
ARTICLE IN PRESS
0378-4371/$ - se

doi:10.1016/j.ph

E-mail addr
Physica A 370 (2006) 7–11

www.elsevier.com/locate/physa
The minority game: A statistical physics perspective

David Sherrington

Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK

Available online 11 May 2006
Abstract

A brief review is given of the minority game, an idealized model stimulated by a market of speculative agents, and its

complex many-body behaviour. Particular consideration is given to analytic results for the model rather than discussions

of its relevance in real-world situations.

r 2006 Elsevier B.V. All rights reserved.
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There is currently much interest in the statistical physics community in the emergence of complex co-
operative behaviour as a consequence of frustration and disorder in systems of simple microscopic
constituents and simple rules of interaction [1]. Appropriate minimalist models, designed to capture the
essence of real-world problems without peripheral complications, have played crucial roles in the
understanding of such systems. The minority game is such a minimalist model, introduced in econophysics
to mimic a market of speculators trying to profit by buying low and selling high. In this paper, we review it
from the perspective of statistical physics, with a view to exposing relevant cooperative and complex features,
to demonstrate the significant, but incomplete, degree of analytic solubility currently achievable, and to
illustrate the possibilities for potentially soluble extensions.

The model describes a system of a large number N of agents each of whom at each step of a discrete
dynamics makes a bid that can be either positive or negative (buy or sell). The objective of each agent is to
make a bid of opposite sign from that of the sum of all the bids (i.e., a minority choice). No agent has any
direct knowledge of the actions or propensities of the others but is aware of the cumulative action (total bid)
made at each step. Each agent decides his/her bid through the application of a personal strategy operator to
some common information, available identically to all. In the simplest versions of the model, to which we
restrict here, the strategy operators are allocated randomly and independently for each agent before play
commences and are not modified during play. Each agent has a finite set of strategies, one of which is chosen
and used at each step. The choice is determined by ‘points’ allocated to the strategies and augmented regularly
via a comparison between the bid associated with playing the strategy and the actual total bid, being increased
for minority prediction. This is the only mechanism for co-operation but is sufficient to yield complex
macroscopic behaviour.
e front matter r 2006 Elsevier B.V. All rights reserved.
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Fig. 1. Volatilities in batch minority games with 2 strategies per agent; (a) with completely uncorrelated strategies, (b) with each agent’s 2

strategies mutually anti-correlated but with no correlation between agents. Shown are three different bias asymmetries between the points

allocated initially to each agent’s 2 strategies: pið0Þ ¼ 0:0 (circles), 0:5 (squares) and 1:0 (diamonds). Also exhibited is a comparison

between the results of simulation of the deterministic many-agent dynamics (open symbols) and the numerical evaluation of the

analytically derived stochastic single-agent ensemble dynamics (closed symbols). From Ref. [5].
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In the original version of the model [2] the information on which decisions were made was the history of the
actual play over a finite window (the last m time-steps). However, simulations demonstrated that utilising
instead a random fictitious ‘history’ (information) at each time-step produces essentially identical behaviour,
suggesting that its relevance is just to provide a mechanism for an effective interaction between agents. A
natural non-trivial measure of the macroscopic behaviour is the volatility, the standard deviation of the total
bid. It demonstrates statistical physics interest in several ways: (i) in exhibiting non-trivial scaling behaviour as
a function of d ¼ D=N, where D is the information dimension [3], (ii) in exhibiting a cusp at a critical dc

following a tabula rasa start, and especially (iii) in that the system is ergodic with volatility independent of
starting point allocations for d4dc but non-ergodic and preparation-dependent for dodc; see Fig. 1. This is
reminiscent of the susceptibility of an infinite-range spin glass where a critical temperature Tc separates a
preparation-dependent regime from an equilibrating one.

Since the information on which the agents act is the same for all, this problem is manifestly mean-field. It
therefore offers the potential for exact solution for its macro-behaviour in the sense of the elimination of the
microscopic variables in favour of self-consistently determined macro-parameters in the limit of large N [4].
The physics seems robust to variations of detail, but for completeness we indicate the version discussed
explicitly.

Each agent i; i ¼ 1; . . . ;N, is taken to have two D ¼ dN-dimensional strategies Ria ¼ ðR
1
ia; . . . ;R

dN
ia Þ; a ¼ �1,

with each component R
m
ia chosen independently randomly �1 at the outset and thereafter fixed. The common

random information enters in that mðtÞ is chosen stochastically randomly at each time-step t from the set
mðtÞ 2 f1; . . . ;Dg and each agent plays one of his/her two strategies R

mðtÞ
iai
; ai ¼ �1. The actual choices of ai used,

biðtÞ, are determined by the current values of point differences piðtÞ. Let us restrict initially to deterministic
choices, biðtÞ ¼ sgnðpiðtÞÞ. The piðtÞ are updated every M time-steps according to

piðtþMÞ ¼ piðtÞ �M�1
XtþM�1

‘¼t

xmð‘Þi N�1=2
X

j

ðomð‘Þ
j þ xmð‘Þj sgnðpjðtÞÞÞ

( )
, (1)

wherexi ¼ ðRi1 þ Ri2Þ=2; ni ¼ ðRi1 � Ri2Þ=2. In the so-called ‘online’ game M ¼ 1 but here we consider the ‘batch’
game where MXOðNÞ so that the sum on the actual mð‘Þ in (1) may be replaced by an average [6] so that [7,8]

piðtþ 1Þ ¼ piðtÞ �
X

j
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To proceed we use the dynamical generating functional method [9] with

Z ¼

Z Y
t

dpðtÞW ðpðtþ 1Þ j pðtÞÞPðpð0ÞÞ, (3)

where pðtÞ ¼ ðp1ðtÞ; . . . ; pN ðtÞÞ, W ðpðtþ 1Þ j pðtÞÞ denotes the transformation operation of Eq. (2) and Pðpð0ÞÞ
denotes the probability distribution of the initial score differences from which the dynamics is started. We
consider the typical case by averaging over the specific choices of quenched strategies. The averaged generating
functional may then be transformed exactly into a form involving only macroscopic but temporally non-local
variables ( ~C, ~G and ~K), relatable to the correlation and response functions of the original many-agent
problem:

Z ¼

Z
D ~Cðt; t0ÞD ~Gðt; t0ÞD ~Kðt; t0Þ exp NFð ~C; ~G; ~KÞ

� �
, (4)

where F is independent of N and the bold-face notation here denotes matrices in time. This expression is
extremally dominated in the large N limit and steepest descents yields an effective stochastic single-agent
dynamics

pðtþ 1Þ ¼ pðtÞ � d
X
t0pt

ð1þGÞ�1tt0 sgn pðt0Þ þ
ffiffiffi
d
p

ZðtÞ, (5)

where

hZðtÞZðt0Þi ¼ ½ð1þGÞ�1ð1þ CÞð1þGT
Þ
�1
�tt0 (6)

and the G and C are two-time response and correlation functions determined self-consistently as averages over
an ensemble of such single agents [10]; see Ref. [9] for details. In the limit of large N this analysis is believed to
be exact, but it is highly non-trivial. Empirical evidence is shown in Fig. 1 where comparison is made between
the results of simulations over many instances of the many-agent Eq. (2) and numerical evaluations of the
analytically derived single-agent dynamics of Eq. (5), including extension to anti-correlated strategies [6].

Hence, naive characterization in terms of a unique deterministic ‘representative agent’, in the sense of
conventional economics theory, is not possible. However, a single effective-agent description is available in a
much more subtle sense. This is that one can consider the system to behave as though one has a ‘representative

stochastic ensemble’ of non-interacting agents experiencing memory-weighting and coloured noise, both
determined self-consistently over the ensemble. Note that Eq. (5) is stochastic even though Eq. (2) is
deterministic.

To go further one would need to solve the effective single-agent ensemble dynamics in a closed form.
A complete solution is not currently possible. However, one can solve for certain quantities in the ergodic
equilibrating region. This concerns the aymptotic long-time behaviour, which is stationary so that the two-
time correlation and response functions become functions only of the relative times (i.e., Gðt; t0Þ and Cðt; t0Þ
become functions only of ðt0 � tÞ). Assuming also finite integrated response and weak long-term memory leads
to a formulation determining self-consistently the asymptotic order parameters Q ¼ limt!1CðtÞ and the
integrated response w ¼

P
t GðtÞ. Breakdown of the ergodic regime is signalled by diverging integrated

response. Again the analytic theory works well within this ergodic regime, as is demonstrated in Fig. 2. The
volatility, however, requires also the non-stationary parts of C and G and remains incompletely solved in
general, even in the ergodic regime [6].

The origin of the large volatilities found for tabula rasa starts in the non-ergodic regime can be ascribed to
oscillatory behaviour, clearly visible empirically for such starts in quantities like the temporal correlation
function

CðtÞ ¼ lim
t!1

N�1
X

i

sgnðpiðtþ tÞÞ sgnðpiðtÞÞ, (7)

which exhibits persistent oscillations (with period 2 in the rescaled time units of Eq. (2)) for dodc [6]. Tabula

rasa starts in this region exhibit essentially no frozen agents, whereas highly biased starts result in mostly
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Fig. 2. Persistent part Q of the correlation function for the batch MG with tabula rasa initial conditions. Symbols are simulation data.

Solid lines are the theoretical predictions for the ergodic regime, extrapolated as dashed lines into the non-ergodic phase below dc (where

they are no longer valid), the changeover signalling the predicted breakdown of the ergodic assumption. The different curves are for

different degrees of mutual correlation between agents’ two strategies; from anticorrelated at the bottom to highly correlated at the top.

From Ref. [6].
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frozen agents and hence reduce the oscillations and with them the excess time-averaged volatility. The
oscillations and the excess volatility are also reduced by random asynchronous point updating [6] and by
adding appropriate stochasticity to the original MG dynamics [11,12].

Thus, as well as its possible relevance as an idealized economics model, the minority game is of interest as a
novel complex many-body system with both similarities and differences compared with other problems
previously studied in statistical physics. Techniques developed within the spin glass community have proven
useful in its analysis and suggest extensions to other dynamical many-body systems characterised by a
combination of local/personal and global/range-free parameters, such as typified by stockmarkets (and in
contrast to those of most conventional condensed matter systems), without the need for Markovian or
detailed balance dynamics. A complete solution to the effective single-agent stochastic ensemble remains still
a challenge.

Thanks are due to A. Cavagna, T. Coolen, T. Galla, J. Garrahan, I. Giardina, A. Heimel and E. Moro for
collaborations and to EPSRC, ESF (SPHINX) and EC (STIPCO) for financial support.
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