
June 2005, ver. 1.4 Application Note 263

CORDIC Reference Design
Introduction The co-ordinate rotation digital computer (CORDIC) reference design
implements the CORDIC algorithm, which converts cartesian to polar
coordinates and vice versa and also allows vectors to be rotated through
a given angle.

CORDIC is an iterative process, using a series of shifts and adds. Hence it
is often a hardware efficient solution over using multiplications, division
and square roots.

The reference design comprises a MATLAB bit accurate model of the
CORDIC algorithm implemented in hardware and a GUI test
environment. The test environment allows you to configure the CORDIC
reference design and test conditions and to compare the results with the
theoretical results.

Altera provides separately the encrypted Verilog HDL source code,
precompiled simulation files for the ModelSim simulator, and a testbench
for the hardware implementation of CORDIC.

Background CORDIC provides an iterative solution to performing vector rotations by
arbitrary angles using only shifts and adds. The CORDIC algorithm can
operate in either vectoring or rotation mode.

Vectoring mode performs cartesian to polar conversion. An input vector
is rotated until it is on the x axis; the final x value is equal to the magnitude
of the input vector. While rotating the vector, the total angle traversed is
also recorded, which provides the phase of the input vector.

Rotation mode performs polar to cartesian conversion. The input vector (x
value equals magnitude and y value equals zero) is rotated by the
specified angle. The final vector is the cartesian equivalent of the input
polar values.

Vector rotation mode rotates an input vector by a specified angle. The
output gives the cartesian coordinates of the rotated vector.

The final x and y values in rotation, vector rotation, and vectoring modes
arescaled by the CORDIC processing gain. This processing gain varies
with the number of iterations performed. It approaches 1.6476 as the
number of iterations goes to infinity.
Altera Corporation 1

AN-263-1.4

AN 263: CORDIC Reference Design
At some point in the system this gain may have to be compensated for. If
so, in vectoring mode, the resultant magnitude (x value) needs to be
divided by the processing gain (or multiplied by the reciprocal of the
processing gain); in rotation mode either the input polar magnitude (input
x value) or the output x and y values can be divided by the processing
gain.

Functional
Description

Figure 1 shows the top-level block diagram of the CORDIC reference
design.

The x, y, and z inputs and outputs are twos complement signed numbers.
The bit widths and number of iterations are parameterizable.

The range of z is given by –π ≤ z < +π, where –π = –2(z_bits – 1) .

Figure 1. Block Diagram

CORDIC
Reference

Design

x_out

y_out

z_out

x_in

y_in

z_in

mode

Cartesian to Polar Conversion

The cartesian to polar conversion has the following attributes:

■ x_in and y_in are the input cartesian values
■ z_in must be zero
■ mode = 0, to enforce vectoring mode
■ x_out is the polar magnitude (scaled by processing gain)
■ z_out is the polar phase

Polar to Cartesian Conversion

The polar to cartesian conversion has the following attributes:

■ x_in is the input polar magnitude.
■ y_in must be zero.
■ z_in is the input polar phase.
■ mode = 1 to enforce rotation mode
■ x_out, y_out is the cartesian values (scaled by processing gain)
2 Altera Corporation

AN 263: CORDIC Reference Design
Vector Rotation

The vector rotation has the following attributes:

■ x_in and y_in are the input cartesian values
■ z_in is the angle to rotate the input vector by
■ mode = 1 to enforce rotation mode
■ x_out and y_out are the cartesian values

Vector Width

The vector width of x and y should be increased by two over the required
width, because of the processing gain of the CORDIC block. For example,
if 16 bits represent the magnitude, you should select 18 bits as the vector
width for x and y inputs and outputs. Any required sign extension of the
inputs must be performed, prior to presenting the x and y inputs to the
CORDIC reference design.

You can select input and output vector widths of up to 32 bits for x, y and
z.

Iterations

The accuracy of the CORDIC algorithm improves with each iteration,
until the number of iterations equals the bit width of the inputs.

The CORDIC reference design is pipelined at every iteration. The number
of clock cycles required to perform a conversion is equal to the number of
iterations plus 3 (this extra number required for additional registering).

The number of iterations can be from 5 to 32, but must not exceed the
number of bits of the x, y, and z input values.

Processing Gain Compensation

The CORDIC reference design does not compensate for the processing
gain. However, Altera supply source code for a gain compensation block
with the encrypted source code for the CORDIC reference design,. This
block is synthesizable and is provided as sample code (it is not necessarily
optimized).

The gain compensation block has two implementations, which are
selectable via parameters.
Altera Corporation 3

AN 263: CORDIC Reference Design
In the first implementation the gain compensation is a series of shifts and
adds. It has a latency of 6 clock cycles. For 32 bit vector lengths this
achieves performance of over 285 MHz and uses approximately 950 LEs.

The second implementation uses a Stratix DSP block and has a latency of
two clock cycles. For 32 bit vector lengths this achieves performance of
over 190 MHz using one DSP block.

Testbench

The Verilog HDL testbench optionally connects the processing gain
compensation block either before (if testing in rotational mode and
removing gain) and/or after the CORDIC reference design (if testing in
vectoring mode and removing gain). Input data is read from text files, and
the output from the system is read and compared to the expected data
which is also stored in text files.

Any error messages are logged to the screen and also logged to an output
file.

The MATLAB environment auto-generates the input data and expected
output data text files or you can generate them manually.

Altera provides scripts for simulation with ModelSim simulators.

Design Flow

The MATLAB GUI environment configures the CORDIC reference design
(i.e., vector widths, number of iterations, gain compensation) and the test
conditions (i.e., rotation or vectoring modes, number of input samples,
random or sequential input data, restrictions on input values).

You can plot graphs to compare the performance of the MATLAB bit
accurate model of the CORDIC with the theoretical results. Once you are
satisfied with the behavior of the CORDIC (i.e. accuracy), the GUI allows
the input and output data to be written to text files and Verilog HDL
parameters to configure the hardware CORDIC, gain compensation
blocks, and testbench.

The Verilog HDL testbench confirms that the Verilog HDL behaves
identically to your MATLAB CORDIC model that you required.

1 The Verilog HDL testbench is shipped with the CORDIC
reference design encrypted source code.
4 Altera Corporation

AN 263: CORDIC Reference Design
Getting Started This section involves the following steps:

■ Software Requirements
■ Install the Design
■ Design Walkthrough

Software Requirements

The design requires the following software:

■ Altera® Quartus® II software version 2.2 SP2
■ Mathworks MATLAB version 6.5
■ ModelSim version 5.7a

Install the Design

To install the reference design, run the .exe. and follow the installation
instructions. Figure 2 shows the directory structure.
Altera Corporation 5

AN 263: CORDIC Reference Design
Figure 2. Directory Structure

ip
Contains the encrypted source files.

source
Contains the encrypted source files.

gate_sim
Contains simulation models for gate-level simulation.

build
Contains the project file and the files for Quartus II synthesis and fitting.

mlab
Contains the MATLAB files for the bit accurate model.

verilog
Contains the Verilog HDL source files for the CORDIC and gain compression blocks.

dat_files
Contains text files for inputs and their expected outputs from the CORDIC reference
design, which the Verilog HDL testbench requires. MATLAB can auto-generate these
text files.

mlab
Contains MATLAB files.

tb
Contains the MATLAB testbench.

verilog
Contains Verilog HDL files.

scripts
Contains the ModelSim simulation scripts.

cordic_compiled_lib
Contains the precompiled simulation files.

tb
Contains the Verilog HDL testbench.

test
Contains the common files that are used in both projects.

cordic-<version>

altera_sim_lib
Contains simulation models of Altera device structures (i.e., DSP blocks that you can
use in the gain compensation block).

Tables 1 to 8 describe the files in each directory.

Table 1. sourcebuild Directory Files

File Name Description

cordic.psf Quartus II project settings file.

cordic.quartus Quartus II project file.
6 Altera Corporation

AN 263: CORDIC Reference Design
Table 2. ip Directory Files

File Name Description

altera_sim_lib/altera_mf.v Verilog functional simulation models for
structures in Altera devices (e.g., DSP
blocks).

altera_sim_lib/gate_sim/stratix_atoms.v Verilog simulation models required for
gate-level simulation.

Table 3. source/mlab Directory Files

File Name Description

cordic.m Bit accurate MATLAB model of CORDIC and gain
compensation blocks.

neg2pos.m MATLAB function calculates the absolute number that
represents negative numbers in twos complement.

Table 4. source/verilog Directory Files

File Name Description

cordic.v Top level CORDIC module.

cordic_core.v module containing algorithm.

ip_quad_info.v Determines quadrant information for CORDIC inputs.

ip_quad_adj.v Adjusts inputs to algorithm.

op_quad_adj.v Adjusts outputs from algorithm.

cordic_inc.v Contains the static parameters.

cordic_inc_p2.v Contains the parameters that change according to
CORDIC configuration; can be auto-generated by
MATLAB.

cordic_gain_corr.v Gain compensation block.
Altera Corporation 7

AN 263: CORDIC Reference Design
Table 5. test/dat_files Directory Files (required for the Verilog HDL
testbench)

File Name Description

ip_mode.txt CORDIC mode of each input (rotation or vectoring);
can be auto-generated by MATLAB.

ip_xy.txt X and Y inputs to the CORDIC system.

ip_z.txt Z inputs to CORDIC system.

op_exp_xy.txt Expected X and Y outputs from CORDIC system.

op_exp_z.txt Expected Z output from CORDIC system.

op_err.txt (1) Output error log from simulation run.

Note:
(1) MATLAB can auto-generate all of the files except for op_err.txt.

Table 6. test/mlab/tb Directory Files

File Name Description

cordic_gui.fig MATLAB file for GUI.

cordic_gui.m MATLAB file for GUI.

cordic_test.m MATLAB script that runs the CORDIC test.

comb_mlab_files Pearl script that combines data results from two
different sets of files containing the input and expected
output data.

Table 7. test/verilog/scripts Directory Files

File Name Description

encrypt_msim_com.bat PC batch file for using ModelSim to simulate design in
command mode.

encrypt_msim_gui.bat PC batch file for using ModelSim in GUI mode to
simulate design.
8 Altera Corporation

AN 263: CORDIC Reference Design
Table 8. test/verilog/tb Directory Files

File Name Description

cordic_tb.v Verilog HDL testbench.

modelsim_wave.do Waveform file for ModelSim.

Design Walkthrough

The walkthrough involves the following steps:

■ Start the MATLAB GUI
■ Parameterize the Design
■ Auto-generate Verilog Simulation Files from MATLAB
■ Simulation

Start the MATLAB GUI

To start the MATLAB GUI, perform the following steps:

1. Start MATLAB.

2. Change the working directory to cordic-<version>/test/mlab/tb.

3. Type the following command:

cordic_gui

1 Output messages are still output to the MATLAB command
window.

The CORDIC test control window opens (see Figure 3).
Altera Corporation 9

AN 263: CORDIC Reference Design
Figure 3. CORDIC Test Control Window

Parameterize the Design

To parameterize your design, perform the following steps:

1. In the CORDIC H/W Configuration part of the CORDIC test control
panel, perform the following steps:

a. Choose the vector widths: x/y and z bits, and x/y and z bits
extend. Where the number of bits specifies the number of bits
going into and out of the CORDIC. Bits extends specifies the
number of extra bits the CORDIC works with, to increase
accuracy.
10 Altera Corporation

AN 263: CORDIC Reference Design
b. Choose the number of iterations.

c. If you want gain compensation, select Gain Compensation, and
choose the gain compensation logic. If you choose h/w logic
shifts & adds, enter a value for Bits Extend, to increase accuracy.

2. In the Test Set-up part of the CORDIC test control panel, perform the
following steps:

a. Choose rotational, or vectoring, or vector rotation mode.

b. If you require fixed point test, select Fixed Point.

1 Selecting Fixed Point overrides all settings for your x, y, and
z bit widths.

c. Choose either Sequential or Random input data.

d. In rotational mode, enter the number of input data values for
magnitude and phase.

or

In vectoring mode, enter the number of input data values for the
X and Y values.

or

In vector rotation mode, enter the different number of rotation
angles in the Phase box, enter the different number of input
vectors in the Magnitude box (each different input magnitude
has a different starting phase, resulting in the different input
vector; the starting phases are distributed evenly throughout the
360 degree space). Each different input vector is rotated through
all the different rotation angles.

e. In rotational mode, enter the Input Data Constraints: minimum
magnitude, maximum magnitude, minimum phase, maximum
phase.

or

In vectoring mode, enter the Input Data Constraints: minimum
X, maximum X, minimum Y, and maximum Y.

3. Click Run.
Altera Corporation 11

AN 263: CORDIC Reference Design
4. Select the type of graph that you want MATLAB to plot. Figure 4 to
Figure 6 show various graphs that you can select, for various
CORDIC test control panel settings.

Figure 4. Input Values Graph
12 Altera Corporation

AN 263: CORDIC Reference Design
Figure 5. Output Polar Errors Graph
Altera Corporation 13

AN 263: CORDIC Reference Design
Figure 6. Output X Y on a Cartesian Plane Graph

5. When you have viewed the graph, click Close Plots.

Auto-generate Verilog Simulation Files from MATLAB

Once MATLAB testing reaches a conclusion with the configuration of a
suitable CORDIC reference design to auto-generate Verilog simulation
files from MATLAB, perform the following steps:

1. Click Write Data to Files to write the input and expected output data
to cordic-<version>/test/dat_files.

2. Click Write Verilog Parameters, to write the required Verilog HDL
parameters to cordic-<version>/source/verilog/cordic_inc_p2.vh and
cordic-<version>/test/verilog/tb/cordic_tb_inc.vh.

1 These files contain parameters to configure the CORDIC
reference design, the gain compensation block, and the
testbench.
14 Altera Corporation

AN 263: CORDIC Reference Design
Simulation

To use the ModelSim simulation files, perform the following steps:

1. Open the ModelSim simulator.

2. Change the working directory to cordic-
<version>/test/verilog/script.

3. Ensure that the required data files are in the cordic-
<version>/test/dat_files directory.

4. If you want to run the GUI run the cordic-
<version>/test/verilog/scripts/encrypt_msim_gui.bat batch file
otherwise run the cordic-
<version>/test/verilog/scripts/encrypt_msim_com.bat batch file.

5. The output log file, which is generated from simulation run, is
cordic-<version>/test/dat_files/op_err.txt.

1 If you subsquently change the parameter values or the data used
in the test and still have the ModelSim simulator open from the
previous run, you can type cr in the ModelSim window, which
recompiles the testbench and reruns the simulation.

Performance Table 9 shows the Quartus II push-button performance for the CORDIC
reference design on Stratix™ devices.

Table 9. Example Performance in Stratix Devices

x, y, & z Bit Widths Number of Iterations Logic Elements (LEs) % LEs in Device Note (1) fMAX (MHz)

8 8 292 2 269

16 16 965 9 221

24 24 2,021 19 202

32 32 3,462 32 185

40 40 5,287 50 179

Note:
(1) EP1S10F484C5 device.
Altera Corporation 15

AN 263: CORDIC Reference Design
Table 9 shows the Quartus II push-button performance the CORDIC
reference design on Cyclone™ devices.

Table 10. Example Performance in Cyclone Devices

x, y, & z Bit Widths Number of Iterations Logic Elements (LEs) % LEs in Device fMAX (MHz)

8 8 293 10 (1) 233

16 16 963 24 (2) 219

24 24 2,022 50 (2) 181

32 32 3,463 28 (3) 173

40 40 5,287 43 (3) 166

Note:
(1) EP1C 3T144C6 device.
(2) EP1C 4F324C6 device.
(3) EP1C 12F324C6 device.
16 Altera Corporation

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Literature Services:
literature@altera.com

Copyright © 2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

	Introduction
	Background
	Functional Description
	Cartesian to Polar Conversion
	Polar to Cartesian Conversion
	Vector Rotation
	Vector Width
	Iterations
	Testbench
	Design Flow

	Getting Started
	Software Requirements
	Install the Design
	Design Walkthrough
	Start the MATLAB GUI
	Parameterize the Design
	Auto-generate Verilog Simulation Files from MATLAB
	Simulation

	Performance
	CORDIC Reference Design

