
Finite State Machine Simulation

The Mealy and Moore machines studied in class are examples of Finite State Machines
(FSMs).  In general, a FSM has an input X which consists of a finite sequence of binary
symbols.  For example, the sequence  X = X1, X2, X3, X4 = 0010  consists of four binary
symbols.  As the name finite state machine implies, the machine has a finite number of
states which can be represented by  SA, SB, … , SK, for a total of n states.  Finally, there is
an output Z that consists of a finite sequence of binary symbols just as the input sequence
X did.

The dynamics of a FSM are captured by how inputs are processed into outputs.  Initially
the machine starts in state S0.  Given an input X1, the machine outputs Z1 and then makes a
transition to state S1.  Thus an input sequence  X = X1, X2, X3, X4  is transformed into the
output sequence  Z = Z1, Z2, Z3, Z4  while passing through the state sequence  S = S0, S1,
S2, S3, S4. where S0 corresponds to the FSM’s initial state.

It is convenient to represent a FSM by a state table such as the ones shown in Tables 1
and 2 below.  Table 1 shows the state table of the Mealy machine studied in class which
detected the input sequence 01 while Table 2 shows the state table of the Moore machine
studied in class which also detected the sequence 01.  In general the state table of Table 1
corresponds to a clocked Mealy sequential networks while the state table in Table 2
corresponds to a clocked Moore sequential networks as discussed in chapter 13, section 4
of the textbook.

Table 1.  Mealy FSM State Table.
Present Present Output Next-State
State X=0 X=1 X=0 X=1
RA 0 0 RB RA

RB 0 1 RB RA

Table 2.  Moore FSM State Table.
Present Present Next-State
State Output X=0 X=1

SA 0 SB SA

SB 0 SB SC

SC 1 SB SA

In order to simulate a FSM using Verilog, several new concepts and features need to be
introduced.  First, recall that we used reg when we needed to store a single Boolean
value.  We can also declare a vector or range of n bits by using the notation [n-1:0] in
front of the various reg variables.  For example,



2

reg X;
reg [3:0]S;

defines a scalar or 1-bit register named X and a 4-bit vector register named S that is made
up of four 1-bit registers S[3], S[2], S[1] and S[0] from the most to least significant bit.

Values can be assigned to S using either binary, octal, hexadecimal or decimal valued
constants.  For example, the Verilog code

reg [3:0] A,B,C,D;
initial
begin
A=4’b1011;
B=4’o13;
C=4’hb;
D=4’D11;
end

defines four 4-bit vector registers A, B, C and D and then assigns them each the same
value in binary (b), octal (o), hexadecimal (h) and decimal (D) formats, respectively.
Note that the 4 in front of the prime indicates that the least significant four bits of each
expression are to be used.  Thus the constants 4’o13 and 4’o33 yield the same values as
their least significant four bits are the same.

Sometimes it is convenient to work with constants as letters rather than as numbers.  This
can be accomplished by using the parameter feature.  Thus the following code makes the
same assignments as the code above.

reg [3:0] A,B,C,D;
parameter N0=4’b1011,
          N1=4’o13,
          N2=4’hb,
          N3=4’D11;

initial
begin
A=N0;
B=N1;
C=N2;
D=N3;
end

Conditional branching statements in Verilog are similar to the corresponding statements
in other programming languages.  The if-then construct is given by:
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i f  ( condition)
[begin]
statement 1;
[statement 2;]

[statement n;]
[end]

while the if-then-else construct is:

i f  ( condition)
[begin]
statement 1;
[statement 2;]

[statement n;]
[end]

el se
[begin]
statement 1;
[statement 2;]

[statement m;]
[end]

The brackets around begin, end and statement means that they are optional or only needed
if there is more than one statement.  The condition is a Boolean expression which dictates
whether the if part of the if-then or if-then-else is executed.  Boolean expressions used in
Verilog are similar to those used in other programming languages.  Most Boolean
expressions are evaluated as either equality or relational operators and include:

if (A==B) //   if A equal B then
if (A!=B) //   if A not equal B then
if (A>B) //   if A greater than B then
if (A>=B) //   if A greater than or equal B then
if (A<B) //   if A less than B then
if (A<=B) //   if A less than or equal B then

Note that the // are used to insert a one line comments into Verilog code.  Finally,
Boolean expressions can also involve Boolean operations such as

if (A&&B) //   if A and B are both true then
if (A||B) //   if A or B is true then
if (!A) //   if not A is true then

Event control statements play an important role in behavioral modeling.  One which we
will be using in the “ @( )”  control statement which is given by:
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@( event)
[begin]
statement 1;
[statement 2;]

[statement n;]
[end]

The event may correspond to a change in the level of a signal or an edge transition of the
signal.  For example,

al ways @( negedge cl ock)
[begin]
statement 1;
[statement 2;]

[statement n;]
[end]

means that statements will be executed every time there is a negative edge transition of
the signal clock while

al ways @( st at e)
[begin]
statement 1;
[statement 2;]

[statement n;]
[end]

means that statements will be executed every time there is a level change of the signal
state.  So if state changes from a 0 to a 1 or a 1 to a 0, then the statements will be
executed.

The last feature we will be using of Verilog is the case statement which can be viewed as
a generalization of the if-then-else statement.  The formal syntax of the case statement is:

reg [1:0]x;

case( x)
2’ b00:    statement 0;
2’ b01:    statement 1;
2’ b10:    statement 2;
2’ b11:    statement 3;
def aul t :  statement default;
endcase
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Here x is a 2-bit vector register that evaluates to one of the cases.  Note that one does not
need to define all the possible cases as any case not explicitly listed will evaluate to the
default case.  Also, if more than 4 cases are needed, then x would need to be a longer
vector register.

We now consider how the case statement can be used to implement FSMs in Verilog.  A
behavioral module for the Mealy FSM described in Table 1 is shown in Table 3. While
only two states are needed, there is no problem if a longer vector register, which in this
case could accommodate up to four states, is used.  The FSM is initialized to state S0 with
an output of zero.  Note that both the next-state changes on negative edge transitions of
the clock while the output changes of both negative edge transitions of the clock or level
changes of the input.  Recall that the output of a Mealy machine are only valid when the
clock is high.

Table 3.  Verilog Module Implementing a Mealy FSM.
module state(x,ck,state,z);    //  Mealy FSM
  input x,ck;
  output z;
  output [1:0]state;
  reg    z;
  reg    [1:0]state;

  parameter S0=2’b00,
            S1=2’b01;

  initial begin state=S0; z=0; end

  always @(negedge ck)         //  Next-State
  case(state)

  S0:  if      (x==0) state=S1;
       else if (x==1) state=S0;

  S1:  if      (x==0) state=S1;
       else if (x==1) state=S0;
  endcase

  always@(state or x)             //  Output
  case(state)

  S0:  if      (x==0) z=0;
       else if (x==1) z=0;

  S1:  if      (x==0) z=0;
       else if (x==1) z=1;
  endcase
endmodule
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While it may seem redundant to include a second conditional to check the condition
(x==1) after checking the condition (x==0), it is critical for the proper simulation of the
FSM.  This is because Verilog also allows the input signal x to assume the level x (the
value we see as the output of a JK flip-flop when a simulation starts) and we do not want
a level of x to change the state or output of the FSM.  Note that the next-state transitions
occurs on the negative edge of the clock while the output transitions occur on any change
in either the state or input.

Table 4 shows module main that will apply a stimulus pattern to the Mealy FSM
described by the Verilog code in Table 3.  With the exception of declaring the 2-bit vector
register state as a wire, the Verilog code is quite similar to that used to simulate this
example in class.  Figure 1 shows the timing diagram that results from running the
modules main and state.

Table 4.  Verilog Module to Simulate a Mealy FSM.
module main;
  reg  x,ck;
  wire z;
  wire [1:0]state;

  state FSM(x,ck,state,z);

  initial ck=0;

  always #10 ck=~ck;

  initial
  begin
    $monitor($time,,"clock=%b x=%b state=%b | z=%b",
             ck,x,state,z);
    #00 x=1;
    #25 x=0;
    #20 x=0;
    #20 x=1;
    #20 x=0;
    #20 x=1;
    #20 x=1;
    #20 x=0;
    #20 x=0;
    #20 x=1;
    #20 $finish;
  end
endmodule

The Verilog code for a behavioral module of the Moore FSM described in Table 2 is
shown in Table 5.  Note that the second case statement used to compute the output is not
a function of the input. Since the name and parameters of the modules used to implement
the Mealy and Moore FSM is the same, the module main can be used to simulate both of
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them.  Figure 2 shows the timing diagram that results from running the modules main and
state for the Moore FSM.  Finally, we note that the outputs for the Mealy and Moore
FSMs both detect the output 01, just as the Mealy and Moore JK flip-flop sequential
networks did in class and produce identical results when taking into account the
initialization of the JK flip-flop circuits.

Table 5. Verilog Module Implementing a Moore Type FSM.
module state(x,ck,state,z);    //  Moore FSM
  input x,ck;
  output z;
  output [1:0]state;
  reg    z;
  reg    [1:0]state;

  parameter S0=2’b00,
            S1=2’b01,
            S2=2’b10;

  initial begin state=S0; z=0; end

  always@(negedge ck)          // Next-State
  case(state)

  S0:  if      (x==0) state=S1;
       else if (x==1) state=S0;

  S1:  if      (x==0) state=S1;
       else if (x==1) state=S2;

  S2:  if      (x==0) state=S1;
       else if (x==1) state=S0;

  endcase

  always@(state)                  // Output
  case(state)

  S0:  z=0;
  S1:  z=0;
  S2:  z=1;

  endcase

endmodule
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Figure 1.  Timing Diagram for the Mealy FSM Specified in Table 1.

Figure 2.  Timing Diagram for the Moore FSM Specified in Table 2.


