = £+ dE. The distance dk between the two isoencrgetic surfaces is obtained
by observing that dE = Vi E(k) - dk = [V E(k)|dk. Connting the volume in k-space
enclosed between the two surfaces. the expression (50) for the densitv-of-states can be
trausfored into the integral on the constant energy surface £(k) = E in the form

DLEEZE/‘ #L (51)
' JeEx=g (27)° IV E(k)|
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Expression (51) clearly shows that singularities in the density-of-states are expected
at the eritical points, defined as those points in k-space for which

VkE(k) =0 : (5:

]

)

for these points the density-of-states is expected to exhibit anomalies as a function of
energy.

At the critical points, Eq. (50) or Eq. (51) can be integrated analytically, In more
general situations the density-of-states can be obtained nwmerically by appropriate
sampling of the k vectors in the Brillouin zone.

Near a critical point, where Eq. (52) holds. we can expand the energy as a function
of the wavevector. in quadratic form. Indicating with A&, k. k. the principal axes of

the quadratic form and taking the origin at the critical point itself. we have

R
Ek)=E, + — 2+

2m,

2o
T2y g2 (53)

!'.' ==
2m, ¥ 2.

(where we choose m,..n,.m. > 0, while the occuwrrence of plus or minus sign spec-
ifies the kind of critical point). The critical point M, denotes zero negative signs in
expression (53) and is thus a mininnun of E(k); the critical point Ay denotes three
negative signs in expression (53) and is thus a maximum: Ay and AL, denote one
and two negative signs. respectively, and arve thus two saddle points. Thus in three
dimensions we have four types of critical points. Similarly. in two-dimensional crystals
we have three types of eritical points My, A4, and Mz a mininum, a saddle point and
a maximum, respectively. In one-dimensional crystals we have two types of critical
points: a minimum My and a maximum M.

Near a three-dimensional critical point. the expression (50) for the densityv-of-states

becomes
247 RTC [ Sl T
D(E) = . /(“(E«i L + Y4 B — E)dk, dk, dk- (5da)
(2x) ) 2ui,  2my, 2. :
For the two-dimensional case we have
9B, Ly [ cpp , TERE | BORS ]
D(E} — W / é(hf; s _.2’,”‘,. T '_7"_;;;; == E)(”wl (U\g : (){h)
For the one-dimensional case we have
e T . Hoke
BB =" [t 2% g, (5ic)
27 2m,

All types of integrals (54) can be casily calculated analytically with the help of the
following property of the delta huction

8(z — on B
=2 ﬁ ' (55)

I

where @, are the simple zeroes of the function f(r).
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Fig. 22 Density-of-states at the eritical points Ay (minimum) and My (maximum) of a
one-cimensional crystal.

Critical points in one-dimensional crystals

i one-dimensional erystals. for the eritical point of type My at energy Iy, we consider
the integral

2L b V2, 1 5 L
D(E) = - S(Ea + o E)dk,; = Ly p S(Fo+q. — E)dg, (56)
2 2m,, wh
where the rh(m“(‘ of variable ¢, = (i/ \/W:)A',_. has been performed. Consider the
function f(g,) = Eo + ¢ — E: the zeroes of this function oceur for ¢,, = £V E — Ey
and f'{qe,) = 2., = 2y /E — Eg. The integral (56) then becomes
D(E) = [, Y20 __1 E>E (57)
s N —_— 5 27 By
) Yowh VE-Ey v o

Similarly for a critical point of type Ay at energy Ey we have

V2, 1
[J(E):L. X E<E. 55
§ h \ E1 D ( )
In Fig. 22 we give the behaviour of the density-of-states for the two possible critical
points in one-dimensional crystals. It can be noticed that the singularities appearing
in Fig. I-11a. which gives the bulk density-of-states for a linear chain evalnated with
e Creen’s function technique. are (as expected) of the type illustrated in Fig. 22.

Critical points in two-dimensional crystals

In two-dimensional crvstals. for a eritical point of type My at energy Ej. we have to
calcwlate the inteeral

Sl T (5 _
IE) = 5o Sien / o Ep + ; o= Y Eydky iy, (59)
()2 PATPES 201,
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It is convenient to introduce the variable ¢, = (fi/\/2m, )k, and 4y = (h/\/2my)k, in
Eq. (59), and denote by S=L.L, the surface of the two-dimensional crystal; we have

N :
D(E) = STfJ fé(Eo + ¢+ q; — E)dg, dg, .

We pass to cylindrical coordinates and easily obtain
Naoa i}
wh?
A similar expression holds for the critical point which is a maxiimun, for £ < Fy.
Thus the density-of-states is step-like at the points My and M, of a two-dimensional
crystal.
For the saddle eritical point A/; we have to evaluate the expression

D(E) = 5 /iy

Y /é(El + q‘% = qs — E)dg, dg, . (61)

We suppose momentarily £ > E,. Consider the function flae) = Ev+ 42 — (15 s

the zeroes of this function ocewr for ¢, = +,/E — E; + g and o] = 9g,.. The

integral (61) thus becomes
/1, de 1
D(E) = .SFFT?}] ] dqy 5
AERT S ge \/EfEl—f-qg

where the integral has been confined to a cutoff where the series expansion is supposed
to hold. With the help of the indefinite integral

dr
—— = In(z + Va2 + 22) .
/ Va2 + o? ( )

we obtain

D(E) = S,/m._;.my 1 g+ E—E; Jr_qg o

s7p 1l ——— (62)
w2 h? —¢+ VE - EL + 2
For E' =~ F;, with appropriate series development in the second member of Eq. (62).
we obtain
NI 4q? ,
Dij=g = dyp o . (63)
th‘ 'E = El’
and we see that a logarithmic divergence occurs at the critical point (with the absolute
value |E — Ey|. Eq. (63) holds also for E < /). In Fig. 23 we show the behaviowr of
the density-of-states at the two-dimensional critical points,

Critical points in three-dimensional crystals

For three-dimensional crystals we have four types of critical points: My, (minimum).

My and Af, (saddle points), Az (maximum). The analytic behaviowr at the three-

dimensional critical points can be obtained with procedures similar to the previons
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Fig. 23 Density-uf-states at the critical points of type My (minimum), My (saddle point),
atdd AL (maximum) of a two-dimensional erystal.
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Fig. 24 Densiiv-of-states at the eritical points of type Ay Ouinimon), AL and Als (saddle
pointsl, and AL (waxinium) of o three-dimensional crystal.

reported caleulations: we have:

_\’.»'2.‘;1:..,:11:_,[1??_1 o e i . .
VI VE - By for B> Fy (Gda)
yisiel

critical point My D{F) =, +

critical point ALy (64h)

critical point AL {G4c)
. . , 2w, ——— .

critical point My D{E) =04+ Vg Ey — E for E < E3 (el

5

P g
In the above expressions €4 indicate either o constant {nelnding zero) or a smoothly
cnerey dependent quantity, while the terms with the squave roor ave present only when

the areument is positive, The results (641 are schematically indicated in Fig. 24
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Fig. 25 Density-of-states of the cubium. to illustrate the three-dimensional critical points.
The energy £ is in units of |y|. and n(F) is normalized to one. Besides n(E) =
—{1/m)Im Goo( L), also the real part of the Green’s function diagonal matrix element Gool£),
on a localized orbital of the cubium, is reported for convenience [from D. J. Lohrmann, L.
Resca. G. Pastori Parravicini and R. D. Graft, Phys. Rev. B40, 8404 (1989); copyright 1989
hy the American Physical Society].

As an example of three-dimensional density-of-states consider the case of the cu-
bium. a simple cubic erystal with a single s-like orbital per site, and nearest neighbour
interactions only. With a straightforward generalization of the procedures leading to
Eq. (I-37). we have that the band energy £'(k) of the cubium is given by the expression

E(k) = a + 2+ (cos kpa + cos kya + cos h.a) (65)

(for simplicity we take oo = 0; the hopping parameter 7 is supposed to be negative).
The Brillouin zone of the cubitm is indicated in Fig. 17, together with the symmetry
points T, X, M and R. It is seen by inspection of Eq. (65) that T" is a critical point of

type My and energy Eq = —6/~]. Similarly. X and A ave saddle points of type Af; and
M, and energy £, = —2|~| and £ = 2|~|. respectively. The point R is a critical point

of type Mz and energy £y = 0

¥

. The density-of-states corresponding to the energy
band (65) can be computed numerically, for instance via the general definition (50)
and appropriate sampling of the Brillouin zone. or by means of the Green’s function
technique and Lanczos procedure (see Section V-8.2), The computed density-of-states
of cubium is reported in Fig, 25, and the presence of the critical points of the type
and energy discussed above can be clearly noticed.

Further reading

S. L. Altmann “Band Theory of Solids: an Introduction from the Point of View of
Symmetry” (Clarendon Press, Oxford 1994)
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