
QII51015-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013

November 2013
QII51015-13.1.0
3. Quartus II Incremental Compilation for
Hierarchical and Team-Based Design
This chapter provides information and design scenarios to help you partition your
design to take advantage of the Quartus® II incremental compilation feature.

The ability to iterate rapidly through FPGA design and debugging stages is critical.
The Quartus II software introduced the FPGA industry’s first true incremental design
and compilation flow, with the following benefits:

■ Preserves the results and performance for unchanged logic in your design as you
make changes elsewhere.

■ Reduces design iteration time by an average of 75% for small changes in large
designs, so that you can perform more design iterations per day and achieve
timing closure efficiently.

■ Facilitates modular hierarchical and team-based design flows, as well as design
reuse and intellectual property (IP) delivery.

1 Quartus II incremental compilation supports the Arria®, Stratix®, and Cyclone® series
of devices.

This document contains the following sections:

■ “Deciding Whether to Use an Incremental Compilation Flow” on page 3–1

■ “Incremental Compilation Summary” on page 3–7

■ “Common Design Scenarios Using Incremental Compilation” on page 3–10

■ “Deciding Which Design Blocks Should Be Design Partitions” on page 3–19

■ “Specifying the Level of Results Preservation for Subsequent Compilations” on
page 3–25

■ “Exporting Design Partitions from Separate Quartus II Projects” on page 3–30

■ “Team-Based Design Optimization and Third-Party IP Delivery Scenarios” on
page 3–39

■ “Creating a Design Floorplan With LogicLock Regions” on page 3–48

■ “Incremental Compilation Restrictions” on page 3–51

■ “Scripting Support” on page 3–57

Deciding Whether to Use an Incremental Compilation Flow
The Quartus II incremental compilation feature enhances the standard Quartus II
design flow by allowing you to preserve satisfactory compilation results and
performance of unchanged blocks of your design.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

https://www.altera.com/servlets/subscriptions/alert?id=QII51015
http://www.altera.com/common/legal.html
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51015-13.1 (QII HB, Vol 1, Ch3: Quartus II Incremental Compilation)
http://twitter.com/home/?status=Quartus+II+Incremental+Compilation+for+Hierarchical+and+Team-Based+Design+http://www.altera.com/literature/hb/qts/qts_qii51015.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html

3–2 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow
This section outlines the flat compilation flow with no design partitions, the
incremental flow when you divide the design into partitions, and the differences
between the flat compilation and incremental compilation flows. This section also
explains when a flat compilation flow is satisfactory, and highlights some of the
reasons why you might want to create design partitions and use the incremental
compilation flow. A discussion about incremental and team design flows in “Team-
Based Design Flows and IP Delivery” on page 3–6 describes how it is beneficial to
keep your design within one project, as well as when it might be necessary for other
team members or IP providers to develop particular design blocks or partitions
separately, and then later integrate their partitions into the top-level design.

Flat Compilation Flow with No Design Partitions
In the flat compilation flow with no design partitions, all the source code is processed
and mapped during the Analysis and Synthesis stage, and placed and routed during
the Fitter stage whenever the design is recompiled after a change in any part of the
design. One reason for this behavior is to ensure optimal push-button quality of
results. By processing the entire design, the Compiler can perform global
optimizations to improve area and performance.

You can use a flat compilation flow for small designs, such as designs in CPLD
devices or low-density FPGA devices, when the timing requirements are met easily
with a single compilation. A flat design is satisfactory when compilation time and
preserving results for timing closure are not concerns.

f For more information on how to reduce compilation time when you use a flat
compilation for your design, refer to the Reducing Compilation Time chapter in volume
2 of the Quartus II Handbook.

Incremental Capabilities Available When A Design Has No Partitions
The Quartus II software has incremental compilation features available even when
you do not partition your design, including Smart Compilation, incremental
debugging, and Rapid Recompile. These features work in either an incremental or flat
compilation flow.

In any Quartus II compilation flow, you can use Smart Compilation to allow the
Compiler to determine which compilation stages are required, based on the changes
made to the design since the last smart compilation, and then skip any stages that are
not required. For example, when Smart Compilation is turned on, the Compiler skips
the Analysis and Synthesis stage if all the design source files are unchanged. When
Smart Compilation is turned on, if you make any changes to the logic of a design, the
Compiler does not skip any compilation stage. You can turn on Smart Compilation on
the Compilation Process Settings page of the Setting dialog box.

The Quartus II software also includes a Rapid Recompile feature that instructs the
Compiler to reuse the compatible compilation results if most of the design has not
changed since the last compilation. This feature reduces compilation times for small
and isolated design changes. You do not have control over which parts of the design
are recompiled using this option; the Compiler determines which parts of the design
must be recompiled. The Rapid Recompile feature preserves performance and can
save compilation time by reducing the amount of changed logic that must be
recompiled.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52022.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–3
Deciding Whether to Use an Incremental Compilation Flow
h For more information on Rapid Recompile, refer to About Rapid Recompile in
Quartus II Help.

During the debugging stage of the design cycle, you can use incremental compilation
to add the SignalTap® II Logic Analyzer incrementally to your design, even if the
design does not have partitions. To preserve the compilation netlist for the entire
design, instruct the software to reuse the compilation results for the
automatically-created "Top" partition that contains the entire design. For more
information, refer to “Debugging Incrementally With the SignalTap II Logic
Analyzer” on page 3–13.

Incremental Compilation Flow With Design Partitions
In the standard incremental compilation design flow, the top-level design is divided
into design partitions, which can be compiled and optimized together in the top-level
Quartus II project. You can preserve fitting results and performance for completed
partitions while other parts of the design are changing, which reduces the compilation
times for each design iteration.

Incremental compilation is recommended for large designs and high resource
densities when preserving results is important to achieve timing closure. The
incremental compilation feature also facilitates team-based design flows that allow
designers to create and optimize design blocks independently, when necessary. Refer
to “Team-Based Design Flows and IP Delivery” on page 3–6 for more information.

To take advantage of incremental compilation, start by splitting your design along
any of its hierarchical boundaries into design blocks to be compiled incrementally,
and set each block as a design partition. The Quartus II software synthesizes each
individual hierarchical design partition separately, and then merges the partitions
into a complete netlist for subsequent stages of the compilation flow. When
recompiling your design, you can use source code, post-synthesis results, or
post-fitting results to preserve satisfactory results for each partition. Refer to
“Incremental Compilation Summary” on page 3–7 for more information.

In a team-based environment, part of your design may be incomplete, or it may have
been developed by another designer or IP provider. In this scenario, you can add the
completed partitions to the design incrementally. Alternatively, other designers or IP
providers can develop and optimize partitions independently and the project lead can
later integrate the partitions into the top-level design. Refer to “Team-Based Design
Flows and IP Delivery” on page 3–6 for more information.

Table 3–1 shows a summary of the impact the Quartus II incremental compilation
feature has on compilation results.

Table 3–1. Impact Summary of Using Incremental Compilation (Part 1 of 2)

Characteristic Impact of Incremental Compilation with Design Partitions

Compilation
Time Savings

Typically saves an average of 75% of compilation time for small design changes in large designs when
post-fit netlists are preserved; there are savings in both Quartus II Integrated Synthesis and the Fitter.
(1)

Performance
Preservation

Excellent performance preservation when timing critical paths are contained within a partition,
because you can preserve post-fitting information for unchanged partitions.

Node Name
Preservation Preserves post-fitting node names for unchanged partitions.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/comp/comp_about_rapid_recompile.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm

3–4 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow
If you use the incremental compilation feature at any point in your design flow, it is
easier to accommodate the guidelines for partitioning a design and creating a
floorplan if you start planning for incremental compilation at the beginning of your
design cycle.

f For more information and recommendations on how to prepare your design to use the
Quartus II incremental compilation feature, and how to avoid negative impact on
your design results, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Area Changes The area (logic resource utilization) might increase because cross-boundary optimizations are limited,
and placement and register packing are restricted.

fMAX Changes The design’s maximum frequency might be reduced because cross-boundary optimizations are
limited. If the design is partitioned and the floorplan location assignments are created appropriately,
there might be no negative impact on fMAX.

Note to Table 3–1:
(1) Quartus II incremental compilation does not reduce processing time for the early "pre-fitter" operations, such as determining pin locations and

clock routing, so the feature cannot reduce compilation time if runtime is dominated by those operations.

Table 3–1. Impact Summary of Using Incremental Compilation (Part 2 of 2)

Characteristic Impact of Incremental Compilation with Design Partitions
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–5
Deciding Whether to Use an Incremental Compilation Flow
Figure 3–1 shows a diagram of the Quartus II design flow using incremental
compilation with design partitions.

The diagram in Figure 3–1 shows a top-level partition and two lower-level partitions.
If any part of the design changes, Analysis and Synthesis processes the changed
partitions and keeps the existing netlists for the unchanged partitions. After
completion of Analysis and Synthesis, there is one post-synthesis netlist for each
partition.

Figure 3–1. Quartus II Design Flow Using Incremental Compilation

Note to Figure 3–1:
(1) When you use EDIF or VQM netlists created by third-party EDA synthesis tools, Analysis and Synthesis creates the

design database, but logic synthesis and technology mapping are performed only for black boxes.

System
VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis
Synthesize Changed Partitions,

Preserve Others

Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each

Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

Single Netlist for
Complete Design

One Post-Fit
Netlist per
Partition

One Post-Synthesis
Netlist per Partition

Single Post-Fit
Netlist for
Complete Design

Fitter
Place-and-Route Changed Partitions,

Preserve Others

Create Individual Netlists and
Complete Netlists

Assembler

Settings &
Assignments

Make Design &
Assignment Modifications

Settings &
Assignments

Design Partition
Assignments

Floorplan
Location

Assignments

Requirements
Satisfied?

Yes

No

Program/Configure Device

Partition Top

Partition 1

Partition 2

(1)

Verilog
HDL
(.sv)

Timing
Analyzerin parellel
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–6 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow
The Partition Merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists exported from other Quartus II
projects, depending on the netlist type that you specify for each partition.

The Fitter then processes the merged netlist, preserves the placement and routing of
unchanged partitions, and refits only those partitions that have changed. The Fitter
generates the complete netlist for use in future stages of the compilation flow,
including timing analysis and programming file generation, which can take place in
parallel if more than one processor is enabled for use in the Quartus II software. The
Fitter also generates individual netlists for each partition so that the Partition Merge
stage can use the post-fit netlist to preserve the placement and routing of a partition, if
specified, for future compilations.

If you define partitions, but want to check your compilation results without partitions
in a “what if” scenario, you can direct the Compiler to ignore all partitions
assignments in your project and compile the design as a "flat" netlist. When you turn
on the Ignore partitions assignments during compilation option on the Incremental
Compilation page, the Quartus II software disables all design partition assignments
in your project and runs a full compilation ignoring all partition boundaries and
netlists. Turning off the Ignore partitions assignments during compilation option
restores all partition assignments and netlists for subsequent compilations.

h For more information on incremental compilation settings, refer to Incremental
Compilation Page and Design Partition Properties Dialog Box in Quartus II Help.

Team-Based Design Flows and IP Delivery
The Quartus II software supports various design flows to enable team-based design
and third-party IP delivery. A top-level design can include one or more partitions that
are designed or optimized by different designers or IP providers, as well as partitions
that will be developed as part of a standard incremental methodology.

In a team-based environment, part of your design may be incomplete because it is
being developed elsewhere. The project lead or system architect can create empty
placeholders in the top-level design for partitions that are not yet complete. Designers
or IP providers can create and verify HDL code separately, and then the project lead
later integrates the code into the single top-level Quartus II project. In this scenario,
you can add the completed partitions to the design incrementally, however, the design
flow allows all design optimization to occur in the top-level design for easiest design
integration. Altera recommends using a single Quartus II project whenever possible
because using multiple projects can add significant up-front and debugging time to
the development cycle.

Alternatively, partition designers can design their partition in a copy of the top-level
design or in a separate Quartus II project. Designers export their completed partition
as either a post-synthesis netlist or optimized placed and routed netlist, or both, along
with assignments such as LogicLock™ regions, as appropriate. The project lead then
integrates each design block as a design partition into the top-level design. Altera
recommends that designers export and reuse post-synthesis netlists, unless optimized
post-fit results are required in the top-level design, to simplify design optimization.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_part_window_properties.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–7
Incremental Compilation Summary
Teams with a bottom-up design approach often want to optimize placement and
routing of design partitions independently and may want to create separate
Quartus II projects for each partition. However, optimizing design partitions in
separate Quartus II projects, and then later integrating the results into a top-level
design, can have the following potential drawbacks that require careful planning:

■ Achieving timing closure for the full design may be more difficult if you compile
partitions independently without information about other partitions in the design.
This problem may be avoided by careful timing budgeting and special design
rules, such as always registering the ports at the module boundaries.

■ Resource budgeting and allocation may be required to avoid resource conflicts and
overuse. Creating a floorplan with LogicLock regions is recommended when
design partitions are developed independently in separate Quartus II projects.

■ Maintaining consistency of assignments and timing constraints can be more
difficult if there are separate Quartus II projects. The project lead must ensure that
the top-level design and the separate projects are consistent in their assignments.

A unique challenge of team-based design and IP delivery for FPGAs is the fact that
the partitions being developed independently must share a common set of resources.
To minimize issues that might arise from sharing a common set of resources, you can
design partitions within a single Quartus II project or a copy of the top-level design. A
common project ensures that designers have a consistent view of the top-level project
framework.

For timing-critical partitions being developed and optimized by another designer, it is
important that each designer has complete information about the top-level design in
order to maintain timing closure during integration, and to obtain the best results.
When you want to integrate partitions from separate Quartus II projects, the project
lead can perform most of the design planning, and then pass the top-level design
constraints to the partition designers. Preferably, partition designers can obtain a copy
of the top-level design by checking out the required files from a source control system.
Alternatively, the project lead can provide a copy of the top-level project framework,
or pass design information using Quartus II-generated design partition scripts. In the
case that a third-party designer has no information about the top-level design,
developers can export their partition from an independent project if required.

For more information about managing team-based design flows, refer to “Exporting
Design Partitions from Separate Quartus II Projects” on page 3–30 and “Project
Management—Making the Top-Level Design Available to Other Designers” on
page 3–32.

Incremental Compilation Summary
This section provides a summary of the standard incremental compilation design flow
and describes how to create design partitions.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–8 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Summary
Figure 3–2 illustrates the incremental compilation design flow when all partitions are
contained in one top-level design.

Steps for Incremental Compilation
This section summarizes the steps in an incremental compilation flow; preparing a
design to use the incremental compilation feature, and then preserving satisfactory
results and performance in subsequent incremental compilations.

h For an interactive introduction to implementing an incremental compilation design
flow, refer to the Getting Started Tutorial on the Help menu in the Quartus II
software. For step-by-step instructions on how to use the incremental compilation
feature, refer to Using the Incremental Compilation Design Flow in Quartus II Help.

Preparing a Design for Incremental Compilation
To begin, elaborate your design, or run any compilation flow (such as a full
compilation) that includes the elaboration step. Elaboration is the part of the synthesis
process that identifies your design’s hierarchy.

Next, designate specific instances in the design hierarchy as design partitions, as
described in “Creating Design Partitions” on page 3–9.

If required for your design flow, create a floorplan with LogicLock regions location
assignments for timing-critical partitions that change with future compilations.
Assigning a partition to a physical region on the device can help maintain quality of
results and avoid conflicts in certain situations. For more information about
LogicLock region assignments, refer to “Creating a Design Floorplan With LogicLock
Regions” on page 3–48.

Figure 3–2. Summary of Standard Incremental Compilation Design Flow

Perform Elaboration

Repeat as Needed
During Design, Verification
& Debugging Stages

(Optional) Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

Set Netlist Type for Each Partition

Make Changes to Design

Perform Incremental Compilation
(Partitions are Compiled if Required)

Prepare Design for Incremental Compilation
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_running_incremental_compilation.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–9
Incremental Compilation Summary
Compiling a Design Using Incremental Compilation
The first compilation after making partition assignments is a full compilation, and
prepares the design for subsequent incremental compilations. In subsequent
compilations of your design, you can preserve satisfactory compilation results and
performance of unchanged partitions with the Netlist Type setting in the Design
Partitions window. The Netlist Type setting determines which type of netlist or
source file the Partition Merge stage uses in the next incremental compilation. You can
choose the Source File, Post-Synthesis netlist, or Post-Fit netlist. For more information
about the Netlist Type setting, refer to “Specifying the Level of Results Preservation
for Subsequent Compilations” on page 3–25.

Creating Design Partitions
There are several ways to designate a design instance as a design partition. This
section provides an overview of tools you can use to create partitions in the Quartus II
software. For more information on selecting which design blocks to assign as
partitions and how to analyze the quality of your partition assignments, refer to
“Deciding Which Design Blocks Should Be Design Partitions” on page 3–19.

Creating Design Partitions in the Project Navigator
You can right-click an instance in the list under the Hierarchy tab in the Project
Navigator and use the sub-menu to create and delete design partitions.

h For more information about how to create design partitions in the Quartus II Project
Navigator, refer to Creating Design Partitions in Quartus II Help.

Creating Design Partitions in the Design Partitions Window
The Design Partitions window, available from the Assignments menu, allows you to
create, delete, and merge partitions, and is the main window for setting the netlist
type to specify the level of results preservation for each partition on subsequent
compilations. For information about how to set the netlist type and the available
settings, refer to “Netlist Type for Design Partitions” on page 3–25.

The Design Partitions window also lists recommendations at the bottom of the
window with links to the Incremental Compilation Advisor, where you can view
additional recommendations about partitions. The Color column indicates the color
of each partition as it appears in the Design Partition Planner and Chip Planner.

You can right-click a partition in the window to perform various common tasks, such
as viewing property information about a partition, including the time and date of the
compilation netlists and the partition statistics.

When you create a partition, the Quartus II software automatically generates a name
based on the instance name and hierarchy path. You can edit the partition name in the
Design Partitions Window so that you avoid referring to them by their hierarchy path,
which can sometimes be long. This is especially useful when using command-line
commands or assignments, or when you merge partitions to give the partition a
meaningful name. Partition names can be from 1 to 1024 characters in length and
must be unique. The name can consist of alphanumeric characters and the pipe
(|), colon (:), and underscore (_) characters.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_qid_create_design_partitions.htm

3–10 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
h For more information about how to create and manage design partitions in the Design
Partitions window, refer to Creating Design Partitions in Quartus II Help.

Creating Design Partitions With the Design Partition Planner
The Design Partition Planner allows you to view design connectivity and hierarchy,
and can assist you in creating effective design partitions that follow Altera’s
guidelines.

The Design Partition Planner displays a visual representation of design connectivity
and hierarchy, as well as partitions and entity relationships. You can explore the
connectivity between entities in the design, evaluate existing partitions with respect to
connectivity between entities, and try new partitioning schemes in "what if" scenarios.

When you extract design blocks from the top-level design and drag them into the
Design Partition Planner, connection bundles are drawn between entities, showing
the number of connections existing between pairs of entities. In the Design Partition
Planner, you can then set extracted design blocks as design partitions.

The Design Partition Planner also has an Auto-Partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks.

f For more information about how to use the Design Partition Planner, refer to Using the
Design Partition Planner in Quartus II Help and the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

Creating Design Partitions With Tcl Scripting
You can also create partitions with Tcl scripting commands. For more information
about the command-line and scripting flow, refer to “Scripting Support” on
page 3–57.

Automatically-Generated Partitions
The Compiler creates some partitions automatically as part of the compilation
process, which appear in some post-compilation reports. For example, the sld_hub
partition is created for tools that use JTAG hub connections, such as the SignalTap II
Logic Analyzer. The hard_block partition is created to contain certain "hard" or
dedicated logic blocks in the device that are implemented in a separate partition so
that they can be shared throughout the design.

Common Design Scenarios Using Incremental Compilation
This section provides recommended applications of the incremental compilation flow
after you have set up your design with partitions for incremental compilation as
described in, “Steps for Incremental Compilation” on page 3–8.

This section contains the following design scenarios:

■ “Reducing Compilation Time When Changing Source Files for One Partition” on
page 3–11

■ “Optimizing a Timing-Critical Partition” on page 3–11
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_qid_create_design_partitions.htm
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–11
Common Design Scenarios Using Incremental Compilation
■ “Adding Design Logic Incrementally or Working With an Incomplete Design” on
page 3–12

■ “Debugging Incrementally With the SignalTap II Logic Analyzer” on page 3–13

Reducing Compilation Time When Changing Source Files for One Partition
Scenario background: You set up your design to include partitions for several of the
major design blocks, and now you have just performed a lengthy compilation of the
entire design. An error is found in the HDL source file for one partition and it is being
fixed. Because the design is currently meeting timing requirements, and the fix is not
expected to affect timing performance, it makes sense to compile only the affected
partition and preserve the rest of the design.

Use the flow in this example to update the source file in one partition without having
to recompile the other parts of the design. To reduce the compilation time, instruct the
software to reuse the post-fit netlists for the unchanged partitions. This flow also
preserves the performance of these blocks, which reduces additional timing closure
efforts.

Perform the following steps to update a single source file:

1. Apply and save the fix to the HDL source file.

2. On the Assignments menu, open the Design Partitions window.

3. Change the netlist type of each partition, including the top-level entity, to Post-Fit
to preserve as much as possible for the next compilation.

1 The Quartus II software recompiles partitions by default when changes are
detected in a source file. You can refer to the Partition Dependent Files table
in the Analysis and Synthesis report to determine which partitions were
recompiled. If you change an assignment but do not change the logic in a
source file, you can set the netlist type to Source File for that partition to
instruct the software to recompile the partition's source design files and its
assignments.

h For more information about the Analysis and Synthesis report, refer to List
of Compilation and Simulation Reports in Quartus II Help.

4. Click Start Compilation to incrementally compile the fixed HDL code. This
compilation should take much less time than the initial full compilation.

5. Simulate the design to ensure that the error is fixed, and use the TimeQuest Timing
Analyzer report to ensure that timing results have not degraded.

Optimizing a Timing-Critical Partition
Scenario background: You have just performed a lengthy full compilation of a design
that consists of multiple partitions. The TimeQuest Timing Analyzer reports that the
clock timing requirement is not met, and you have to optimize one particular
partition. You want to try optimization techniques such as raising the Placement
Effort Multiplier, enabling Physical Synthesis, and running the Design Space Explorer.
Because these techniques all involve significant compilation time, you should apply
them to only the partition in question.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_list_format.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_list_format.htm

3–12 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
Use the flow in this example to optimize the results of one partition when the other
partitions in the design have already met their requirements. You can use this flow
iteratively to lock down the performance of one partition, and then move on to
optimization of another partition.

Perform the following steps to preserve the results for partitions that meet their
timing requirements, and to recompile a timing-critical partition with new
optimization settings:

1. Open the Design Partitions window.

2. For the partition in question, set the netlist type to Source File.

1 If you change a setting that affects only the Fitter, you can save additional
compilation time by setting the netlist type to Post-Synthesis to reuse the
synthesis results and refit the partition.

3. For the remaining partitions (including the top-level entity), set the netlist type to
Post-Fit.

1 You can optionally set the Fitter Preservation Level on the Advanced tab in
the Design Partitions Properties dialog box to Placement to allow for the
most flexibility during routing.

4. Apply the desired optimization settings.

5. Click Start Compilation to perform incremental compilation on the design with
the new settings. During this compilation, the Partition Merge stage automatically
merges the critical partition’s new synthesis netlist with the post-fit netlists of the
remaining partitions. The Fitter then refits only the required partition. Because the
effort is reduced as compared to the initial full compilation, the compilation time is
also reduced.

To use the Design Space Explorer, perform the following steps:

1. Repeat steps 1–3 of the previous procedure.

2. Save the project and run the Design Space Explorer.

Adding Design Logic Incrementally or Working With an Incomplete Design
Scenario background: You have one or more partitions that are known to be timing-
critical in your full design. You want to focus on developing and optimizing this
subset of the design first, before adding the rest of the design logic.

Use this flow to compile a timing-critical partition or partitions in isolation, optionally
with extra optimizations turned on. After timing closure is achieved for the critical
logic, you can preserve its content and placement and compile the remaining
partitions with normal or reduced optimization levels. For example, you may want to
compile an IP block that comes with instructions to perform optimization before you
incorporate the rest of your custom logic.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–13
Common Design Scenarios Using Incremental Compilation
To implement this design flow, perform the following steps:

1. Partition the design and create floorplan location assignments. For best results,
ensure that the top-level design includes the entire project framework, even if
some parts of the design are incomplete and are represented by an empty wrapper
file.

2. For the partitions to be compiled first, in the Design Partitions window, set the
netlist type to Source File.

3. For the remaining partitions, set the netlist type to Empty.

4. To compile with the desired optimizations turned on, click Start Compilation.

5. Check the Timing Analyzer reports to ensure that timing requirements are met. If
so, proceed to step 6. Otherwise, repeat steps 4 and 5 until the requirements are
met.

6. In the Design Partitions window, set the netlist type to Post-Fit for the first
partitions. You can set the Fitter Preservation Level on the Advanced tab in the
Design Partitions Properties dialog box to Placement to allow more flexibility
during routing if exact placement and routing preservation is not required.

7. Change the netlist type from Empty to Source File for the remaining partitions,
and ensure that the completed source files are added to the project.

8. Set the appropriate level of optimizations and compile the design. Changing the
optimizations at this point does not affect any fitted partitions, because each
partition has its netlist type set to Post-Fit.

9. Check the Timing Analyzer reports to ensure that timing requirements are met. If
not, make design or option changes and repeat step 8 and step 9 until the
requirements are met.

1 The flow in this example is similar to design flows in which a module is implemented
separately and is later merged into the top-level, such as in the team-based design
flow described in “Designing in a Team-Based Environment” on page 3–42. Generally,
optimization in this flow works only if each critical path is contained within a single
partition due to the effects described in “Deciding Which Design Blocks Should Be
Design Partitions” on page 3–19. Ensure that if there are any partitions representing a
design file that is missing from the project, you create a placeholder wrapper file to
define the port interface. For more information, refer to “Empty Partitions” on
page 3–32.

Debugging Incrementally With the SignalTap II Logic Analyzer
Scenario background: Your design is not functioning as expected, and you want to
debug the design using the SignalTap II Logic Analyzer. To maintain reduced
compilation times and to ensure that you do not negatively affect the current version
of your design, you want to preserve the synthesis and fitting results and add the
SignalTap II Logic Analyzer to your design without recompiling the source code.

Use this flow to reduce compilation times when you add the logic analyzer to debug
your design, or when you want to modify the configuration of the SignalTap II File
without modifying your design logic or its placement.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–14 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
It is not necessary to create design partitions in order to use the SignalTap II
incremental compilation feature. The SignalTap II Logic Analyzer acts as its own
separate design partition.

Perform the following steps to use the SignalTap II Logic Analyzer in an incremental
compilation flow:

1. Open the Design Partitions window.

2. Set the netlist type to Post-fit for all partitions to preserve their placement.

1 The netlist type for the top-level partition defaults to Source File, so be sure
to change this “Top” partition in addition to any design partitions that you
have created.

3. If you have not already compiled the design with the current set of partitions,
perform a full compilation. If the design has already been compiled with the
current set of partitions, the design is ready to add the SignalTap II Logic Analyzer.

4. Set up your SignalTap II File using the post-fitting filter in the Node Finder to add
signals for logic analysis. This allows the Fitter to add the SignalTap II logic to the
post-fit netlist without modifying the design results.

To add signals from the pre-synthesis netlist, set the partition’s netlist type to
Source File and use the pre-synthesis filter in the Node Finder. This allows the
software to resynthesize the partition and to tap directly to the pre-synthesis node
names that you choose. In this case, the partition is resynthesized and refit, so the
placement is typically different from previous fitting results.

f For more information about setting up the SignalTap II Logic Analyzer, refer to the
Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of
the Quartus II Handbook.

Functional Safety IP Implementation
In functional safety designs, recertification is required when logic is modified in safety
or non-safety areas of the design. Recertification is required because the FPGA
programming file has changed. You can reduce the amount of required recertification
if you use the safety/non-safety separation flow in the Quartus II software. By
partitioning your safety IP from non-safety related logic, you ensure that the safety
critical areas of the design remain the same when the non-safety areas in your design
are modified. The safety-critical areas remain the same at the bit level.

IEC61508 Compliance
The Quartus II software can partition your design into safety partitions and non-
safety partitions, but the Quartus II software does not perform any online safety-
related functionality. A bitstream is generated by the Quartus II software that
performs the safety functions and for the purposed of compliance with IEC61508, the
Quartus II software should be considered as an offline support tool.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–15
Common Design Scenarios Using Incremental Compilation
Functional Safety Separation Flow
The functional safety separation flow consists of two separate work flows. The design
creation flow (DCF) and the design modification flow (DMF) both leverage
incremental compilation, but the two flows have different use-case scenarios.

Design Creation Flow

The design creation flow delineates the necessary steps for initial design creation in a
way that allows modifications to be made in your design. Some of the steps are
architectural constraints and the remaining steps are steps that you need to perform in
the Quartus II software. You use DCF for the first pass certification of your product.

c When you make modifications to the safety IP in your design, you are required to use
the design creation flow.

Figure 3–3. Functional Safety Separation Flow

Figure 3–4. Design Creation Flow
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–16 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
Design Modification Flow

The design modification flow delineates the necessary steps to make modifications to
the non-safety IP in your design. This flow ensures that the previously compiled
Safety IP (SIP) that is used in the project remains unchanged when non-safety IP
(NSIP) changes are made or compiled.

c You can only use the design modification flow after your design has been qualified in
the design creation flow.

How to Turn On the Functional Safety Separation Flow
Every safety related IP component in your design should be implemented in a
partition(s) so the SIPs are protected from recompilation. The global assignment
PARTITION_ENABLE_STRICT_PRESERVATION is used to identify SIP in your design.

■ set_global_assignment -name PARTITION_ENABLE_STRICT_PRESERVATION
<ON/OFF> -section_id <partition_name>

When this global assignment is designated as ON for a partition, the partition is
protected from recompilation, exported as a SIP, and included into the SIP POF mask.
Specifying the value as ON for any partition turns on the functional safety separation
flow.

When this global assignment is designated as OFF, the partition is considered as part
of the NSIP or as not having a PARTITION_ENABLE_STRICT_PRESERVATION assignment
at all. Logic that is not assigned to a partition is considered as part of the top partition
and treated as non-safety logic.

c Only partitions and I/O pins can be assigned to SIP.

Figure 3–5. Design Modification Flow
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–17
Common Design Scenarios Using Incremental Compilation
A partition assigned to SIP can contain safety logic only. If the parent partition is
assigned to a SIP, then all the child partitions for this parent partition is considered as
part of the SIP. If a child partition is not specified explicitly as a SIP, a critical warning
is issued to notify you that the child partition is treated as part of a SIP.

A design can contain several SIPs. All the partitions containing logic that implements
a single SIP function should belong with the same top level parent partition.

The functional safety separation flow supports Cyclone IV and Cyclone V device
families.

You can also turn on the functional safety separation flow from the Design Partition
Properties dialog box.

When the functional safety separation flow is active, you can view which partitions in
your design have the Strict Preservation property turned on. The Design Partition
Window displays a on or off value for SIP in your design.

h For more information about the Design Partition Properties dialog box and the Design
Partitions Window, refer to the Quartus II Help.

Preservation of Device Resources
The preservation of the partition’s netlist atoms and the atoms placement and routing,
in the design modification flow, is done be setting the netlist type to Post-fit with the
Fitter preservation level set to Placement and Routing Preserved.

Preservation of Placement in the Device with LogicLock
In order to fix the SIP logic into specific areas of the device, you should define
LogicLock regions. By using preserved LogicLock regions, device placement is
reserved for the SIP to prevent NSIP logic from being placed into the unused
resources of the SIP region. You establish a fixed size and origin to ensure location
preservation. You need to use LogicLock to ensure a valid SIP POF mask is generated,
but the SIP POF mask gets generated when you turn on the functional safety
separation flow. The POF comparison tool for functional safety can check that the
safety region is unchanged between compiles. A LogicLock region assigned to a SIP
can only contain safety IP logic.

Assigning I/O Pins
You can use a global assignment to specify that a pin is assigned to a SIP.

set_instance_assignment ENABLE_STRICT_PRESERVATION ON/OFF - to=<hpath> -
section_id <region_name>

■ <hpath> refers to an I/O pin (pad).

■ <region_name> refers to the top level SIP partition name.

A value of ON indicates that the pin is a safety pin that should be preserved along
with the SIP. A value of OFF indicates that the pin that connects up to the SIP, should
be treated as a non-safety pin, and is not preserved along with the SIP.

All the pins that connect up to a SIP should have an explicit assignment.

An error is reported if a pin that connects up the SIP does not have an assignment or a
pin does not connect up to the specified <region_name>.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_part_window_properties.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_com_qid_design_partition.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_com_qid_design_partition.htm

3–18 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
If an IO_REG group contains a pin that is assigned to a SIP, then all the pins in the
IO_REG group are reserved for this SIP. All pins in the IO_REG group need to be
assigned to the same SIP and none of the pins in the group can be assigned to non-
safety signals.

General Guidelines for Implementation
■ An internal clock source, such as a PLL, should be implemented in a safe partition.

■ An I/O pin driving the external clock should be indicated as a safety pin.

■ To export a SIP containing several partitions, the top level partition for the SIP
should be exported. A SIP containing several partitions is flattened and converted
into a single partition during export. This hierarchical SIP is flattened to enure bit-
level settings are preserved.

■ Hard blocks implemented in a safe partition needs to stay with the safe partition.

Reports for SIP
When you have the functional safety separation flow turned on, the Quartus II
software displays SIP and NSIP information in the Fitter report.

Fitter Report

The Fitter report includes information for each SIP and the respective partition and
I/O usage. The report contains the following information:

■ Partition name (with the name of the top level SIP partition used as the SIP name)

■ Number of safety/non-safety inputs to the partitions

■ Number of safety/non-safety outputs to the partitions

■ LogicLock region names along with size and locations for the regions

■ I/O pins used for the respective SIP in your design

■ Safety related error messages

SIP Partial Bitstream Generation
The Programmer generates a bitstream file containing only the bits for a SIP. This
partial preserved bitstream (PPB) file is for the SIP region mask. The command lines
to generate the partial bitstream file are the following:

■ quartus_cpf --gen_ppb safe1.psm design.sof safe1.rbf.ppb

■ quartus_cpf -c safe1.psm safe1.rbf.ppb

The PPB file is generated in two steps.

1. Generation of partial SOF.

2. Generation of PPB file using the partial SOF.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–19
Deciding Which Design Blocks Should Be Design Partitions
POF Comparison Tool for Verification
There is a separate safe/non-safe partitioning verification tool that is licensed to
safety users. Along with the PPB file, a MD5 hash signature file is generated. The MD5
hash signature can be used for verification. For more detailed verification, the POF
comparison tool should be used. This POF comparison tool is available in the Altera
Functional Safety Data Package.

Deciding Which Design Blocks Should Be Design Partitions
The incremental compilation design flow requires more planning than flat
compilations. For example, you might have to structure your source code or design
hierarchy to ensure that logic is grouped correctly for optimization.

It is a common design practice to create modular or hierarchical designs in which you
develop each design entity separately, and then instantiate them in a higher-level
entity, forming a complete design. The Quartus II software does not automatically
consider each design entity or instance to be a design partition for incremental
compilation; instead, you must designate one or more design hierarchies below the
top-level project as a design partition. Creating partitions might prevent the Compiler
from performing optimizations across partition boundaries, as discussed in “Impact
of Design Partitions on Design Optimization” on page 3–20. However, this allows for
separate synthesis and placement for each partition, making incremental compilation
possible.

Partitions must have the same boundaries as hierarchical blocks in the design because
a partition cannot be a portion of the logic within a hierarchical entity. You can merge
partitions that have the same immediate parent partition to create a single partition
that includes more than one hierarchical entity in the design. When you declare a
partition, every hierarchical instance within that partition becomes part of the same
partition. You can create new partitions for hierarchical instances within an existing
partition, in which case the instances within the new partition are no longer included
in the higher-level partition, as described in the following example.

In Figure 3–6, a complete design is made up of instances A, B, C, D, E, F, and G. The
shaded boxes in Representation i indicate design partitions in a “tree” representation
of the hierarchy. In Representation ii, the lower-level instances are represented inside
the higher-level instances, and the partitions are illustrated with different colored
shading. The top-level partition, called “Top”, automatically contains the top-level
entity in the design, and contains any logic not defined as part of another partition.
The design file for the top level may be just a wrapper for the hierarchical instances
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–20 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions
below it, or it may contain its own logic. In this example, partition B contains the logic
in instances B, D, and E. Entities F and G were first identified as separate partitions,
and then merged together to create a partition F-G. The partition for the top-level
entity A, called “Top”, includes the logic in one of its lower-level instances, C, because
C was not defined as part of any other partition.

You can create partition assignments to any design instance. The instance can be
defined in HDL or schematic design, or come from a third-party synthesis tool as a
VQM or EDIF netlist instance.

To take advantage of incremental compilation when source files change, create
separate design files for each partition. If you define two different entities as separate
partitions but they are in the same design file, you cannot maintain incremental
compilation because the software would have to recompile both partitions if you
changed either entity in the design file. Similarly, if two partitions rely on the same
lower-level entity definition, changes in that lower-level affect both partitions.

The remainder of this section provides information to help you choose which design
blocks you should assign as partitions.

Impact of Design Partitions on Design Optimization
The boundaries of your design partitions can impact the design’s quality of results.
Creating partitions might prevent the Compiler from performing logic optimizations
across partition boundaries, which allows the software to synthesize and place each
partition separately in an incremental flow. Therefore, consider partitioning
guidelines to help reduce the effect of partition boundaries.

Figure 3–6. Partitions in a Hierarchical Design

Partition Top

Representation i

Representation ii

Partition B Merged Partition F-G

D

D

E

B

B C

A

A

F

C

E F

G

G

Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–21
Deciding Which Design Blocks Should Be Design Partitions
Whenever possible, register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries and keeps each
register-to-register timing path within one partition for optimization. In addition,
minimize the number of paths that cross partition boundaries. If there are
timing-critical paths that cross partition boundaries, rework the partitions to avoid
these inter-partition paths. Including as many of the timing-critical connections as
possible inside a partition allows you to effectively apply optimizations to that
partition to improve timing, while leaving the rest of the design unchanged.

Avoid constant partition inputs and outputs. You can also merge two or more
partitions to allow cross-boundary optimizations for paths that cross between the
partitions, as long as the partitions have the same parent partition. Merging related
logic from different hierarchy blocks into one partition can be useful if you cannot
change the design hierarchy to accommodate partition assignments.

The Design Partition Planner can help you create good assignments, as described in
“Creating Design Partitions” on page 3–9. Refer to “Partition Statistics Reports” on
page 3–23 for information about the number of I/O connections and how many are
unregistered or driven by a constant value. For information on timing reports and
additional design guidelines, refer to “Partition Timing Reports” on page 3–24 and
“Incremental Compilation Advisor” on page 3–24.

If critical timing paths cross partition boundaries, you can perform timing budgeting
and make timing assignments to constrain the logic in each partition so that the entire
timing path meets its requirements. In addition, because each partition is optimized
independently during synthesis, you may have to perform resource allocation to
ensure that each partition uses an appropriate number of device resources. If design
partitions are compiled in separate Quartus II projects, there may be conflicts related
to global routing resources for clock signals when the design is integrated into the
top-level design. You can use the Global Signal logic option to specify which clocks
should use global or regional routing, use the ALTCLK_CTRL megafunction to
instantiate a clock control block and connect it appropriately in both the partitions
being developed in separate Quartus II projects, or find the compiler-generated clock
control node in your design and make clock control location assignments in the
Assignment Editor.

Turning On Supported Cross-boundary Optimizations
You can improve the optimizations performed between design partitions by turning
on supported cross-boundary optimizations. These optimizations are turned on a per
partition basis and you can select the optimizations as individual assignments. This
allows the cross-boundary optimization feature to give you more control over the
optimizations that work best for your design. You can turn on the cross-boundary
optimizations for your design partitions on the Advanced tab of the Design Partition
Properties dialog box. Once you change the optimization settings, the Quartus II
software recompiles your partition from source automatically. Cross-boundary
optimizations include the following: propagate constants, propagate inversions on
partition inputs, merge inputs fed by a common source, merge electrically equivalent
bidirectional pins, absorb internal paths, and remove logic connected to dangling
outputs.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–22 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions
Cross-boundary optimizations are implemented top-down from the parent partition
into the child partition, but not vice-versa. Also, cross-boundary optimizations cannot
be enabled for partitions that allow multiple personas (partial reconfiguration
partitions).

h For more information about cross-boundary optimizations in the Quartus II software,
refer to Design Partition Properties Dialog Box in Quartus II Help.

f For more partitioning guidelines and specific recommendations for fixing common
design issues, as well as information on resource allocation, global signal usage, and
timing budgeting, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Design Partition Assignments Compared to Physical Placement
Assignments

Design partitions for incremental compilation are logical partitions, which is different
from physical placement assignments in the device floorplan. A logical design
partition does not refer to a physical area of the device and does not directly control
the placement of instances. A logical design partition sets up a virtual boundary
between design hierarchies so that each is compiled separately, preventing logical
optimizations from occurring between them. When the software compiles the design
source code, the logic in each partition can be placed anywhere in the device unless
you make additional placement assignments.

If you preserve the compilation results using a Post-Fit netlist, it is not necessary for
you to back-annotate or make any location assignments for specific logic nodes. You
should not use the incremental compilation and logic placement back-annotation
features in the same Quartus II project. The incremental compilation feature does not
use placement “assignments” to preserve placement results; it simply reuses the
netlist database that includes the placement information.

You can assign design partitions to physical regions in the device floorplan using
LogicLock region assignments. In the Quartus II software, LogicLock regions are used
to constrain blocks of a design to a particular region of the device. Altera recommends
using LogicLock regions for timing-critical design blocks that will change in
subsequent compilations, or to improve the quality of results and avoid placement
conflicts in some cases. Creating floorplan location assignments for design partitions
using LogicLock regions is discussed in “Creating a Design Floorplan With LogicLock
Regions” on page 3–48.

f For more information about when and why to create a design floorplan, refer to the
Best Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

Using Partitions With Third-Party Synthesis Tools
If you are using a third-party synthesis tool, set up your tool to create a separate VQM
or EDIF netlist for each hierarchical partition. In the Quartus II software, assign the
top-level entity from each netlist to be a design partition. The VQM or EDIF netlist file
is treated as the source file for the partition in the Quartus II software.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_tab_qid_part_window_properties.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–23
Deciding Which Design Blocks Should Be Design Partitions
Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
The Synplify Pro and Synplify Premier software include the MultiPoint synthesis
feature to perform incremental synthesis for each design block assigned as a Compile
Point in the user interface or a script. The Precision RTL Plus software includes an
incremental synthesis feature that performs block-based synthesis based on Partition
assignments in the source HDL code. These features provide automated block-based
incremental synthesis flows and create different output netlist files for each block
when set up for an Altera device.

Using incremental synthesis within your synthesis tool ensures that only those
sections of a design that have been updated are resynthesized when the design is
compiled, reducing synthesis run time and preserving the results for the unchanged
blocks. You can change and resynthesize one section of a design without affecting
other sections of the design.

f For more information about these incremental synthesis flows, refer to your tool
vendor’s documentation, or the Synopsys Synplify Support chapter or Mentor Graphics
Precision Synthesis Support chapter in volume 1 of the Quartus II Handbook.

Other Synthesis Tools
You can also partition your design and create different netlist files manually with the
basic Synplify software (non-Pro/Premier), the basic Precision RTL software
(non-Plus), or any other supported synthesis tool by creating a separate project or
implementation for each partition, including the top level. Set up each higher-level
project to instantiate the lower-level VQM/EDIF netlists as black boxes. Synplify,
Precision, and most synthesis tools automatically treat a design block as a black box if
the logic definition is missing from the project. Each tool also includes options or
attributes to specify that the design block should be treated as a black box, which you
can use to avoid warnings about the missing logic.

Assessing Partition Quality
The Quartus II software provides various tools to assess the quality of your assigned
design partitions. You can take advantage of these tools to assess your partition
quality, and use the information to improve your design or assignments as required to
achieve the best results.

Partition Statistics Reports
After compilation, you can view statistics about design partitions in the Partition
Merge Partition Statistics report, and on the Statistics tab in the Design Partitions
Properties dialog box.

The Partition Merge Partition Statistics report lists statistics about each partition. The
statistics for each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins it contains, and how many
are registered or unconnected. This report is useful when optimizing your design
partitions, ensuring that the partitions meet the guidelines presented in the
Best Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51009.pdf
http://www.altera.com/literature/hb/qts/qts_qii51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

3–24 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions
You can also view post-compilation statistics about the resource usage and port
connections for a particular partition on the Statistics tab in the Design Partition
Properties dialog box.

Partition Timing Reports
You can generate a Partition Timing Overview report and a Partition Timing Details
report by clicking Report Partitions in the Tasks pane in the TimeQuest Timing
Analyzer, or using the report_partitions Tcl command.

The Partition Timing Overview report shows the total number of failing paths for
each partition and the worst-case slack for any path involving the partition.

The Partition Timing Details report shows the number of failing partition-to-partition
paths and worst-case slack for partition-to-partition paths, to provide a more detailed
breakdown of where the critical paths in the design are located with respect to design
partitions.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows
Altera’s recommendations for creating design partitions and floorplan location
assignments.

Recommendations are split into General Recommendations, Timing
Recommendations, and Team-Based Design Recommendations that apply to design
flows in which partitions are compiled independently in separate Quartus II projects
before being integrated into the top-level design. Each recommendation provides an
explanation, describes the effect of the recommendation, and provides the action
required to make a suggested change. In some cases, there is a link to the appropriate
Quartus II settings page where you can make a suggested change to assignments or
settings. For some items, if your design does not follow the recommendation, the
Check Recommendations operation creates a table that lists any nodes or paths in
your design that could be improved. The relevant timing-independent
recommendations for the design are also listed in the Design Partitions window and
the LogicLock Regions window.

To verify that your design follows the recommendations, go to the Timing
Independent Recommendations page or the Timing Dependent Recommendations
page, and then click Check Recommendations. For large designs, these operations
can take a few minutes.

After you perform a check operation, symbols appear next to each recommendation to
indicate whether the design or project setting follows the recommendations, or if
some or all of the design or project settings do not follow the recommendations.
Following these recommendations is not mandatory to use the incremental
compilation feature. The recommendations are most important to ensure good results
for timing-critical partitions.

For some items in the Advisor, if your design does not follow the recommendation,
the Check Recommendations operation lists any parts of the design that could be
improved. For example, if not all of the partition I/O ports follow the Register All
Non-Global Ports recommendation, the advisor displays a list of unregistered ports
with the partition name and the node name associated with the port.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–25
Specifying the Level of Results Preservation for Subsequent Compilations
When the advisor provides a list of nodes, you can right-click a node, and then click
Locate to cross-probe to other Quartus II features, such as the RTL Viewer, Chip
Planner, or the design source code in the text editor.

1 Opening a new TimeQuest report resets the Incremental Compilation Advisor results,
so you must rerun the Check Recommendations process.

Specifying the Level of Results Preservation for Subsequent
Compilations

As introduced in “Incremental Compilation Summary” on page 3–7 and “Common
Design Scenarios Using Incremental Compilation” on page 3–10, the netlist type of
each design partition allows you to specify the level of results preservation. The
netlist type determines which type of netlist or source file the Partition Merge stage
uses in the next incremental compilation.

When you choose to preserve a post-fit compilation netlist, the default level of Fitter
preservation is the highest degree of placement and routing preservation supported
by the device family. The advanced Fitter Preservation Level setting allows you to
specify the amount of information that you want to preserve from the post-fit netlist
file.

Netlist Type for Design Partitions
Before starting a new compilation, ensure that the appropriate netlist type is set for
each partition to preserve the desired level of compilation results. Table 3–2 describes
the settings for the netlist type, explains the behavior of the Quartus II software for
each setting, and provides guidance on when to use each setting.

Table 3–2. Partition Netlist Type Settings (Part 1 of 2)

Netlist Type Quartus II Software Behavior for Partition During Compilation

Source File Always compiles the partition using the associated design source file(s). (1)

Use this netlist type to recompile a partition from the source code using new synthesis or Fitter settings.

Post-
Synthesis

Preserves post-synthesis results for the partition and reuses the post-synthesis netlist when the
following conditions are true:

■ A post-synthesis netlist is available from a previous synthesis.

■ No change that initiates an automatic resynthesis has been made to the partition since the previous
synthesis. (2) For details, refer to “What Changes Initiate the Automatic Resynthesis of a Partition?” on
page 3–28.

Compiles the partition from the source files if resynthesis is initiated or if a post-synthesis netlist is not
available. (1)

Use this netlist type to preserve the synthesis results unless you make design changes, but allow the
Fitter to refit the partition using any new Fitter settings.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–26 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Specifying the Level of Results Preservation for Subsequent Compilations
Fitter Preservation Level for Design Partitions
The default Fitter Preservation Level for partitions with a Post-Fit netlist type is the
highest level of preservation available for the target device family and provides the
most compilation time reduction.

Post-Fit Preserves post-fit results for the partition and reuses the post-fit netlist when the following conditions
are true:

■ A post-fit netlist is available from a previous fitting.

■ No change that initiates an automatic resynthesis has been made to the partition since the previous
fitting. (2) For details, refer to “What Changes Initiate the Automatic Resynthesis of a Partition?” on
page 3–28.

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it is available, or
otherwise compiles from the source files. Compiles the partition from the source files if resynthesis is
initiated. (1)

The Fitter Preservation Level specifies what level of information is preserved from the post-fit netlist. For
details, refer to “Fitter Preservation Level for Design Partitions” on page 3–26.

Assignment changes, such as Fitter optimization settings, do not cause a partition set to Post-Fit to
recompile.

Empty Uses an empty placeholder netlist for the partition. The partition's port interface information is required
during Analysis and Synthesis to connect the partition correctly to other logic and partitions in the
design, and peripheral nodes in the source file including pins and PLLs are preserved to help connect the
empty partition to the rest of the design and preserve timing of any lower-level non-empty partitions
within empty partitions. If the source file is not available, you can create a wrapper file that defines the
design block and specifies the input, output, and bidirectional ports. In Verilog HDL: a module
declaration, and in VHDL: an entity and architecture declaration.

You can use this netlist type to skip the compilation of a partition that is incomplete or missing from the
top-level design. You can also set an empty partition if you want to compile only some partitions in the
design, such as to optimize the placement of a timing-critical block such as an IP core before
incorporating other design logic, or if the compilation time is large for one partition and you want to
exclude it.

If the project database includes a previously generated post-synthesis or post-fit netlist for an unchanged
Empty partition, you can set the netlist type from Empty directly to Post-Synthesis or Post-Fit and the
software reuses the previous netlist information without recompiling from the source files.

Notes to Table 3–2:
(1) If you use Rapid Recompile, the Quartus II software might not recompile the entire partition from the source code as described in this table; it

will reuse compatible results if there have been only small changes to the logic in the partition. Refer to “Incremental Capabilities Available When
A Design Has No Partitions” on page 3–2 for more information.

(2) You can turn on the Ignore changes in source files and strictly use the specified netlist, if available option on the Advanced tab in the Design
Partitions Properties dialog box to specify whether the Compiler should ignore source file changes when deciding whether to recompile the
partition.

Table 3–2. Partition Netlist Type Settings (Part 2 of 2)

Netlist Type Quartus II Software Behavior for Partition During Compilation
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–27
Specifying the Level of Results Preservation for Subsequent Compilations
You can change the advanced Fitter Preservation Level setting to provide more
flexibility in the Fitter during placement and routing. You can set the Fitter
Preservation Level on the Advanced tab in the Design Partitions Properties dialog
box. Table 3–3 describes the Fitter Preservation Level settings.

h For more information about how to set the Netlist Type and Fitter Preservation Level
settings in the Quartus II software, refer to Setting the Netlist Type and Fitter
Preservation Level for Design Partitions in Quartus II Help.

Where Are the Netlist Databases Saved?
The incremental compilation database folder (\incremental_db) includes all the
netlist information from previous compilations. To avoid unnecessary recompilations,
these database files must not be altered or deleted.

If you archive or reproduce the project in another location, you can use a Quartus II
Archive File (.qar). Include the incremental compilation database files to preserve
post-synthesis or post-fit compilation results. For more information, refer to “Using
Incremental Compilation With Quartus II Archive Files” on page 3–52.

To manually create a project archive that preserves compilation results without
keeping the incremental compilation database, you can keep all source and settings
files, and create and save a Quartus II Settings File (.qxp) for each partition in the
design that will be integrated into the top-level design. For more information about
how to create a .qxp for a partition within your design, refer to “Exporting Design
Partitions from Separate Quartus II Projects” on page 3–30.

Table 3–3. Fitter Preservation Level Settings

Fitter Preservation
Level Quartus II Behavior for Partition During Compilation

Placement and
Routing

Preserves the design partition’s netlist atoms and their placement and routing.

This setting reduces compilation times compared to Placement only, but provides less flexibility to
the router to make changes if there are changes in other parts of the design.

By default, the Fitter preserves the usage of high-speed programmable power tiles contained
within the selected partition, for devices that support high-speed and low-power tiles. You can turn
off the Preserve high-speed tiles when preserving placement and routing option on the
Advanced tab in the Design Partitions Properties dialog box.

Placement Preserves the netlist atoms and their placement in the design partition. Reroutes the design
partition and does not preserve high-speed power tile usage.

Netlist Only Preserves the netlist atoms of the design partition, but replaces and reroutes the design partition.
A post-fit netlist with the atoms preserved can be different than the Post-Synthesis netlist because
it contains Fitter optimizations; for example, Physical Synthesis changes made during a previous
Fitting.

You can use this setting to:

■ Preserve Fitter optimizations but allow the software to perform placement and routing again.

■ Reapply certain Fitter optimizations that would otherwise be impossible when the placement is
locked down.

■ Resolve resource conflicts between two imported partitions.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_setting_netlist_type_fitter_predervation_level.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_setting_netlist_type_fitter_predervation_level.htm

3–28 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Specifying the Level of Results Preservation for Subsequent Compilations
Deleting Netlists
You can choose to abandon all levels of results preservation and remove all netlists
that exist for a particular partition with the Delete Netlists command in the Design
Partitions window. When you delete netlists for a partition, the partition is compiled
using the associated design source file(s) in the next compilation. Resetting the netlist
type for a partition to Source would have the same effect, though the netlists would
not be permanently deleted and would be available for use in subsequent
compilations. For an imported partition, the Delete Netlists command also optionally
allows you to remove the imported .qxp.

What Changes Initiate the Automatic Resynthesis of a Partition?
A partition is synthesized from its source files if there is no post-synthesis netlist
available from a previous synthesis, or if the netlist type is set to Source File.
Additionally, certain changes to a partition initiate an automatic resynthesis of the
partition when the netlist type is Post-Synthesis or Post-Fit. The software
resynthesizes the partition in these cases to ensure that the design description matches
the post-place-and-route programming files. If you do not want resynthesis to occur
automatically, refer to “Forcing Use of the Compilation Netlist When a Partition has
Changed” on page 3–30.

The following list explains the changes that initiate a partition’s automatic resynthesis
when the netlist type is set to Post-Synthesis or Post-Fit:

■ The device family setting has changed.

■ Any dependent source design file has changed. For more information, refer to
“Resynthesis Due to Source Code Changes” on page 3–29.

■ The partition boundary was changed by an addition, removal, or change to the
port boundaries of a partition (for example, a new partition has been defined for a
lower-level instance within this partition).

■ A dependent source file was compiled into a different library (so it has a different
-library argument).

■ A dependent source file was added or removed; that is, the partition depends on a
different set of source files.

■ The partition’s root instance has a different entity binding. In VHDL, an instance
may be bound to a specific entity and architecture. If the target entity or
architecture changes, it triggers resynthesis.

■ The partition has different parameters on its root hierarchy or on an internal
AHDL hierarchy (AHDL automatically inherits parameters from its parent
hierarchies). This occurs if you modified the parameters on the hierarchy directly,
or if you modified them indirectly by changing the parameters in a parent design
hierarchy.

■ You have moved the project and compiled database between a Windows and
Linux system. Due to the differences in the way new line feeds are handled
between the operating systems, the internal checksum algorithm may detect a
design file change in this case.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–29
Specifying the Level of Results Preservation for Subsequent Compilations
The software reuses the post-synthesis results but re-fits the design if you change the
device setting within the same device family. The software reuses the post-fitting
netlist if you change only the device speed grade.

Synthesis and Fitter assignments, such as optimization settings, timing assignments,
or Fitter location assignments including pin assignments, do not trigger automatic
recompilation in the incremental compilation flow. To recompile a partition with new
assignments, change the netlist type for that partition to one of the following:

■ Source File to recompile with all new settings

■ Post-Synthesis to recompile using existing synthesis results but new Fitter
settings

■ Post-Fit with the Fitter Preservation Level set to Placement to rerun routing using
existing placement results, but new routing settings (such as delay chain settings)

You can use the LogicLock Origin location assignment to change or fine-tune the
previous Fitter results from a Post-Fit netlist. For details about how you can affect
placement with LogicLock regions, refer to “Changing Partition Placement with
LogicLock Changes” on page 3–50.

Resynthesis Due to Source Code Changes
The Quartus II software uses an internal checksum algorithm to determine whether
the contents of a source file have changed. Source files are the design description files
used to create the design, and include Memory Initialization Files (.mif) as well as
.qxp from exported partitions. When design files in a partition have dependencies on
other files, changing one file may initiate an automatic recompilation of another file.
The Partition Dependent Files table in the Analysis and Synthesis report lists the
design files that contribute to each design partition. You can use this table to
determine which partitions are recompiled when a specific file is changed.

For example, if a design has file A.v that contains entity A, B.v that contains entity B,
and C.v that contains entity C, then the Partition Dependent Files table for the
partition containing entity A lists file A.v, the table for the partition containing entity
B lists file B.v, and the table for the partition containing entity C lists file C.v. Any
dependencies are transitive, so if file A.v depends on B.v, and B.v depends on C.v, the
entities in file A.v depend on files B.v and C.v. In this case, files B.v and C.v are listed
in the report table as dependent files for the partition containing entity A.

1 If you use Rapid Recompile, the Quartus II software might not recompile the entire
partition from the source code as described in this section; it will reuse compatible
results if there have been only small changes to the logic in the partition. Refer to
“Incremental Capabilities Available When A Design Has No Partitions” on page 3–2
for more information.

If you define module parameters in a higher-level module, the Quartus II software
checks the parameter values when determining which partitions require resynthesis.
If you change a parameter in a higher-level module that affects a lower-level module,
the lower-level module is resynthesized. Parameter dependencies are tracked
separately from source file dependencies; therefore, parameter definitions are not
listed in the Partition Dependent Files list.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–30 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
If a design contains common files, such as an includes.v file that is referenced in each
entity by the command ‘include includes.v, all partitions are dependent on this file.
A change to includes.v causes the entire design to be recompiled. The VHDL
statement use work.all also typically results in unnecessary recompilations, because
it makes all entities in the work library visible in the current entity, which results in
the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities, such as a
common include file, contain only the set of information that is truly common to all
entities. Remove use work.all statements in your VHDL file or replace them by
including only the specific design units needed for each entity.

Forcing Use of the Compilation Netlist When a Partition has Changed
Forcing the use of a post-compilation netlist when the contents of a source file has
changed is recommended only for advanced users who understand when a partition
must be recompiled. You might use this assignment, for example, if you are making
source code changes but do not want to recompile the partition until you finish
debugging a different partition, or if you are adding simple comments to the source
file but you know the design logic itself is not being changed and you want to keep
the previous compilation results.

To force the Fitter to use a previously generated netlist even when there are changes to
the source files, right-click the partition in the Design Partitions window and then
click Design Partition Properties. On the Advanced tab, turn on the Ignore changes
in source files and strictly use the specified netlist, if available option.

Turning on this option can result in the generation of a functionally incorrect netlist
when source design files change, because source file updates will not be recompiled.
Use caution when setting this option.

Exporting Design Partitions from Separate Quartus II Projects
Partitions that are developed by other designers or team members in the same
company or third-party IP providers can be exported as design partitions to a
Quartus II Exported Partition File (.qxp), and then integrated into a top-level design.
A .qxp is a binary file that contains compilation results describing the exported design
partition and includes a post-synthesis netlist, a post-fit netlist, or both, and a set of
assignments, sometimes including LogicLock placement constraints. The .qxp does
not contain the source design files from the original Quartus II project.

To enable team-based development and third-party IP delivery, you can design and
optimize partitions in separate copies of the top-level Quartus II project framework,
or even in isolation. If the designers have access to the top-level project framework
through a source control system, they can access project files as read-only and develop
their partition within the source control system. If designers do not have access to a
source control system, the project lead can provide the designer with a copy of the
top-level project framework to use as they develop their partitions. The project lead
also has the option to generate design partition scripts to manage resource and timing
budgets in the top-level design when partitions are developed outside the top-level
project framework.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–31
Exporting Design Partitions from Separate Quartus II Projects
The exported compilation results of completed partitions are given to the project lead,
preferably using a source control system, who is then responsible for integrating them
into the top-level design to obtain a fully functional design. This type of design flow is
required only if partition designers want to optimize their placement and routing
independently, and pass their design to the project lead to reuse placement and
routing results. Otherwise, a project lead can integrate source HDL from several
designers in a single Quartus II project, and use the standard incremental compilation
flow described previously.

The diagram in Figure 3–7 illustrates the team-based incremental compilation design
flow using a methodology in which partitions are compiled in separate Quartus II
projects before being integrated into the top-level design. This flow can be used when
partitions are developed by other designers or IP providers.

1 You cannot export or import partitions that have been merged. For more information
about merged partitions, refer to “Deciding Which Design Blocks Should Be Design
Partitions” on page 3–19.

The topics in this section provide a description of the team-based design flow using
exported partitions, describe how to generate a .qxp for a design partition, and
explain how to integrate the .qxp into the top-level design:

There are some additional restrictions related to design flows using exported
partitions, described in “Incremental Compilation Restrictions” on page 3–51.

Preparing the Top-Level Design
To prepare your design to incorporate exported partitions, first create the top-level
project framework of the design to define the hierarchy for the subdesigns that will be
implemented by other team members, designers, or IP providers.

Figure 3–7. Summary of Team-Based Incremental Compilation Flow

Repeat as Needed
During Design, Verif
& Debugging Stages

Design, Compile, and
Optimize Partition(s)

Export Lower-Level Partition(s)

Integrate Partition(s)
into Top-Level Design

Perform Incremental Compilation
in Top-Level Design

Provide Project Framework or
Constraints to Designers

Prepare Top-Level Design for
 Incremental Compilation
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–32 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
In the top-level design, create project-wide settings, for example, device selection,
global assignments for clocks and device I/O ports, and any global signal constraints
to specify which signals can use global routing resources.

Next, create the appropriate design partition assignments and set the netlist type for
each design partition that will be developed in a separate Quartus II project to Empty.
Refer to “Empty Partitions” below for details. It may be necessary to constrain the
location of partitions with LogicLock region assignments if they are timing-critical
and are expected to change in future compilations, or if the designer or IP provider
wants to place and route their design partition independently, to avoid location
conflicts. For details, refer to “Creating a Design Floorplan With LogicLock Regions”
on page 3–48.

Finally, provide the top-level project framework to the partition designers, preferably
through a source control system. Refer to “Project Management—Making the Top-
Level Design Available to Other Designers” on page 3–32 for more information.

Empty Partitions
You can use a design flow in which some partitions are set to an Empty netlist type to
develop pieces of the design separately, and then integrate them into the top-level
design at a later time. In a team-based design environment, you can set the netlist type
to Empty for partitions in your design that will be developed by other designers or IP
providers. The Empty setting directs the Compiler to skip the compilation of a
partition and use an empty placeholder netlist for the partition.

When a netlist type is set to Empty, peripheral nodes including pins and PLLs are
preserved and all other logic is removed. The peripheral nodes including pins help
connect the empty partition to the design, and the PLLs help preserve timing of
non-empty partitions within empty partitions.

When you set a design partition to Empty, a design file is required during Analysis
and Synthesis to specify the port interface information so that it can connect the
partition correctly to other logic and partitions in the design. If a partition is exported
from another project, the .qxp contains this information. If there is no .qxp or design
file to represent the design entity, you must create a wrapper file that defines the
design block and specifies the input, output, and bidirectional ports. For example, in
Verilog HDL, you should include a module declaration, and in VHDL, you should
include an entity and architecture declaration.

Project Management—Making the Top-Level Design Available to Other
Designers

In team-based incremental compilation flows, whenever possible, all designers or IP
providers should work within the same top-level project framework. Using the same
project framework among team members ensures that designers have the settings and
constraints needed for their partition, and makes timing closure easier when
integrating the partitions into the top-level design. If other designers do not have
access to the top-level project framework, the Quartus II software provides tools for
passing project information to partition designers.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–33
Exporting Design Partitions from Separate Quartus II Projects
Distributing the Top-Level Quartus II Project
There are several methods that the project lead can use to distribute the “skeleton” or
top-level project framework to other partition designers or IP providers.

■ If partition designers have access to the top-level project framework, the project
will already include all the settings and constraints needed for the design. This
framework should include PLLs and other interface logic if this information is
important to optimize partitions.

■ If designers are part of the same design environment, they can check out the
required project files from the same source control system. This is the
recommended way to share a set of project files.

■ Otherwise, the project lead can provide a copy of the top-level project
framework so that each design develops their partition within the same project
framework.

■ If a partition designer does not have access to the top-level project framework, the
project lead can give the partition designer a Tcl script or other documentation to
create the separate Quartus II project and all the assignments from the top-level
design.

For details about project management scripts you can create with the Quartus II
software, refer to“Optimizing the Placement for a Timing-Critical Partition” on
page 3–60.

If the partition designers provide the project lead with a post-synthesis .qxp and
fitting is performed in the top-level design, integrating the design partitions should be
quite easy. If you plan to develop a partition in a separate Quartus II project and
integrate the optimized post-fitting results into the top-level design, use the following
guidelines to improve the integration process:

■ Ensure that a LogicLock region constrains the partition placement and uses only
the resources allocated by the project lead.

■ Ensure that you know which clocks should be allocated to global routing resources
so that there are no resource conflicts in the top-level design.

■ Set the Global Signal assignment to On for the high fan-out signals that should
be routed on global routing lines.

■ To avoid other signals being placed on global routing lines, turn off Auto
Global Clock and Auto Global Register Controls under More Settings on the
Fitter page in the Settings dialog box. Alternatively, you can set the Global
Signal assignment to Off for signals that should not be placed on global
routing lines.

Placement for LABs depends on whether the inputs to the logic cells within the
LAB use a global clock. You may encounter problems if signals do not use
global lines in the partition, but use global routing in the top-level design.

■ Use the Virtual Pin assignment to indicate pins of a partition that do not drive pins
in the top-level design. This is critical when a partition has more output ports than
the number of pins available in the target device. Using virtual pins also helps
optimize cross-partition paths for a complete design by enabling you to provide
more information about the partition ports, such as location and timing
assignments.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–34 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
■ When partitions are compiled independently without any information about each
other, you might need to provide more information about the timing paths that
may be affected by other partitions in the top-level design. You can apply location
assignments for each pin to indicate the port location after incorporation in the
top-level design. You can also apply timing assignments to the I/O ports of the
partition to perform timing budgeting.

f For more information about resource balancing and timing allocation between
partitions, refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.

Generating Design Partition Scripts
If IP providers or designers on a team want to optimize their design blocks
independently and do not have access to a shared project framework, the project lead
must perform some or all of the following tasks to ensure successful integration of the
design blocks:

■ Determine which assignments should be propagated from the top-level design to
the partitions. This requires detailed knowledge of which assignments are
required to set up low-level designs.

■ Communicate the top-level assignments to the partitions. This requires detailed
knowledge of Tcl or other scripting languages to efficiently communicate project
constraints.

■ Determine appropriate timing and location assignments that help overcome the
limitations of team-based design. This requires examination of the logic in the
partitions to determine appropriate timing constraints.

■ Perform final timing closure and resource conflict avoidance in the top-level
design. Because the partitions have no information about each other, meeting
constraints at the lower levels does not guarantee they are met when integrated at
the top-level. It then becomes the project lead’s responsibility to resolve the issues,
even though information about the partition implementation may not be available.

Design partition scripts automate the process of transferring the top-level project
framework to partition designers in a flow where each design block is developed in
separate Quartus II projects before being integrated into the top-level design. If the
project lead cannot provide each designer with a copy of the top-level project
framework, the Quartus II software provides an interface for managing resources and
timing budgets in the top-level design. Design partition scripts make it easier for
partition designers to implement the instructions from the project lead, and avoid
conflicts between projects when integrating the partitions into the top-level design.
This flow also helps to reduce the need to further optimize the designs after
integration.

You can use options in the Generate Design Partition Scripts dialog box to choose
which types of assignments you want to pass down and create in the partitions being
developed in separate Quartus II projects.

For an example design scenario using design partition scripts, refer to “Enabling
Designers on a Team to Optimize Independently” on page 3–43.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–35
Exporting Design Partitions from Separate Quartus II Projects
h For step-by-step information on how to generate design partition scripts, and a
description of each option that can be included in design partition scripts, refer to
Generating Design Partition Scripts for Project Management, and Generate Design Partition
Scripts Dialog Box in Quartus II Help.

Exporting Partitions
When partition designers achieve the design requirements in their separate Quartus II
projects, each designer can export their design as a partition so it can be integrated
into the top-level design by the project lead. The Export Design Partition dialog box,
available from the Project menu, allows designers to export a design partition to a
Quartus II Exported Partition File (.qxp) with a post-synthesis netlist, a post-fit netlist,
or both. The project lead then adds the .qxp to the top-level design to integrate the
partition.

A designer developing a timing-critical partition or who wants to optimize their
partition on their own would opt to export their completed partition with a post-fit
netlist, allowing for the partition to more reliably meet timing requirements after
integration. In this case, you must ensure that resources are allocated appropriately to
avoid conflicts. If the placement and routing optimization can be performed in the
top-level design, exporting a post-synthesis netlist allows the most flexibility in the
top-level design and avoids potential placement or routing conflicts with other
partitions.

When designing the partition logic to be exported into another project, you can add
logic around the design block to be exported as a design partition. You can instantiate
additional design components for the Quartus II project so that it matches the
top-level design environment, especially in cases where you do not have access to the
full top-level design project. For example, you can include a top-level PLL in the
project, outside of the partition to be exported, so that you can optimize the design
with information about the frequency multipliers, phase shifts, compensation delays,
and any other PLL parameters. The software then captures timing and resource
requirements more accurately while ensuring that the timing analysis in the partition
is complete and accurate. You can export the partition for the top-level design without
any auxiliary components that are instantiated outside the partition being exported.

If your design team uses makefiles and design partition scripts, the project lead can
use the make command with the master_makefile command created by the scripts to
export the partitions and create .qxp files. When a partition has been compiled and is
ready to be integrated into the top-level design, you can export the partition with
option on the Export Design Partition dialog box, available from the Project menu.

h For more information about how to export a design partition, refer to Using a Team-
Based Incremental Compilation Design Flow in the Quartus II Help.

Viewing the Contents of a Quartus II Exported Partition File (.qxp)
The QXP report allows you to view a summary of the contents in a .qxp when you
open the file in the Quartus II software. The .qxp is a binary file that contains
compilation results so the file cannot be read in a text editor. The QXP report opens in
the main Quartus II window and contains summary information including a list of
the I/O ports, resource usage summary, and a list of the assignments used for the
exported partition.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_running_bottom-up_compilation.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_running_bottom-up_compilation.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm

3–36 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
Integrating Partitions into the Top-Level Design
To integrate a partition developed in a separate Quartus II project into the top-level
design, you can simply add the .qxp as a source file in your top-level design (just like
a Verilog or VHDL source file). You can also use the Import Design Partition dialog
box to import the partition, in certain situations, described in “Advanced Importing
Options” on page 3–37.

The .qxp contains the design block exported from the partition and has the same
name as the partition. When you instantiate the design block into a top-level design
and include the .qxp as a source file, the software adds the exported netlist to the
database for the top-level design. The .qxp port names are case sensitive if the original
HDL of the partition was case sensitive.

When you use a .qxp as a source file in this way, you can choose whether you want
the .qxp to be a partition in the top-level design. If you do not designate the .qxp
instance as a partition, the software reuses just the post-synthesis compilation results
from the .qxp, removes unconnected ports and unused logic just like a regular source
file, and then performs placement and routing.

If you assigned the .qxp instance as a partition, you can set the netlist type in the
Design Partitions Window to choose the level of results to preserve from the .qxp. To
preserve the placement and routing results from the exported partition, set the netlist
type to Post-Fit for the .qxp partition in the top-level design. If you assign the instance
as a design partition, the partition boundary is preserved, as discussed in “Impact of
Design Partitions on Design Optimization” on page 3–20.

Integrating Assignments from the .qxp
The Quartus II software filters assignments from .qxp files to include appropriate
assignments in the top-level design. The assignments in the .qxp are treated like
assignments made in an HDL source file, and are not listed in the Quartus II Settings
File (.qsf) for the top-level design. Most assignments from the .qxp can be overridden
by assignments in the top-level design.

The following subsections provide more details about specific assignment types:

Design Partition Assignments Within the Exported Partition

Design partition assignments defined within a separate Quartus II project are not
added to the top-level design. All logic under the exported partition in the project
hierarchy is treated as single instance in the .qxp.

Synopsys Design Constraint Files for the Quartus II TimeQuest Timing Analyzer

Timing assignments made for the Quartus II TimeQuest analyzer in a Synopsys
Design Constraint File (.sdc) in the lower-level partition project are not added to the
top-level design. Ensure that the top-level design includes all of the timing
requirements for the entire project.

f For recommendations about managing SDC constraints for the top-level design and
independent lower-level partition projects, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–37
Exporting Design Partitions from Separate Quartus II Projects
Global Assignments

The project lead should make all global project-wide assignments in the top-level
design. Global assignments from the exported partition's project are not added to the
top-level design. When it is possible for a particular constraint, the global assignment
is converted to an instance-specific assignment for the exported design partition.

LogicLock Region Assignments

The project lead typically creates LogicLock region assignments in the top-level
design for any lower-level partition designs where designer or IP providers plan to
export post-fit information to be used in the top-level design, to help avoid placement
conflicts between partitions. When you use the .qxp as a source file, LogicLock
constraints from the exported partition are applied in the top-level design, but will
not appear in your .qsf file or LogicLock Regions window for you to view or edit. The
LogicLock region itself is not required to constrain the partition placement in the
top-level design if the netlist type is set to Post-Fit, because the netlist contains all the
placement information. For information on how to control LogicLock region
assignments for exported partitions, refer to the “Advanced Importing Options” on
page 3–37.

Integrating Encrypted IP Cores from .qxp Files
Proper license information is required to compile encrypted IP cores. If an IP core is
exported as a .qxp from another Quartus II project, the top-level designer
instantiating the .qxp must have the correct license. The software requires a full
license to generate an unrestricted programming file. If you do not have a license, but
the IP in the .qxp was compiled with OpenCore Plus hardware evaluation support,
you can generate an evaluation programming file without a license. If the IP supports
OpenCore simulation only, you can fully compile the design and generate a
simulation netlist, but you cannot create programming files unless you have a full
license.

Advanced Importing Options
You can use advanced options in the Import Design Partition dialog box to integrate
a partition developed in a separate Quartus II project into the top-level design. The
import process adds more control than using the .qxp as a source file, and is useful
only in the following circumstances:

■ If you want LogicLock regions in your top-level design (.qsf)—If you have
regions in your partitions that are not also in the top-level design, the regions will
be added to your .qsf during the import process.

■ If you want different settings or placement for different instantiations of the
same entity—You can control the setting import process with the advanced import
options, and specify different settings for different instances of the same .qxp
design block.

When you use the Import Design Partition dialog box to integrate a partition into the
top-level design, the import process sets the partition’s netlist type to Imported in the
Design Partitions window.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–38 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
After you compile the entire design, if you make changes to the place-and-route
results (such as movement of an imported LogicLock region), use the Post-Fit netlist
type on subsequent compilations. To discard an imported netlist and recompile from
source code, you can compile the partition with the netlist type set to Source File and
be sure to include the relevant source code in the top-level design. Refer to “Netlist
Type for Design Partitions” on page 3–25 for details. The import process sets the
partition’s Fitter Preservation Level to the setting with the highest degree of
preservation supported by the imported netlist. For example, if a post-fit netlist is
imported with placement information, the Fitter Preservation Level is set to
Placement, but you can change it to the Netlist Only value. For more information
about preserving previous compilation results, refer to “Netlist Type for Design
Partitions” on page 3–25 and “Fitter Preservation Level for Design Partitions” on
page 3–26.

When you import a partition from a .qxp, the .qxp itself is not part of the top-level
design because the netlists from the file have been imported into the project database.
Therefore if a new version of a .qxp is exported, the top-level designer must perform
another import of the .qxp.

When you import a partition into a top-level design with the Import Design Partition
dialog box, the software imports relevant assignments from the partition into the
top-level design, as described for the source file integration flow in “Integrating
Assignments from the .qxp” on page 3–36. If required, you can change the way some
assignments are imported, as described in the following subsections.

Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate multiple
instances of a subdesign in the top-level design, the imported LogicLock regions are
set to a Floating location. Otherwise, they are set to a Fixed location. You can change
the location of LogicLock regions after they are imported, or change them to a
Floating location to allow the software to place each region but keep the relative
locations of nodes within the region wherever possible. For details, refer to “Changing
Partition Placement with LogicLock Changes” on page 3–50. To preserve changes
made to a partition after compilation, use the Post-Fit netlist type.

The LogicLock Member State assignment is set to Locked to signify that it is a
preserved region.

LogicLock back-annotation and node location data is not imported because the .qxp
contains all of the relevant placement information. Altera strongly recommends that
you do not add to or delete members from an imported LogicLock region.

Advanced Import Settings

The Advanced Import Settings dialog box allows you to disable assignment import
and specify additional options that control how assignments and regions are
integrated when importing a partition into a top-level design, including how to
resolve assignment conflicts.

h For descriptions of the advanced import options available, refer to Advanced Import
Settings Dialog Box in Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_qid_advanced_import_settings.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_qid_advanced_import_settings.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–39
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
This section includes the following design flows with step-by-step descriptions when
you have partitions being developed in separate Quartus II projects, or by a
third-party IP provider.

■ “Using an Exported Partition to Send to a Design Without Including Source Files”
on page 3–39

■ “Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse” on
page 3–40

■ “Designing in a Team-Based Environment” on page 3–42

■ “Enabling Designers on a Team to Optimize Independently” on page 3–43

■ “Performing Design Iterations With Lower-Level Partitions” on page 3–47

Using an Exported Partition to Send to a Design Without Including Source
Files

Scenario background: A designer wants to produce a design block and needs to send
out their design, but to preserve their IP, they prefer to send a synthesized netlist
instead of providing the HDL source code to the recipient. You can use this flow to
implement a black box.

Use this flow to package a full design as a single source file to send to an end
customer or another design location.

As the sender in this scenario perform the following steps to export a design block:

1. Provide the device family name to the recipient. If you send placement
information with the synthesized netlist, also provide the exact device selection so
they can set up their project to match.

2. Create a black box wrapper file that defines the port interface for the design block
and provide it to the recipient for instantiating the block as an empty partition in
the top-level design.

3. Create a Quartus II project for the design block, and complete the design.

4. Export the level of hierarchy into a single .qxp. Following a successful compilation
of the project, you can generate a .qxp from the GUI, the command-line, or with
Tcl commands, as described in the following:

■ If you are using the Quartus II GUI, use the Export Design Partition dialog
box.

■ If you are using command-line executables, run quartus_cdb with the
--incremental_compilation_export option.

■ If you are using Tcl commands, use the following command:
execute_flow -incremental_compilation_export.

5. Select the option to include just the Post-synthesis netlist if you do not have to
send placement information. If the recipient wants to reproduce your exact Fitter
results, you can select the Post-fitting netlist option, and optionally enable Export
routing.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–40 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
6. If a partition contains sub-partitions, then the sub-partitions are automatically
flattened and merged into the partition netlist before exporting. You can change
this behavior and preserve the sub-partition hierarchy by turning off the Flatten
sub-partitions option on the Export Design Partition dialog box. Optionally, you
can use the -dont_flatten sub-option for the export_partition Tcl command.

7. Provide the .qxp to the recipient. Note that you do not have to send any of your
design source code.

As the recipient in this example, first create a Quartus II project for your top-level
design and ensure that your project targets the same device (or at least the same
device family if the .qxp does not include placement information), as specified by the
IP designer sending the design block. Instantiate the design block using the port
information provided, and then incorporate the design block into a top-level design.

Add the .qxp from the IP designer as a source file in your Quartus II project to replace
any empty wrapper file. If you want to use just the post-synthesis information, you
can choose whether you want the file to be a partition in the top-level design. To use
the post-fit information from the .qxp, assign the instance as a design partition and set
the netlist type to Post-Fit. Refer to “Creating Design Partitions” on page 3–9 and
“Netlist Type for Design Partitions” on page 3–25.

Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse
Scenario background: An IP provider wants to produce and sell an IP core for a
component to be used in higher-level systems. The IP provider wants to optimize the
placement of their block for maximum performance in a specific Altera device and
then deliver the placement information to their end customer. To preserve their IP,
they also prefer to send a compiled netlist instead of providing the HDL source code
to their customer.

Use this design flow to create a precompiled IP block (sometimes known as a
hard-wired macro) that can be instantiated in a top-level design. This flow provides
the ability to export a design block with post-synthesis or placement (and, optionally,
routing) information and to import any number of copies of this pre-compiled block
into another design.

The customer first specifies which Altera device is being used for this project and
provides the design specifications.

As the IP provider in this example, perform the following steps to export a preplaced
IP core (or hard macro):

1. Create a black box wrapper file that defines the port interface for the IP core and
provide the file to the customer to instantiate as an empty partition in the top-level
design.

2. Create a Quartus II project for the IP core.

3. Create a LogicLock region for the design hierarchy to be exported.

1 Using a LogicLock region for the IP core allows the customer to create an
empty placeholder region to reserve space for the IP in the design floorplan
and ensures that there are no conflicts with the top-level design logic.
Reserved space also helps ensure the IP core does not affect the timing
performance of other logic in the top-level design. Additionally, with a
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–41
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
LogicLock region, you can preserve placement either absolutely or relative
to the origin of the associated region. This is important when a .qxp is
imported for multiple partition hierarchies in the same project, because in
this case, the location of at least one instance in the top-level design does
not match the location used by the IP provider.

4. If required, add any logic (such as PLLs or other logic defined in the customer’s
top-level design) around the design hierarchy to be exported. If you do so, create a
design partition for the design hierarchy that will exported as an IP core.

5. Optimize the design and close timing to meet the design specifications.

6. Export the level of hierarchy for the IP core into a single .qxp.

7. Provide the .qxp to the customer. Note that you do not have to send any of your
design source code to the customer; the design netlist and placement and routing
information is contained within the .qxp.

As the customer in this example, incorporate the IP core in your design by performing
the following steps:

1. Create a Quartus II project for the top-level design that targets the same device
and instantiate a copy or multiple copies of the IP core. Use a black box wrapper
file to define the port interface of the IP core.

2. Perform Analysis and Elaboration to identify the design hierarchy.

3. Create a design partition for each instance of the IP core (refer to “Creating Design
Partitions” on page 3–57) with the netlist type set to Empty (refer to “Netlist Type
for Design Partitions” on page 3–25).

4. You can now continue work on your part of the design and accept the IP core from
the IP provider when it is ready.

5. Include the .qxp from the IP provider in your project to replace the empty
wrapper-file for the IP instance. Or, if you are importing multiple copies of the
design block and want to import relative placement, follow these additional steps:

a. Use the Import command to select each appropriate partition hierarchy. You
can import a .qxp from the GUI, the command-line, or with Tcl commands:

■ If you are using the Quartus II GUI, use the Import Design Partition
command.

■ If you are using command-line executables, run quartus_cdb with the
--incremental_compilation_import option.

■ If you are using Tcl commands, use the following command:
execute_flow -incremental_compilation_import.

b. When you have multiple instances of the IP block, you can set the imported
LogicLock regions to floating, or move them to a new location, and the
software preserves the relative placement for each of the imported modules
(relative to the origin of the LogicLock region). Routing information is
preserved whenever possible. Refer to “Changing Partition Placement with
LogicLock Changes” on page 3–50
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–42 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
1 The Fitter ignores relative placement assignments if the LogicLock region’s
location in the top-level design is not compatible with the locations
exported in the .qxp.

6. You can control the level of results preservation with the Netlist Type setting.
Refer to “Netlist Type for Design Partitions” on page 3–25.

1 If the IP provider did not define a LogicLock region in the exported partition, the
software preserves absolute placement locations and this leads to placement conflicts
if the partition is imported for more than one instance.

Designing in a Team-Based Environment
Scenario background: A project includes several lower-level design blocks that are
developed separately by different designers and instantiated exactly once in the
top-level design.

This scenario describes how to use incremental compilation in a team-based design
environment where each designer has access to the top-level project framework, but
wants to optimize their design in a separate Quartus II project before integrating their
design block into the top-level design.

As the project lead in this scenario, perform the following steps to prepare the
top-level design:

1. Create a new Quartus II project to ultimately contain the full implementation of
the entire design and include a "skeleton" or framework of the design that defines
the hierarchy for the subdesigns implemented by separate designers. The top-level
design implements the top-level entity in the design and instantiates wrapper files
that represent each subdesign by defining only the port interfaces but not the
implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/O ports, define the top-level timing constraints, and make any global
signal allocation constraints to specify which signals can use global routing
resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions to create a design floorplan for each of the partitions that
will be developed separately. This floorplan should consider the connectivity
between partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–43
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
5. Provide the top-level project framework to partition designers using one of the
following procedures:

■ Allow access to the full project for all designers through a source control
system. Each designer can check out the projects files as read-only and work on
their blocks independently. This design flow provides each designer with the
most information about the full design, which helps avoid resource conflicts
and makes design integration easy.

■ Provide a copy of the top-level Quartus II project framework for each designer.
You can use the Copy Project command on the Project menu or create a project
archive.

As the designer of a lower-level design block in this scenario, design and optimize
your partition in your copy of the top-level design, and then follow these steps when
you have achieved the desired compilation results:

1. On the Project menu, click Export Design Partition.

2. In the Export Design Partition dialog box, choose the netlist(s) to export. You can
export a Post-synthesis netlist if placement or performance preservation is not
required, to provide the most flexibility for the Fitter in the top-level design. Select
Post-fit netlist to preserve the placement and performance of the lower-level
design block, and turn on Export routing to include the routing information, if
required. One .qxp can include both post-synthesis and post-fitting netlists.

3. Provide the .qxp to the project lead.

Finally, as the project lead in this scenario, perform these steps to integrate the .qxp
files received from designers of each partition:

1. Add the .qxp as a source file in the Quartus II project, to replace any empty
wrapper file for the previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of results
preservation.

Enabling Designers on a Team to Optimize Independently
Scenario background: A project consists of several lower-level design blocks that are
developed separately by different designers who do not have access to a shared
top-level project framework. This scenario is similar to “Creating Precompiled Design
Blocks (or Hard-Wired Macros) for Reuse” on page 3–40, but assumes that there are
several design blocks being developed independently (instead of just one IP block),
and the project lead can provide some information about the design to the individual
designers. If the designers have shared access to the top-level design, use the previous
scenario “Designing in a Team-Based Environment” on page 3–42.

This scenario describes how to use incremental compilation in a team-based design
environment where designers or IP developers want to fully optimize the placement
and routing of their design independently in a separate Quartus II project before
sending the design to the project lead. This design flow requires more planning and
careful resource allocation because design blocks are developed independently.

As the project lead in this scenario, perform the following steps to prepare the
top-level design:
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–44 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
1. Create a new Quartus II project to ultimately contain the full implementation of
the entire design and include a “skeleton” or framework of the design that defines
the hierarchy for the subdesigns implemented by separate designers. The top-level
design implements the top-level entity in the design and instantiates wrapper files
that represent each subdesign by defining only the port interfaces but not the
implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/O ports, define the top-level timing constraints, and make any global
signal constraints to specify which signals can use global routing resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions. This floorplan should consider the connectivity
between partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.

5. Provide the constraints from the top-level design to partition designers using one
of the following procedures:.

■ Use design partition scripts to pass constraints and generate separate
Quartus II projects. On the Project menu, use the Generate Design Partition
Scripts command, or run the script generator from a Tcl or command prompt.
Make changes to the default script options as required for your project. Altera
recommends that you pass all the default constraints, including LogicLock
regions, for all partitions and virtual pin location assignments. If partitions
have not already been created by the other designers, use the partition script to
set up the projects so that you can easily take advantage of makefiles. Provide
each partition designer with the Tcl file to create their project with the
appropriate constraints. If you are using makefiles, provide the makefile for
each partition.

■ Use documentation or manually-created scripts to pass all constraints and
assignments to each partition designer.

As the designer of a lower-level design block in this scenario, perform the appropriate
set of steps to successfully export your design, whether the design team is using
makefiles or exporting and importing the design manually.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the make command and the makefile provided by the project lead to create a
Quartus II project with all design constraints, and compile the project.

2. The information about which source file should be associated with which partition
is not available to the software automatically, so you must specify this information
in the makefile. You must specify the dependencies before the software rebuilds
the project after the initial call to the makefile.

3. When you have achieved the desired compilation results and the design is ready
to be imported into the top-level design, the project lead can use the
master_makefile command to export this partition and create a .qxp, and then
import it into the top-level design.

If you are not using makefiles, perform the following steps:
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–45
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
1. If you are using design partition scripts, source the Tcl script provided by the
Project Lead to create a project with the required settings:

■ To source the Tcl script in the Quartus II software, on the Tools menu, click
Utility Windows to open the Tcl console. Navigate to the script’s directory, and
type the following command: source <filename> r

■ To source the Tcl script at the system command prompt, type the following
command: quartus_cdb -t <filename>.tcl r

2. If you are not using design partition scripts, create a new Quartus II project for the
subdesign, and then apply the following settings and constraints to ensure
successful integration:

■ Make LogicLock region assignments and global assignments (including clock
settings) as specified by the project lead.

■ Make Virtual Pin assignments for ports which represent connections to core
logic instead of external device pins in the top-level design.

■ Make floorplan location assignments to the Virtual Pins so they are placed in
their corresponding regions as determined by the top-level design. This
provides the Fitter with more information about the timing constraints
between modules. Alternatively, you can apply timing I/O constraints to the
paths that connect to virtual pins.

3. Proceed to compile and optimize the design as needed.

4. When you have achieved the desired compilation results, on the Project menu,
click Export Design Partition.

5. In the Export Design Partition dialog box, choose the netlist(s) to export. You can
export a Post-synthesis netlist instead if placement or performance preservation is
not required, to provide the most flexibility for the Fitter in the top-level design.
Select Post-fit to preserve the placement and performance of the lower-level
design block, and turn on Export routing to include the routing information, if
required. One .qxp can include both post-synthesis and post-fitting netlists.

6. Provide the .qxp to the project lead.

Finally, as the project lead in this scenario, perform the appropriate set of steps to
import the .qxp files received from designers of each partition.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the master_makefile command to export each partition and create .qxp files,
and then import them into the top-level design.

2. The software does not have all the information about which source files should be
associated with which partition, so you must specify this information in the
makefile. The software cannot rebuild the project if source files change unless you
specify the dependencies.

If you are not using makefiles, perform the following steps:

1. Add the .qxp as a source file in the Quartus II project, to replace any empty
wrapper file for the previously Empty partition.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–46 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
2. Change the netlist type for the partition from Empty to the required level of results
preservation.

Resolving Assignment Conflicts During Integration
When integrating lower-level design blocks, the project lead may notice some
assignment conflicts. This can occur, for example, if the lower-level design block
designers changed their LogicLock regions to account for additional logic or
placement constraints, or if the designers applied I/O port timing constraints that
differ from constraints added to the top-level design by the project lead. The project
lead can address these conflicts by explicitly importing the partitions into the
top-level design, and using options in the Advanced Import Settings dialog box, as
described in “Advanced Importing Options” on page 3–37. After the project lead
obtains the .qxp for each lower-level design block from the other designers, use the
Import Design Partition command on the Project menu and specify the partition in
the top-level design that is represented by the lower-level design block .qxp. Repeat
this import process for each partition in the design. After you have imported each
partition once, you can select all the design partitions and use the Reimport using
latest import files at previous locations option to import all the files from their
previous locations at one time. To address assignment conflicts, the project lead can
take one or both of the following actions:

■ Allow new assignments to be imported

■ Allow existing assignments to be replaced or updated

When LogicLock region assignment conflicts occur, the project lead may take one of
the following actions:

■ Allow the imported region to replace the existing region

■ Allow the imported region to update the existing region

■ Skip assignment import for regions with conflicts

If the placement of different lower-level design blocks conflict, the project lead can
also set the set the partition’s Fitter Preservation Level to Netlist Only, which allows
the software to re-perform placement and routing with the imported netlist.

Importing a Partition to be Instantiated Multiple Times
In this variation of the design scenario, one of the lower-level design blocks is
instantiated more than once in the top-level design. The designer of the lower-level
design block may want to compile and optimize the entity once under a partition, and
then import the results as multiple partitions in the top-level design.

If you import multiple instances of a lower-level design block into the top-level
design, the imported LogicLock regions are automatically set to Floating status.

If you resolve conflicts manually, you can use the import options and manual
LogicLock assignments to specify the placement of each instance in the top-level
design.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–47
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
Performing Design Iterations With Lower-Level Partitions
Scenario background: A project consists of several lower-level subdesigns that have
been exported from separate Quartus II projects and imported into the top-level
design. In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements might have been met in each
individual lower-level project, but critical inter-partition paths in the top-level design
are causing timing requirements to fail.

After trying various optimizations in the top-level design, the project lead determines
that the design cannot meet the timing requirements given the current partition
placements that were imported. The project lead decides to pass additional
information to the lower-level partitions to improve the placement.

Use this flow if you re-optimize partitions exported from separate Quartus II projects
by incorporating additional constraints from the integrated top-level design.

The best way to provide top-level design information to designers of lower-level
partitions is to provide the complete top-level project framework using the following
steps:

1. For all partitions other than the one(s) being optimized by a designer(s) in a
separate Quartus II project(s), set the netlist type to Post-Fit.

2. Make the top-level design directory available in a shared source control system, if
possible. Otherwise, copy the entire top-level design project directory (including
database files), or create a project archive including the post-compilation database.

3. Provide each partition designer with a checked-out version or copy of the
top-level design.

4. The partition designers recompile their designs within the new project framework
that includes the rest of the design's placement and routing information as well
top-level resource allocations and assignments, and optimize as needed.

5. When the results are satisfactory and the timing requirements are met, export the
updated partition as a .qxp.

If this design flow is not possible, you can generate partition-specific scripts for
individual designs to provide information about the top-level project framework with
these steps:

1. In the top-level design, on the Project menu, click Generate Design Partition
Scripts, or launch the script generator from Tcl or the command line.

2. If lower-level projects have already been created for each partition, you can turn
off the Create lower-level project if one does not exist option.

3. Make additional changes to the default script options, as necessary. Altera
recommends that you pass all the default constraints, including LogicLock
regions, for all partitions and virtual pin location assignments. Altera also
recommends that you add a maximum delay timing constraint for the virtual I/O
connections in each partition.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–48 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan With LogicLock Regions
4. The Quartus II software generates Tcl scripts for all partitions, but in this scenario,
you would focus on the partitions that make up the cross-partition critical paths.
The following assignments are important in the script:

■ Virtual pin assignments for module pins not connected to device I/O ports in
the top-level design.

■ Location constraints for the virtual pins that reflect the initial top-level
placement of the pin’s source or destination. These help make the lower-level
placement “aware” of its surroundings in the top-level design, leading to a
greater chance of timing closure during integration at the top level.

■ INPUT_MAX_DELAY and OUTPUT_MAX_DELAY timing constraints on the paths to and
from the I/O pins of the partition. These constrain the pins to optimize the
timing paths to and from the pins.

5. The partition designers source the file provided by the project lead.

■ To source the Tcl script from the Quartus II GUI, on the Tools menu, click
Utility Windows and open the Tcl console. Navigate to the script’s directory,
and type the following command: source <filename> r

■ To source the Tcl script at the system command prompt, type the following
command: quartus_cdb -t <filename>.tcl r

6. The partition designers recompile their designs with the new project information
or assignments and optimize as needed. When the results are satisfactory and the
timing requirements are met, export the updated partition as a .qxp.

The project lead obtains the updated .qxp files from the partition designers and adds
them to the top-level design. When a new .qxp is added to the files list, the software
will detect the change in the “source file” and use the new .qxp results during the next
compilation. If the project uses the advanced import flow, the project lead must
perform another import of the new .qxp.

You can now analyze the design to determine whether the timing requirements have
been achieved. Because the partitions were compiled with more information about
connectivity at the top level, it is more likely that the inter-partition paths have
improved placement which helps to meet the timing requirements.

Creating a Design Floorplan With LogicLock Regions
A floorplan represents the layout of the physical resources on the device. Creating a
design floorplan, or floorplanning, describe the process of mapping the logical design
hierarchy onto physical regions in the device floorplan. After you have partitioned the
design, you can create floorplan location assignments for the design to improve the
quality of results when using the incremental compilation design flow. Creating a
design floorplan is not a requirement to use an incremental compilation flow, but it is
recommended in certain cases. Floorplan location planning can be important for a
design that uses incremental compilation for the following reasons:

■ To avoid resource conflicts between partitions, predominantly when partitions are
imported from another Quartus II project

■ To ensure a good quality of results when recompiling individual timing-critical
partitions
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–49
Creating a Design Floorplan With LogicLock Regions
Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are already used by other
partitions. A physical region assignment provides a reasonable region to re-place logic
after a change, so the Fitter does not have to scatter logic throughout the available
space in the device.

Floorplan assignments are not required for non-critical partitions compiled as part of
the top-level design. The logic for partitions that are not timing-critical (such as
simple top-level glue logic) can be placed anywhere in the device on each
recompilation, if that is best for your design.

The simplest way to create a floorplan for a partitioned design is to create one
LogicLock region per partition (including the top-level partition). If you have a
compilation result for a partitioned design with no LogicLock regions, you can use the
Chip Planner with the Design Partition Planner to view the partition placement in the
device floorplan. You can draw regions in the floorplan that match the general
location and size of the logic in each partition. Or, initially, you can set each region
with the default settings of Auto size and Floating location to allow the Quartus II
software to determine the preliminary size and location for the regions. Then, after
compilation, use the Fitter-determined size and origin location as a starting point for
your design floorplan. Check the quality of results obtained for your floorplan
location assignments and make changes to the regions as needed. Alternatively, you
can perform synthesis, and then set the regions to the required size based on resource
estimates. In this case, use your knowledge of the connections between partitions to
place the regions in the floorplan.

Once you have created an initial floorplan, you can refine the region using tools in the
Quartus II software. You can also use advanced techniques such as creating
non-rectangular regions by merging LogicLock regions.

f For more information about when creating a design floorplan can be important, as
well as guidelines for creating the floorplan, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

You can use the Incremental Compilation Advisor to check that your LogicLock
regions meet Altera’s guidelines, as described in “Incremental Compilation Advisor”
on page 3–24.

Creating and Manipulating LogicLock Regions
Options in the LogicLock Regions Properties dialog box, available from the
Assignments menu, allow you to enter specific sizing and location requirements for a
region. You can also view and refine the size and location of LogicLock regions in the
Quartus II Chip Planner. You can select a region in the graphical interface in the Chip
Planner and use handles to move or resize the region.

Options in the Layer Settings panel in the Chip Planner allow you to create, delete,
and modify tasks to determine which objects, including LogicLock regions and design
partitions, to display in the Chip Planner.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

3–50 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan With LogicLock Regions
h For more information about creating and viewing LogicLock regions in the LogicLock
Regions window and Chip Planner, refer to Creating and Manipulating LogicLock
Regions in Quartus II Help.

Changing Partition Placement with LogicLock Changes
When a partition is assigned to a LogicLock region as part of a design floorplan, you
can modify the placement of a post-fit partition by moving the LogicLock region. As
described in “What Changes Initiate the Automatic Resynthesis of a Partition?” on
page 3–28, most assignment changes do not initiate a recompilation of a partition if
the netlist type specifies that Fitter results should be preserved. For example,
changing a pin assignment does not initiate a recompilation; therefore, the design
does not use the new pin assignment unless you change the netlist type to
Post-Synthesis or Source File.

Similarly, if a partition’s placement is preserved, and the partition is assigned to a
LogicLock region, the Fitter always reuses the corresponding LogicLock region size
specified in the post-fit netlist. That is, changes to the LogicLock Size setting do not
initiate refitting if a partition’s placement is preserved with the Post-Fit netlist type, or
with .qxp that includes post-fit information.

However, you can use the LogicLock Origin location assignment to change or
fine-tune the previous Fitter results. When you change the Origin setting for a region,
the Fitter can move the region in the following manner, depending upon how the
placement is preserved for that region's members:

■ When you set a new region Origin, the Fitter uses the new origin and replaces the
logic, preserving the relative placement of the member logic.

■ When you set the region Origin to Floating, the following conditions apply:

■ If the region’s member placement is preserved with an imported partition, the
Fitter chooses a new Origin and re-places the logic, preserving the relative
placement of the member logic within the region.

■ If the region’s member placement is preserved with a Post-Fit netlist type, the
Fitter does not change the Origin location, and reuses the previous placement
results.

Taking Advantage of the Early Timing Estimator
When creating a floorplan you can take advantage of the Early Timing Estimator to
enable quick compilations of the design while creating assignments. The Early Timing
Estimator feature provides a timing estimate for a design without having to run a full
compilation. You can use the Chip Planner to view the “placement estimate” created
by this feature, identify critical paths by locating from the timing analyzer reports,
and, if necessary, add or modify floorplan constraints. You can then rerun the Early
Timing Estimator to quickly assess the impact of any floorplan location assignments
or logic changes, enabling rapid iterations on design variants to help you find the best
solution. This faster placement has an impact on the quality of results. If getting the
best quality of results is important in a given design iteration, perform a full
compilation with the Fitter instead of using the Early Timing Estimate feature.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–51
Incremental Compilation Restrictions
Incremental Compilation Restrictions
This section documents the following restrictions and limitations that you may
encounter when using incremental compilation, including interactions with other
Quartus II features:

■ “When Timing Performance May Not Be Preserved Exactly” on page 3–51

■ “When Placement and Routing May Not Be Preserved Exactly” on page 3–51

■ “Using Incremental Compilation With Quartus II Archive Files” on page 3–52

■ “Formal Verification Support” on page 3–52

■ “SignalProbe Pins and Engineering Change Orders” on page 3–52

■ “SignalTap II Logic Analyzer in Exported Partitions” on page 3–53

■ “External Logic Analyzer Interface in Exported Partitions” on page 3–53

■ “Assignments Made in HDL Source Code in Exported Partitions” on page 3–54

■ “Design Partition Script Limitations” on page 3–54

■ “Restrictions on Megafunction Partitions” on page 3–56

■ “Register Packing and Partition Boundaries” on page 3–56

■ “I/O Register Packing” on page 3–56

When Timing Performance May Not Be Preserved Exactly
Timing performance might change slightly in a partition with placement and routing
preserved when other partitions are incorporated or re-placed and routed. Timing
changes are due to changes in parasitic loading or crosstalk introduced by the other
(changed) partitions. These timing changes are very small, typically less than 30 ps on
a timing path. Additional fan-out on routing lines when partitions are added can also
degrade timing performance.

To ensure that a partition continues to meet its timing requirements when other
partitions change, a very small timing margin might be required. The Fitter
automatically works to achieve such margin when compiling any design, so you do
not need to take any action.

When Placement and Routing May Not Be Preserved Exactly
The Fitter may have to refit affected nodes if the two nodes are assigned to the same
location, due to imported netlists or empty partitions set to re-use a previous post-fit
netlist. There are two cases in which routing information cannot be preserved exactly.
First, when multiple partitions are imported, there might be routing conflicts because
two lower-level blocks could be using the same routing wire, even if the floorplan
assignments of the lower-level blocks do not overlap. These routing conflicts are
automatically resolved by the Quartus II Fitter re-routing on the affected nets. Second,
if an imported LogicLock region is moved in the top-level design, the relative
placement of the nodes is preserved but the routing cannot be preserved, because the
routing connectivity is not perfectly uniform throughout a device.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–52 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions
Using Incremental Compilation With Quartus II Archive Files
The post-synthesis and post-fitting netlist information for each design partition is
stored in the project database, the incremental_db directory. When you archive a
project, the database information is not included in the archive unless you include the
compilation database in the .qar file.

If you want to re-use post-synthesis or post-fitting results, include the database files in
the Archive Project dialog box so compilation results are preserved. Click Advanced,
and choose a file set that includes the compilation database, or turn on Incremental
compilation database files to create a Custom file set.

When you include the database, the file size of the .qar archive file may be
significantly larger than an archive without the database.

The netlist information for imported partitions is already saved in the corresponding
.qxp. Imported .qxp files are automatically saved in a subdirectory called
imported_partitions, so you do not need to archive the project database to keep the
results for imported partitions. When you restore a project archive, the partition is
automatically reimported from the .qxp in this directory if it is available.

For new device families with advanced support, a version-compatible database might
not be available. In this case, the archive will not include the compilation database. If
you require the database files to reproduce the compilation results in the same
Quartus II version, you can use the following command-line option to archive a full
database:

quartus_sh --archive -use_file_set full_db [-revision <revision name>]
<project name>

Formal Verification Support
You cannot use design partitions for incremental compilation if you are creating a
netlist for a formal verification tool.

SignalProbe Pins and Engineering Change Orders
ECO and SignalProbe changes are performed only during ECO and SignalProbe
compilations. Other compilation flows do not preserve these netlist changes.

When incremental compilation is turned on and your design contains one or more
design partitions, partition boundaries are ignored while making ECO changes and
SignalProbe signal settings. However, the presence of ECO and/or SignalProbe
changes does not affect partition boundaries for incremental compilation. During
subsequent compilations, ECO and SignalProbe changes are not preserved regardless
of the Netlist Type or Fitter Preservation Level settings. To recover ECO changes and
SignalProbe signals, you must use the Change Manager to re-apply the ECOs after
compilation.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–53
Incremental Compilation Restrictions
For partitions developed independently in separate Quartus II projects, the exported
netlist includes all currently saved ECO changes and SignalProbe signals. If you make
any ECO or SignalProbe changes that affect the interface to the lower-level partition,
the software issues a warning message during the export process that this netlist does
not work in the top-level design without modifying the top-level HDL code to reflect
the lower-level change. After integrating the .qxp partition into the top-level design,
the ECO changes will not appear in the Change Manager.

f For more information about using the SignalProbe feature to debug your design, refer
to the Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus II
Handbook. For more information about using the Chip Planner and the Resource
Property Editor to make ECOs, refer to the Engineering Change Management with the
Chip Planner chapter in volume 2 of the Quartus II Handbook.

SignalTap II Logic Analyzer in Exported Partitions
You can use the SignalTap II Embedded Logic Analyzer in any project that you can
compile and program into an Altera device.

When incremental compilation is turned on, debugging logic is added to your design
incrementally and you can tap post-fitting nodes and modify triggers and
configuration without recompiling the full design. Use the appropriate filter in the
Node Finder to find your node names. Use SignalTap II: post-fitting if the netlist
type is Post-Fit to incrementally tap node names in the post-fit netlist database. Use
SignalTap II: pre-synthesis if the netlist type is Source File to make connections to
the source file (pre-synthesis) node names when you synthesize the partition from the
source code.

If incremental compilation is turned off, the debugging logic is added to the design
during Analysis and Elaboration, and you cannot tap post-fitting nodes or modify
debug settings without fully compiling the design.

For design partitions that are being developed independently in separate Quartus II
projects and contain the logic analyzer, when you export the partition, the Quartus II
software automatically removes the SignalTap II logic analyzer and related SLD_HUB
logic. You can tap any nodes in a Quartus II project, including nodes within .qxp
partitions. Therefore, you can use the logic analyzer within the full top-level design to
tap signals from the .qxp partition.

You can also instantiate the SignalTap II megafunction directly in your lower-level
design (instead of using an .stp file) and export the entire design to the top level to
include the logic analyzer in the top-level design.

f For details about using the SignalTap II logic analyzer in an incremental design flow,
refer to the Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook.

External Logic Analyzer Interface in Exported Partitions
You can use the Logic Analyzer Interface in any project that you can compile and
program into an Altera device. You cannot export a partition that uses the Logic
Analyzer Interface. You must disable the Logic Analyzer Interface feature and
recompile the design before you export the design as a partition.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

3–54 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions
f For more information about the Logic Analyzer Interface, refer to the In-System
Debugging Using External Logic Analyzers chapter in volume 3 of the Quartus II
Handbook.

Assignments Made in HDL Source Code in Exported Partitions
Assignments made with I/O primitives or the altera_attribute HDL synthesis
attribute in lower-level partitions are passed to the top-level design, but do not appear
in the top-level .qsf file or Assignment Editor. These assignments are considered part
of the source netlist files. You can override assignments made in these source files by
changing the value with an assignment in the top-level design.

Design Partition Script Limitations
The Quartus II software has some additional limitations related to the design partition
scripts described in “Generating Design Partition Scripts” on page 3–34.

Warnings About Extra Clocks Due to Design Partition Scripts
The generated scripts include applicable clock information for all clock signals in the
top-level design. Some of those clocks may not exist in the lower-level projects, so you
may see warning messages related to clocks that do not exist in the project. You can
ignore these warnings or edit your constraints so the messages are not generated.

Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in
Design Partition Scripts
After you have compiled a design using TimeQuest constraints, and the timing
assignments option is turned on in the scripts, a separate Tcl script is generated to
create an .sdc file for each lower-level project. This script includes only clock
constraints and minimum and maximum delay settings for the TimeQuest Timing
Analyzer.

1 PLL settings and timing exceptions are not passed to lower-level designs in the
scripts. For suggestions on managing SDC constraints between top-level and
lower-level projects, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Wildcard Support in Design Partition Scripts
When applying constraints with wildcards, note that wildcards are not analyzed
across hierarchical boundaries. For example, an assignment could be made to these
nodes: Top|A:inst|B:inst|*, where A and B are lower-level partitions, and hierarchy
B is a child of A, that is B is instantiated in hierarchy A. This assignment is applied to
modules A, B, and all children instances of B. However, the assignment
Top|A:inst|B:inst* is applied to hierarchy A, but is not applied to the B instances
because the single level of hierarchy represented by B:inst* is not expanded into
multiple levels of hierarchy. To avoid this issue, ensure that you apply the wildcard to
the hierarchical boundary if it should represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single wildcards are
supported. This means assignments such as Top|A:inst|*|B:inst|* are not
supported. The Quartus II software issues a warning in these cases.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–55
Incremental Compilation Restrictions
Derived Clocks and PLLs in Design Partition Scripts
If a clock in the top level is not directly connected to a pin of a lower-level partition,
the lower-level partition does not receive assignments and constraints from the
top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing constraints
and clock group settings. Problems can occur if your design uses logic or inversion to
derive a new clock from a clock input pin. Make appropriate timing assignments in
your lower-level Quartus II project to ensure that clocks are not unconstrained.

If the lower-level design uses the top-level project framework from the project lead,
the design will have all the required information about the clock and PLL settings.
Otherwise, if you use a PLL in your top-level design and connect it to lower-level
partitions, the lower-level partitions do not have information about the multiplication
or phase shift factors in the PLL. Make appropriate timing assignments in your
lower-level Quartus II project to ensure that clocks are not unconstrained or
constrained with the incorrect frequency. Alternatively, you can manually duplicate
the top-level derived clock logic or PLL in the lower-level design file to ensure that
you have the correct multiplication or phase-shift factors, compensation delays and
other PLL parameters for complete and accurate timing analysis. Create a design
partition for the rest of the lower-level design logic for export to the top level. When
the lower-level design is complete, export only the partition that contains the relevant
logic.

Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts
Pin assignments for high-speed GXB transceivers and hard LVDS blocks are not
written in the scripts. You must add the pin assignments for these hard IP blocks in
the lower-level projects manually.

Virtual Pin Timing Assignments in Design Partition Scripts
Design partition scripts use INPUT_MAX_DELAY and OUTPUT_MAX_DELAY assignments to
specify inter-partition delays associated with input and output pins, which would not
otherwise be visible to the project. These assignments require that the software specify
the clock domain for the assignment and set this clock domain to ” * ”.

This clock domain assignment means that there may be some paths constrained and
reported by the timing analysis engine that are not required.

To restrict which clock domains are included in these assignments, edit the generated
scripts or change the assignments in your lower-level Quartus II project. In addition,
because there is no known clock associated with the delay assignments, the software
assumes the worst-case skew, which makes the paths seem more timing critical than
they are in the top-level design. To make the paths appear less timing-critical, lower
the delay values from the scripts. If required, enter negative numbers for input and
output delay values.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–56 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions
Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition
Scripts
When a single top-level I/O port drives multiple pins on a lower-level module, it
unnecessarily restricts the quality of the synthesis and placement at the lower-level.
This occurs because in the lower-level design, the software must maintain the
hierarchical boundary and cannot use any information about pins being logically
equivalent at the top level. In addition, because I/O constraints are passed from the
top-level pin to each of the children, it is possible to have more pins in the lower level
than at the top level. These pins use top-level I/O constraints and placement options
that might make them impossible to place at the lower level. The software avoids this
situation whenever possible, but it is best to avoid this design practice to avoid these
potential problems. Restructure your design so that the single I/O port feeds the
design partition boundary and the single connection is split into multiple signals
within the lower-level partition.

Restrictions on Megafunction Partitions
The Quartus II software does not support partitions for megafunction instantiations.
If you use the MegaWizard™ Plug-In Manager to customize a megafunction variation,
the MegaWizard-generated wrapper file instantiates the megafunction. You can create
a partition for the MegaWizard-generated megafunction custom variation wrapper
file.

The Quartus II software does not support creating a partition for inferred
megafunctions (that is, where the software infers a megafunction to implement logic
in your design). If you have a module or entity for the logic that is inferred, you can
create a partition for that hierarchy level in the design.

The Quartus II software does not support creating a partition for any Quartus II
internal hierarchy that is dynamically generated during compilation to implement the
contents of a megafunction.

Register Packing and Partition Boundaries
The Quartus II software performs register packing during compilation automatically.
However, when incremental compilation is enabled, logic in different partitions
cannot be packed together because partition boundaries might prevent cross-
boundary optimization. This restriction applies to all types of register packing,
including I/O cells, DSP blocks, sequential logic, and unrelated logic. Similarly, logic
from two partitions cannot be packed into the same ALM.

I/O Register Packing
Cross-partition register packing of I/O registers is allowed in certain cases where
your input and output pins exist in the top-level hierarchy (and the Top partition), but
the corresponding I/O registers exist in other partitions.

The following specific circumstances are required for input pin cross-partition register
packing:

■ The input pin feeds exactly one register.

■ The path between the input pin and register includes only input ports of partitions
that have one fan-out each.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–57
Scripting Support
The following specific circumstances are required for output register cross-partition
register packing:

■ The register feeds exactly one output pin.

■ The output pin is fed by only one signal.

■ The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

Output pins with an output enable signal cannot be packed into the device I/O cell if
the output enable logic is part of a different partition from the output register. To
allow register packing for output pins with an output enable signal, structure your
HDL code or design partition assignments so that the register and tri-state logic are
defined in the same partition.

Bidirectional pins are handled in the same way as output pins with an output enable
signal. If the registers that need to be packed are in the same partition as the tri-state
logic, you can perform register packing.

The restrictions on tri-state logic exist because the I/O atom (device primitive) is
created as part of the partition that contains tri-state logic. If an I/O register and its
tri-state logic are contained in the same partition, the register can always be packed
with tri-state logic into the I/O atom. The same cross-partition register packing
restrictions also apply to I/O atoms for input and output pins. The I/O atom must
feed the I/O pin directly with exactly one signal. The path between the I/O atom and
the I/O pin must include only ports of partitions that have one fan-out each.

f For more information and examples of cross-partition boundary I/O packing, refer to
the Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script or
at a command-line prompt. This section provides scripting examples that cover some
of the topics discussed in this chapter.

Tcl Scripting and Command-Line Examples

h For information about the ::quartus::incremental_compilation Tcl package that
contains a set of functions for manipulating design partitions and settings related to
the incremental compilation feature, refer to ::quartus::incremental_compilation in
Quartus II Help.

f For scripting support information, including design examples and training, refer to
the Quartus II Software Scripting Support page of the Altera website. For detailed Tcl
scripting and command-line information, including design examples, refer to the Tcl
Scripting and Command-Line Scripting chapters in volume 2 of the Quartus II Handbook.

Creating Design Partitions
To create a design partition to a specified hierarchy name, use the following
command:
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_incremental_compilation_ver_1.1.htm
http://www.altera.com/support/software/scripting/sof-qts-scripting.html
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

3–58 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support
create_partition [-h | -help] [-long_help] -contents <hierarchy name>
-partition <partition name> r

Enabling or Disabling Design Partition Assignments During Compilation
To direct the Quartus II Compiler to enable or disable design partition assignments
during compilation, use the following command:

set_global_assignment -name IGNORE_PARTITIONS <value> r

Setting the Netlist Type
To set the partition netlist type, use the following command:

set_global_assignment -name PARTITION_NETLIST_TYPE <value> \
-section_id <partition name> r

1 The PARTITION_NETLIST_TYPE command accepts the following values: SOURCE,
POST_SYNTH, POST_FIT, and EMPTY. For descriptions for these values, refer to “Partition
Netlist Type Settings” on page 3–25.

Setting the Fitter Preservation Level for a Post-fit or Imported Netlist
To set the Fitter Preservation Level for a post-fit or imported netlist, use the following
command:

set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL \
<value> -section_id <partition name> r

1 The PARTITION_FITTER_PRESERVATION command accepts the following values:
NETLIST_ONLY, PLACEMENT, and PLACEMENT_AND_ROUTING. For descriptions for these
values, refer to “Fitter Preservation Level Settings” on page 3–27.

Table 3–4. Tcl Script Command: create_partition

Argument Description

-h | -help Short help

-long_help Long help with examples and possible return values

-contents <hierarchy name> Partition contents (hierarchy assigned to Partition)

-partition <partition name> Partition name

Table 3–5. Tcl Script Command: set_global_assignment

Value Description

OFF

The Quartus II software recognizes the design partitions
assignments set in the current Quartus II project and
recompiles the partition in subsequent compilations
depending on their netlist status.

ON

The Quartus II software does not recognize design
partitions assignments set in the current Quartus II project
and performs a compilation without regard to partition
boundaries or netlists.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–59
Scripting Support
Preserving High-Speed Optimization
To preserve high-speed optimization for tiles contained within the selected partition,
use the following command:

set_global_assignment -name PARTITION_PRESERVE_HIGH_SPEED_TILES_ON

Specifying the Software Should Use the Specified Netlist and Ignore Source
File Changes
To specify that the software should use the specified netlist and ignore source file
changes, even if the source file has changed since the netlist was created, use the
following command:

set_global_assignment -name PARTITION_IGNORE_SOURCE_FILE_CHANGES ON
-section_id "<partition name>".

Reducing Opening a Project, Creating Design Partitions, and
Performing an Initial Compilation
Scenario background: You open a project called AB_project, set up two design
partitions, entities A and B, and then perform an initial full compilation.

Example 3–1. AB_project

set project AB_project

load_package incremental_compilation
load_package flow
project_open $project

Ensure that design partition assignments are not ignored
set_global_assignment -name IGNORE_PARTITIONS \ OFF

Set up the partitions
create_partition -contents A -name "Partition_A"
create_partition -contents B -name "Partition_B"

Set the netlist types to post-fit for subsequent
compilations (all partitions are compiled during the
initial compilation since there are no post-fit
netlists)
set_partition -partition "Partition_A" -netlist_type POST_FIT
set_partition -partition "Partition_B" -netlist_type POST_FIT

Run initial compilation:
export_assignments
execute_flow -full_compile

project_close
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

3–60 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support
Optimizing the Placement for a Timing-Critical Partition
Scenario background: You have run the initial compilation shown in the example
script under Example 3–1. You would like to apply Fitter optimizations, such as
physical synthesis, only to partition A. No changes have been made to the HDL files.
To ensure the previous compilation result for partition B is preserved, and to ensure
that Fitter optimizations are applied to the post-synthesis netlist of partition A, set the
netlist type of B to Post-Fit (which was already done in the initial compilation, but is
repeated here for safety), and the netlist type of A to Post-Synthesis, as shown in the
following example:

Generating Design Partition Scripts
To generate design partition scripts, use the following script:

load required package
load_package database_manager

name and open the project
set project <project_path/project_name>
project_open $project

generate the design partiion scripts
generate_bottom_up_scripts <options>

#close project
project_close

h The options map to the same as those in the Quartus II software in the Generate
Design Partition Scripts dialog box. For detailed information about each option, refer
to Generate Design Partition Scripts Dialog Box in Quartus II Help.

Example 3–2. AB_project (2)

set project AB_project

load_package flow
load_package incremental_compilation
load_package project
project_open $project

Turn on Physical Synthesis Optimization
set_high_effort_fmax_optimization_assignments

For A, set the netlist type to post-synthesis
set_partition -partition "Partition_A" -netlist_type POST_SYNTH

For B, set the netlist type to post-fit
set_partition -partition "Partition_B" -netlist_type POST_FIT

Also set Top to post-fit
set_partition -partition "Top" -netlist_type POST_FIT

Run incremental compilation:
export_assignments
execute_flow -full_compile

project_close
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–61
Conclusion
Exporting a Partition
To open a project and load the::quartus::incremental_compilation package before
you use the Tcl commands to export a partition to a .qxp that contains both a post-
synthesis and post-fit netlist, with routing, use the following script:

load required package
load_package incremental_compilation

open project
project_open <project name>

export partition to the .qxp and set preservation level
export_partition -partition <partition name>
-qxp <.qxp file name> -<options>

#close project
project_close

Importing a Partition into the Top-Level Design
To import a .qxp into a top-level design, use the following script:

load required packages
load_package incremental_compilation
load_package project
load_package flow

open project
project_open <project name>

#import partition
import_partition -partition <partition name> -qxp <.qxp file> <-options>

#close project
project_close

Makefiles
For an example of how to use incremental compilation with a makefile as part of the
team-based incremental compilation design flow, refer to the read_me.txt file
that accompanies the incr_comp example located in the
/qdesigns/incr_comp_makefile subdirectory.

h When using a team-based incremental compilation design flow, the Generate Design
Partition Scripts dialog box can write makefiles that automatically export lower-level
design partitions and import them into the top-level design whenever design files
change. For more information about the Generate Design Partition Scripts dialog
box, refer to Generate Design Partition Scripts Dialog Box in Quartus II Help.

Conclusion
With the Quartus II incremental compilation feature described in this chapter, you can
preserve the results and performance of unchanged logic in your design as you make
changes elsewhere. The various applications of incremental compilation enable you to
improve your productivity while designing for high-density FPGAs.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm

3–62 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Document Revision History
Document Revision History
Table 3–6 shows the revision history for this document.

Table 3–6. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0
Removed HardCopy device information. Revised information about Rapid Recompile. Added
information about functional safety. Added information about flattening sub-partition
hierarchies.

November 2012 12.1.0 Added “Turning On Supported Cross-boundary Optimizations” on page 3–21.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 ■ Updated “Tcl Scripting and Command-Line Examples”.

December 2010 10.1.0

■ Changed to new document template.

■ Reorganized Tcl scripting section. Added description for new feature: Ignore partitions
assignments during compilation option.

■ Reorganized “Incremental Compilation Summary” section.

July 2010 10.0.0

■ Removed the explanation of the “bottom-up design flow” where designers work
completely independently, and replaced with Altera’s recommendations for team-based
environments where partitions are developed in the same top-level project framework,
plus an explanation of the bottom-up process for including independent partitions from
third-party IP designers.

■ Expanded the Merge command explanation to explain how it now accommodates cross-
partition boundary optimizations.

■ Restructured Altera recommendations for when to use a floorplan.

■ Added “Viewing the Contents of a Quartus II Exported Partition File (.qxp)” section.

■ Reorganized chapter to make design flow scenarios more visible; integrated into various
sections rather than at the end of the chapter.

October 2009 9.1.0

■ Redefined the bottom-up design flow as team-based and reorganized previous design
flow examples to include steps on how to pass top-level design information to lower-level
designers.

■ Moved SDC Constraints from Lower-Level Partitions section to the Best Practices for
Incremental Compilation Partitions and Floorplan Assignments chapter in volume 1 of the
Quartus II Handbook.

■ Reorganized the “Conclusion” section.

■ Removed HardCopy APEX and HardCopy Stratix Devices section.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 3–63
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive

March 2009 9.0.0

■ Split up netlist types table

■ Moved “Team-Based Incremental Compilation Design Flow” into the “Including or
Integrating partitions into the Top-Level Design” section.

■ Added new section “Including or Integrating Partitions into the Top-Level Design”.

■ Removed “Exporting a Lower-Level Partition that Uses a JTAG Feature” restriction

■ Other edits throughout chapter

November 2008 8.1.0

■ Added new section “Importing SDC Constraints from Lower-Level Partitions” on
page 2–44

■ Removed the Incremental Synthesis Only option

■ Removed section “OpenCore Plus Feature for MegaCore Functions in Bottom-Up Flows”

■ Removed section “Compilation Time with Physical Synthesis Optimizations”

■ Added information about using a .qxp as a source design file without importing

■ Reorganized several sections

■ Updated Figure 2–10

Table 3–6. Document Revision History (Part 2 of 2)

Date Version Changes
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

3–64 Chapter 3: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Document Revision History
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

	3. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
	Deciding Whether to Use an Incremental Compilation Flow
	Flat Compilation Flow with No Design Partitions
	Incremental Capabilities Available When A Design Has No Partitions

	Incremental Compilation Flow With Design Partitions
	Team-Based Design Flows and IP Delivery

	Incremental Compilation Summary
	Steps for Incremental Compilation
	Preparing a Design for Incremental Compilation
	Compiling a Design Using Incremental Compilation

	Creating Design Partitions
	Creating Design Partitions in the Project Navigator
	Creating Design Partitions in the Design Partitions Window
	Creating Design Partitions With the Design Partition Planner
	Creating Design Partitions With Tcl Scripting
	Automatically-Generated Partitions

	Common Design Scenarios Using Incremental Compilation
	Reducing Compilation Time When Changing Source Files for One Partition
	Optimizing a Timing-Critical Partition
	Adding Design Logic Incrementally or Working With an Incomplete Design
	Debugging Incrementally With the SignalTap II Logic Analyzer
	Functional Safety IP Implementation
	IEC61508 Compliance
	Functional Safety Separation Flow
	How to Turn On the Functional Safety Separation Flow
	Preservation of Device Resources
	Preservation of Placement in the Device with LogicLock
	Assigning I/O Pins
	General Guidelines for Implementation
	Reports for SIP
	SIP Partial Bitstream Generation
	POF Comparison Tool for Verification

	Deciding Which Design Blocks Should Be Design Partitions
	Impact of Design Partitions on Design Optimization
	Turning On Supported Cross-boundary Optimizations

	Design Partition Assignments Compared to Physical Placement Assignments
	Using Partitions With Third-Party Synthesis Tools
	Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
	Other Synthesis Tools

	Assessing Partition Quality
	Partition Statistics Reports
	Partition Timing Reports
	Incremental Compilation Advisor

	Specifying the Level of Results Preservation for Subsequent Compilations
	Netlist Type for Design Partitions
	Fitter Preservation Level for Design Partitions
	Where Are the Netlist Databases Saved?
	Deleting Netlists
	What Changes Initiate the Automatic Resynthesis of a Partition?
	Resynthesis Due to Source Code Changes
	Forcing Use of the Compilation Netlist When a Partition has Changed

	Exporting Design Partitions from Separate Quartus II Projects
	Preparing the Top-Level Design
	Empty Partitions

	Project Management— Making the Top-Level Design Available to Other Designers
	Distributing the Top-Level Quartus II Project
	Generating Design Partition Scripts

	Exporting Partitions
	Viewing the Contents of a Quartus II Exported Partition File (.qxp)
	Integrating Partitions into the Top-Level Design
	Integrating Assignments from the .qxp
	Integrating Encrypted IP Cores from .qxp Files
	Advanced Importing Options

	Team-Based Design Optimization and Third-Party IP Delivery Scenarios
	Using an Exported Partition to Send to a Design Without Including Source Files
	Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse
	Designing in a Team-Based Environment
	Enabling Designers on a Team to Optimize Independently
	Resolving Assignment Conflicts During Integration
	Importing a Partition to be Instantiated Multiple Times

	Performing Design Iterations With Lower-Level Partitions

	Creating a Design Floorplan With LogicLock Regions
	Creating and Manipulating LogicLock Regions
	Changing Partition Placement with LogicLock Changes
	Taking Advantage of the Early Timing Estimator

	Incremental Compilation Restrictions
	When Timing Performance May Not Be Preserved Exactly
	When Placement and Routing May Not Be Preserved Exactly
	Using Incremental Compilation With Quartus II Archive Files
	Formal Verification Support
	SignalProbe Pins and Engineering Change Orders
	SignalTap II Logic Analyzer in Exported Partitions
	External Logic Analyzer Interface in Exported Partitions
	Assignments Made in HDL Source Code in Exported Partitions
	Design Partition Script Limitations
	Warnings About Extra Clocks Due to Design Partition Scripts
	Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in Design Partition Scripts
	Wildcard Support in Design Partition Scripts
	Derived Clocks and PLLs in Design Partition Scripts
	Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts
	Virtual Pin Timing Assignments in Design Partition Scripts
	Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition Scripts

	Restrictions on Megafunction Partitions
	Register Packing and Partition Boundaries
	I/O Register Packing

	Scripting Support
	Tcl Scripting and Command-Line Examples
	Creating Design Partitions
	Enabling or Disabling Design Partition Assignments During Compilation
	Setting the Netlist Type
	Setting the Fitter Preservation Level for a Post-fit or Imported Netlist
	Preserving High-Speed Optimization
	Specifying the Software Should Use the Specified Netlist and Ignore Source File Changes
	Reducing Opening a Project, Creating Design Partitions, and Performing an Initial Compilation
	Optimizing the Placement for a Timing-Critical Partition
	Generating Design Partition Scripts
	Exporting a Partition
	Importing a Partition into the Top-Level Design
	Makefiles

	Conclusion
	Document Revision History

