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In this article we briefly review the 
central constructs in combinatorial opti- 
mization and in statistical mechanics and 
then develop the similarities between the 
two fields. We show how the Metropolis 
algorithm for approximate numerical 
simulation of the behavior of a many-
body system at  a finite temperature pro- 
vides a natural tool for bringing the tech- 
niques of statistical mechanics to  bear on 
optirn~ization. 

We have applied this point of view to a 
number of problems arising in optimal 
design of computers. Applications to 
partitioning, component placement, and 
wiring of electronic systems are de-
scribed in this article. In each context, 
we introduce the problem and discuss 
the improvements available from optimi- 
zation. 

Of classic optimization problems, the 
travel~~ngsalesman problem has received 
the most intensive study. T o  test the 
power of simulated annealing, we used 
the algorithm on traveling salesman 
problems with as  many a s  several thou- 
sand cities. This work is described in a 
final section, followed by our conclu-
sions. 

Combinatorial Optimization 

The subject of combinatorial optimiza- 
tion (1)consists of a set of problems that 
are central to  the disciplines of computer 
science and engineering. Research in this 
area aims a t  developing efficient tech- 
niques for finding minimum or  maximum 
values of a function of very many inde- 
pendent variables (2). This function, usu- 
ally called the cost function or  objective 
function, represents a quantitative mea- 
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sure of the "goodness" of some complex 
system. The cost function depends on 
the detailed configuration of the many 
parts of that system. We are most famil- 
iar with optimization problems occurring 
in the physical design of computers, so  
examples used below are drawn from 

with N, so  that in practice exact solu- 
tions can be attempted only on problems 
involving a few hundred cities o r  less. 
The traveling salesman belongs to  the 
large class of NP-complete (nondeter- 
ministic polynomial time complete) 
problems, which has received extensive 
study in the past 10 years (3).N o  method 
for exact solution with a computing ef- 
fort bounded by a power of N has been 
found for any of these problems, but if 
such a solution were found, it could be 
mapped into a procedure for solving all 
members of the class. It is not known 
what features of the individual problems 
in the NP-complete class are the cause of 
their difficulty. 

Since the NP-complete class of prob- 
lems contains many situations of practi- 
cal interest, heuristic methods have been 
developed with computational require- 

Summary. There is a deep and useful connection between statistical mechanics 
(the behavior of systems with many degrees of freedom in thermal equilibrium at a 
finite temperature) and multivariate or combinatorial optimization (finding the mini- 
mum of a given function depending on many parameters). A detailed analogy with 
annealing in solids provides a framework for optimization of the properties of very 
large and complex systems. This connection to statistical mechanics exposes new 
information and provides an unfamiliar perspective on traditional optimization prob- 
lems and methods. 

that context. The number of variables 
involved may range up  into the tens of 
thousands. 

The classic example, because it is so  
simply stated, of a combinatorial optimi- 
zation problem is the traveling salesman 
problem. Given a list of N cities and a 
means of calculating the cost of traveling 
between any two cities, one must plan 
the salesman's route, which will pass 
through each city once and return finally 
to  the starting point, minimizing the total 
cost. Problems with this flavor arise in 
all areas of scheduling and design. Two 
subsidiary problems are of general inter- 
est: predicting the expected cost of the 
salesman's optimal route, averaged over 
some class of typical arrangements of 
cities, and estimating or  obtaining 
bounds for the computing effort neces- 
sary to  determine that route. 

All exact methods known for deter- 
mining an optimal route require a com- 
puting effort that increases exponentially 

ments proportional to  small powers of N. 
Heuristics are  rather problem-specific: 
there is no guarantee that a heuristic 
procedure for finding near-optimal solu- 
tions for one NP-complete problem will 
be effective for another. 

There are two basic strategies for 
heuristics: "divide-and-conquer" and it- 
erative improvement. In the first, one 
divides the problem into subproblems of 
manageable size, then solves the sub- 
problems. The solutions to  the subprob- 
lems must then be patched back togeth- 
er. For  this method to produce very good 
solutions, the subproblems must be natu- 
rally disjoint, and the division made must 
be an appropriate one, so  that errors 
made in patching d o  not offset the gains 
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instances, keeping N fixed (25). Call this 
average optimal step length a. To bound 
a firom above, a numerical experiment 
was performed with the following 
"greedy" heuristic algorithm. From 
each city, go to the nearest city not 
already on the tour. From the Nth city, 
return directly to the first. In the worst 
case, the ratio of the length of such a 
greedy tour to the optimal tour is propor- 
tional to In(N) (26), but on average, we 
find that its step length is about 1.12. The 
variance of the greedy step length de- 
creases as N-''~, SO the situation envi- 
sioned in the worst case analysis is unob- 
servably rare for large N. 

To construct a simulated annealing 
algorithm, we need a means of represent- 
ing the tour and a means of generating 
random rearrangements of the tour. 
Each tour can be described by a permut- 
ed list of the numbers I to N, which 
represents the cities. A powerful and 
general set of moves was introduced by 
Lin and Kernighan (27, 28). Each move 
consists of reversing the direction in 
which a section of the tour is traversed. 
More complicated moves have been 
used to enhance the searching effective- 
ness of iterative improvement. We find 
with the adaptive divide-and-conquer ef- 
fect of annealing at intermediate tem- 
peratures that the subsequence reversal 
moves are sufficient (29). 

An annealing schedule was deter-
mined empirically. The temperature at 
which segments flow about freely will be 
of order N"*, since that is the average 
bond length when the tour is highly ran- 
dom. Temperatures less than 1 should be 
cold. We were able to anneal into locally 
optimal solutions with a 5 0.95 for N up 
to 6000 sites. The largest traveling sales- 
man problem in the plane for which a 
proved exact solution has been obtained 
and published (to our knowledge) has 
318 points (30). 

Real cities are not uniformly distribut- 
ed, but are clumped, with dense and 
sparse regions. To introduce this feature 
into an ensemble of traveling salesman 
problems, albeit in an exaggerated form, 
we confine the randomly distributed cit- 
ies to nine distinct regions with empty 
gaps between them. The temperature 
gives the simulated annealing method a 
mean:; of separating out the problem of 
the coarse structure of the tour from the 
local details. At temperatures, such as 
T = 1.2 (Fig. 9a), where the small-scale 
structure of the paths is completely dis- 
ordered, the longer steps across the gaps 
are already becoming infrequent and 
steps joining regions more than one gap 
are eliminated. The configurations stud- 
ied below T = 0.8 (for instance, Fig. 9b) 
had the minimal number of long steps, 

but the detailed arrangement of the long 
steps continued to change down to 
T = 0.4 (Fig. 9c). Below T = 0.4, no 
further changes in the arrangement of the 
long steps were seen, but the small-scale 
structure within each region continued to 
evolve, with the result shown in Fig. 9d. 

Summary and Conclusions 

Implementing the appropriate Metrop- 
olis algorithm to simulate annealing of a 
combinatorial optimization problem is 
straightforward, and easily extended to 
new problems. Four ingredients are 
needed: a concise description of a con- 
figuration of the system; a random gener- 
ator of "moves" or rearrangements of 
the elements in a configuration; a quanti- 
tative objective function containing the 
trade-offs that have to be made; and an 
annealing schedule of the temperatures 
and length of times for which the system 
is to be evolved. The annealing schedule 
may be developed by trial and error for a 
given problem, or may consist of just 
warming the system until it is obviously 
melted, then cooling in slow stages until 
diffusion of the components ceases. In- 
venting the most effective sets of moves 
and deciding which factors to incorpo- 
rate into the objective function require 
insight into the problem being solved and 
may not be obvious. However, existing 
methods of iterative improvement can 
provide natural elements on which to 
base a simulated annealing algorithm. 

The connection with statistical me-
chanics offers some novel perspectives 
on familiar optimization problems. Mean 
field theory for the ordered state at low 
temperatures may be of use in estimating 
the average results to be obtained by 
optimization. The comparison with mod- 
els of disordered interacting systems 
gives insight into the ease or difficulty of 
finding heuristic solutions of the associ- 
ated optimization problems, and pro-
vides a classification more discriminat- 
ing than the blanket "worst-case" as-
signment of many optimization problems 
to the NP-complete category. It appears 
that for the large optimization problems 
that arise in current engineering practice 
a "most probable" or average behavior 
analysis will be more useful in assessing 
the value of a heuristic than the tradition- 
al worst-case arguments. For such analy- 
sis to be useful and accurate, better 
knowledge of the appropriate ensembles 
is required. 

Freezing, at the temperatures where 
large clusters form, sets a limit on the 
energies reachable by a rapidly cooled 
spin glass. Further energy lowering is 
possible only by slow annealing. We 

expect similar freezing effects to limit the 
effectiveness of the common device of 
employing iterative improvement repeat- 
edly from different random starting con- 
figurations. 

Simulated annealing extends two of 
the most widely used heuristic tech-
niques. The temperature distinguishes 
classes of rearrangements, so that rear- 
rangements causing large changes in the 
objective function occur at high tempera- 
tures, while the small changes are de- 
ferred until low temperatures. This is an 
adaptive form of the divide-and-conquer 
approach. Like most iterative improve- 
ment schemes, the Metropolis algorithm 
proceeds in small steps from one config- 
uration to the next, but the temperature 
keeps the algorithm from getting stuck 
by permitting uphill moves. Our numeri- 
cal studies suggest that results of good 
quality are obtained with annealing 
schedules in which the amount of com- 
putational effort scales as N o r  as a small 
power of N. The slow increase of effort 
with increasing N and the generality of 
the method give promise that simulated 
annealing will be a very widely applica- 
ble heuristic optimization technique. 

Dunham (5) has described iterative 
improvement as the natural framework 
for heuristic design, calling it "design by 
natural selection." [See Lin (6) for a 
fuller discussion.] In simulated anneal- 
ing, we appear to have found a richer 
framework for the construction of heu- 
ristic algorithms, since the extra control 
provided by introducing a temperature 
allows us to separate out problems on 
different scales. 

Simulation of the process of arriving at 
an optimal design by annealing under 
control of a schedule is an example of an 
evolutionary process modeled accurate- 
ly by purely stochastic means. In fact, it 
may be a better model of selection pro- 
cesses in nature than is iterative im- 
provement. Also, it provides an intrigu- 
ing instance of "artificial intelligence," 
in which the computer has arrived al- 
most uninstructed at a solution that 
might have been thought to require the 
intervention of human intelligence. 
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Metropolis and simulated annealing - I

•Stochastic search for global minimum. Monte Carlo optimization. 

•The concept is based on the manner in which liquids freeze or 
metals recrystallize. Sufficiently high starting temperature and slow 
cooling are important to avoid freezing out in metastable states.  A 
“cost function” is treated as the energy.
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•Thermodynamic system at temperature T, energy E.  

•Perturb configuration (generate a new one). 

•Compute change in energy dE. If dE is negative the 
new configuration is accepted. If dE is positive it is 
accepted with a probability given by the Boltzmann 
factor :     exp(-dE/kT).  

•The process is repeated many times for good sampling 
of configuration space. 

•then the temperature is slightly lowered and the 
entire procedure repeated, and so on, until a frozen 
state is achieved.

{usual 
Metropolis 
procedure 

in the 
canonical 
ensemble
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Metropolis and simulated annealing - II
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a move 
generation 
strategy

a freezing 
schedule

a stopping 
criterion

necessary:
•Thermodynamic system at temperature T, energy E.  

•Perturb configuration (generate a new one). 

•Compute change in energy dE. If dE is negative the 
new configuration is accepted. If dE is positive it is 
accepted with a probability given by the Boltzmann 
factor :     exp(-dE/kT).  

•The process is repeated many times for good sampling 
of configuration space. 

•then the temperature is slightly lowered and the 
entire procedure repeated, and so on, until a frozen 
state is achieved.

{usual 
Metropolis 
procedure 

in the 
canonical 
ensemble

Metropolis and simulated annealing - II



Example

minimization of  
f(x)=(x+0.2)*x+cos(14.5*x-0.3) 

considered as an energy function and 
using a fictitious temperature 

in simulated_annealing.f90:
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Rastrigin function: 
• non-convex function used as a performance test problem for optimization algorithms;
• typical example of non-linear multimodal function;
• first proposed by Rastrigin as a 2-dimensional function; later generalized by Rudolph.
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DO WHILE (temp > 1E-5) ! anneal cycle

  DO istep = 1, nsteps
    CALL RANDOM_NUMBER(rand) ! generate 2 random numbers; dimension(2) :: rand
    x_new = x + scale*SQRT(temp)*(rand(1) - 0.5) ! stochastic move
    fx_new = func(x_new) ! new object function value
    IF (EXP(-(fx_new - fx)/temp) > rand(2)) THEN ! success, save
      fx = fx_new
      x = x_new
    END IF 
    IF (fx < fx_min) THEN
      fx_min = fx
      x_min = x
      PRINT '(3ES13.5)', temp, x_min, fx_min
    END IF
  END DO

  temp = temp * tfactor ! decrease temperature
END DO

Function to be minimized:  f(x) ;   Starting point:   x, fx=f(x)

initial (high) temperature:    temp
Annealing schedule: annealing temperature reduction factor: tfactor (<1)

number of steps per block: nsteps 
‘ad hoc’ parameter for trial move: scale
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final T:    2.50315E-01 
final x:   -1.95067E-01 
final f(x):-1.00088E+00

initial T:  10 (KB units) 
initial x:      1.000000
initial f(x):   1.137208 


