
Nios II Software Developer’s Handbook
January 2014

NII52014-13.1.0

© 2014 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

January 2014
NII52014-13.1.0
3. Getting Started from the Command
Line
The Nios® II Software Build Tools (SBT) allows you to construct a wide variety of 
complex embedded software systems using a command-line interface. From this 
interface, you can execute Software Built Tools command utilities, and use scripts (or 
other tools) to combine the command utilities in many useful ways.

This chapter introduces you to project creation with the SBT at the command line.

This chapter includes the following sections:

■ “Advantages of Command-Line Software Development”

■ “Outline of the Nios II SBT Command-Line Interface”

■ “Getting Started in the SBT Command Line”

■ “Software Build Tools Scripting Basics” on page 3–7

■ “Running make” on page 3–10

Advantages of Command-Line Software Development
The Nios II SBT command line offers the following advantages over the Nios II SBT 
for Eclipse™:

■ You can invoke the command line tools from custom scripts or other tools that you 
might already use in your development flow.

■ On a command line, you can run several Tcl scripts to control the creation of a 
board support package (BSP).

■ You can use command line tools in a bash script to build several projects at once.

The Nios II SBT command-line interface is designed to work in the Nios II Command 
Shell. 

f For details about the Nios II Command Shell, refer to “The Nios II Command Shell” 
on page 3–2.

Outline of the Nios II SBT Command-Line Interface
The Nios II SBT command-line interface consists of:

■ Command-line utilities

■ Command-line scripts

■ Tcl commands

■ Tcl scripts

These elements work together in the Nios II Command Shell to create software 
projects.
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. 
 countries. All other trademarks and service marks are the property of their respective holders as described at 

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but 
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any 
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device 
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII52014


3–2 Chapter 3: Getting Started from the Command Line
Outline of the Nios II SBT Command-Line Interface
Utilities
The Nios II SBT command-line utilities enable you to create software projects. You can 
call these utilities from the command line or from a scripting language of your choice 
(such as perl or bash). On Windows, these utilities have a .exe extension. The 
Nios II SBT resides in the <Nios II EDS install path>/sdk2/bin directory.

f Refer to “Altera-Provided Development Tools” in the Nios II Software Build Tools 
chapter of the Nios II Software Developer’s Handbook for a summary of the 
command-line utilities provided by the Nios II SBT. 

Scripts
Nios II SBT scripts implement complex behavior that extends the capabilities 
provided by the utilities. 

Table 3–1 summarizes the scripts provided with the Nios II SBT.

Tcl Commands
Tcl commands are a crucial component of the Nios II SBT. Tcl commands allow you to 
exercise detailed control over BSP generation, as well as to define drivers and 
software packages. 

Tcl Scripts
The SBT provides powerful Tcl scripting capabilities. In a Tcl script, you can query 
project settings, specify project settings conditionally, and incorporate the software 
project creation process in a scripted software development flow. The SBT uses Tcl 
scripting to customize your BSP according to your hardware and the settings you 
select. You can also write custom Tcl scripts for detailed control over the BSP.

The Nios II Command Shell
The Nios II Command Shell is a bash command-line environment initialized with the 
correct settings to run Nios II command-line tools. The Command Shell supports the 
GCC toolchain.

Table 3–1. Nios II SBT Scripts

Command Summary

nios2-bsp Creates or updates a BSP

create-this-app (1) Creates a software example and builds it

create-this-bsp (1) Creates a BSP for a specific hardware design 
example and builds it

Note to Table 3–1:

(1) There are create-this-app scripts for each software example and several create-this-bsp scripts for each hardware 
design example. For more details, refer to “Nios II Design Example Scripts” in the Nios II Software Build Tools 
Reference chapter of the Nios II Software Developer’s Handbook. 
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf


Chapter 3: Getting Started from the Command Line 3–3
Getting Started in the SBT Command Line
f For general information about GCC toolchains, refer to “Altera-Provided 
Development Tools” in the Nios II Software Build Tools chapter of the Nios II Software 
Developer’s Handbook 

Starting the Nios II Command Shell
To open the Nios II Command Shell, perform the following steps, depending on your 
environment:

■ In the Windows operating system, on the Start menu, point to Programs > Altera > 
Nios II EDS <version>,and click Nios II <version> Command Shell:.

■ In the Linux operating system, in a command shell, change directories to 
<Nios II EDS install path>, and type the command nios2_command_shell.sh.

Auto-Executing a Command in the Nios II Command Shell
In certain situations, you might need to run a command or a script automatically after 
the Nios II Command Shell is initialized. When you start the Nios II Command Shell 
environment, to automatically execute a command perform one of the following 
steps, depending on your environment:

■ In the Windows operating system, execute the following command: 

“<Nios II EDS install path>/Nios II Command Shell.bat“ <command>r

■ In the Linux operating system, execute the following command:

<Nios II EDS install path>/nios2_command_shell.sh <command>r

For example, in Windows, to run an automated build, you might execute the 
following command:

“<Nios II EDS install path>/Nios II Command Shell.bat“ custom_build.shr

The Nios II Command Shell startup script (Nios II Command Shell.bat or 
nios2_command_shell.sh) makes no special assumptions about its initial 
environment. You can use the Nios II Command Shell with auto-execution from any 
environment that accepts commands native to your host operating system. For 
example, in Linux you can use crontab to schedule a job to run in the Nios II 
Command Shell at a later time.

Getting Started in the SBT Command Line
Using the Nios II SBT on the command line is the best way to learn about it. The 
following tutorial guides you through the process of creating, building, running, and 
debugging a “Hello World” program with a minimal number of steps. Later chapters 
provide more of the underlying details, allowing you to take more control of the 
process. The goal of this chapter is to show you that the basic process is simple and 
straightforward.

The Nios II SBT includes a number of scripts that demonstrate how to combine 
command utilities to obtain the results you need. This tutorial uses a create-this-app 
script as an example.

What You Need
To complete this tutorial, you must have the following:
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf


3–4 Chapter 3: Getting Started from the Command Line
Getting Started in the SBT Command Line
■ Altera Quartus® II development software, version 8.0 or later. The software must 
be installed on a Windows or Linux computer that meets the Quartus II minimum 
requirements.

■ The Altera Nios II Embedded Design Suite (EDS), version 8.0 or later.

■ An Altera development board.

■ A download cable such as the Altera USB-Blaster™ cable.

You run the Nios II SBT commands from the Nios II Command Shell. 

f For details about the Nios II Command Shell, refer to “The Nios II Command Shell”.

Creating hello_world for an Altera Development Board
In this section you create a simple “Hello World” project. To create and build the 
hello_world example for an Altera development board, perform the following steps:

1. Start the Nios II Command Shell, as described in “The Nios II Command Shell”.

2. Create a working directory for your hardware and software projects. The 
following steps refer to this directory as <projects>.

3. Change to the <projects> directory by typing the following command:

cd <projects>r

4. Locate a Nios II hardware example for your Altera development board. For 
example, if you have a Stratix® IV GX FPGA Development Kit, you might select 
<Nios II EDS install path>/examples/verilog/niosII_stratixIV_4sgx230/
triple_speed_ethernet_design.

5. Copy the hardware example to your <projects> working directory, using a 
command such as the following:

cp -R /altera/100/nios2eds/examples/verilog/niosII_stratixIV_4sgx230/triple_speed_ethernet_design .r

6. Ensure that the working directory and all subdirectories are writable by typing the 
following command:

chmod -R +w .r

7. The <projects> directory contains a subdirectory named software_examples/app/
hello_world. The following steps refer to this directory as <application>.

8. Change to the <application> directory by typing the following command:

cd <application>r

9. Type the following command to create and build the application:

./create-this-appr

The create-this-app script copies the application source code to the <application> 
directory, runs nios2-app-generate-makefile to create a makefile (named Makefile), 
and then runs make to create an Executable and Linking Format File (.elf). The 
create-this-app script finds a compatible BSP by looking in <projects>/
software_examples/bsp. In the case of hello_world, it selects the hal_default BSP.

To create the example BSP, create-this-app calls the create-this-bsp script in the BSP 
directory.
Nios II Software Developer’s Handbook January 2014 Altera Corporation



Chapter 3: Getting Started from the Command Line 3–5
Getting Started in the SBT Command Line
Running hello_world on an Altera Development Board
To run the hello_world example on an Altera development board, perform the 
following steps:

1. Start the Nios II Command Shell.

2. Download the SRAM Object File (.sof) for the Quartus II project to the Altera 
development board. This step configures the FPGA on the development board 
with your project’s associated SOPC Builder system.

The .sof file resides in <projects>, along with your Quartus II Project File (.qpf). 
You download it by typing the following commands:

cd <projects>r 
nios2-configure-sofr 

The board is configured and ready to run the project’s executable code.

The nios2-configure-sof utility runs the Quartus II Programmer to download 
the .sof file. You can also run the quartus_pgm command directly.

f For more information about programming the hardware, refer to the Nios II 
Hardware Development Tutorial.

3. Start another command shell. If practical, make both command shells visible on 
your desktop.

4. In the second command shell, run the Nios II terminal application to connect to the 
Altera development board through the JTAG UART port by typing the following 
command:

nios2-terminalr

5. Return to the original command shell, and ensure that <projects>/
software_examples/app/hello_world is the current working directory.

6. Download and run the hello_world executable program as follows:

nios2-download -g hello_world.elfr

The following output appears in the second command shell:

Hello from Nios II!

Debugging hello_world
An integrated development environment is the most powerful environment for 
debugging a software project. You debug a command-line project by importing it to 
the Nios II SBT for Eclipse. After you import the project, Eclipse uses your makefiles 
to build the project. This two-step process combines the advantages of the SBT 
command line development flow with the convenience of a GUI debugger.

This section discusses the process of importing and debugging the hello_world 
application.

Import the hello_world Application
To import the hello_world application, perform the following steps:

1. Launch the Nios II SBT for Eclipse. 
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf


3–6 Chapter 3: Getting Started from the Command Line
Getting Started in the SBT Command Line
2. On the File menu, click Import. The Import dialog box appears.

3. Expand the Nios II Project folder, and select Import Nios II project.

4. Click Next. The File Import wizard appears. 

5. Click Browse and navigate to the <application> directory, containing the 
hello_world application project.

6. Click OK. The wizard fills in the project path.

7. Type the project name hello_world in the Project name box.

8. Click Finish. The wizard imports the application project.

1 If you want to view the BSP source files while debugging, you also need to import the 
BSP project into the Nios II SBT for Eclipse.

For a description of importing BSPs into Eclipse, refer to “Importing a Command-Line 
Project” in the Getting Started with the Graphical User Interface chapter of the Nios II 
Software Developer’s Handbook.

Download Executable Code and Start the Debugger
To debug the software project, perform the following steps:

1. Right-click the hello_world project, point to Debug As, and click Nios II 
Hardware. 

2. If the Confirm Perspective Switch dialog box appears, click Yes.

After a moment, you see the main() function in the editor. There is a blue arrow 
next to the first line of code, indicating that execution is stopped on this line.

When targeting Nios II hardware, the Debug As command does the following 
tasks:

■ Creates a default debug configuration for the target board.

■ Establishes communication with the target board

■ Optionally verifies that the expected SOPC Builder system is configured in the 
FPGA.

■ Downloads the .elf file to memory on the target board.

a. Sets a breakpoint at main().

■ Instructs the Nios II processor to begin executing the code.

3. In the Run menu, click Resume to resume execution. You can also resume 
execution by pressing F8.

When debugging a project in Eclipse, you can also pause, stop, and single-step the 
program, set breakpoints, examine variables, and perform many other common 
debugging tasks. 

f For more detailed information about debugging projects in the Nios II SBT for Eclipse, 
refer to “Importing a Command-Line Project” and “Getting Started with Eclipse” in 
the Getting Started with the Graphical User Interface chapter of the Nios II Software 
Developer’s Handbook.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf


Chapter 3: Getting Started from the Command Line 3–7
Software Build Tools Scripting Basics
Software Build Tools Scripting Basics
This section provides an example to teach you how you can create a software 
application using a command line script.

In this section, assume that you want to build a software application for a Nios II 
system that features the lan91c111 component and supports the NicheStack® TCP/IP 
stack. Furthermore, assume that you have organized the hardware design files and 
the software source files as shown in Figure 3–1. 

Creating a BSP with a Script
One easy method for creating a BSP is to use the nios2-bsp script. The script in 
Example 3–1 creates a BSP and then builds it. 

Table 3–2 shows the meaning of each argument to the nios2-bsp script in 
Example 3–1. 

Figure 3–1. Simple Software Project Directory Structure

Hardware system files (e.g. standard.sopcinfo)

BSP examples (e.g. hal_standard)

software_examples

bsp

create-this-bsp

app

software examples (e.g. hello_world

create-this-app

Example 3–1. nios2-bsp

nios2-bsp ucosii . ../SOPC/ --cmd enable_sw_package altera_iniche \
--set altera_iniche.iniche_default_if lan91c111

make
January 2014 Altera Corporation Nios II Software Developer’s Handbook



3–8 Chapter 3: Getting Started from the Command Line
Software Build Tools Scripting Basics
f For additional information about the nios2-bsp command, refer to “Nios II Software 
Build Tools Utilities” in the Nios II Software Build Tools Reference chapter of the Nios II 
Software Developer’s Handbook.

Table 3–2. nios2-bsp Example Arguments

Argument Purpose Further Information

ucosii 
Sets the operating system 
to MicroC/OS-II

“Settings Managed by the 
Software Build Tools” in the 
Nios II Software Build Tools 
Reference chapter of the 
Nios II Software Developer’s 
Handbook 

.
Specifies the directory in 
which the BSP is to be 
created

—

../SOPC/
Points to the location of the 
hardware project —

--cmd enable_sw_package altera_iniche
Adds the NicheStack TCP/IP 
stack software package to 
the BSP

“Settings Managed by the 
Software Build Tools” and 
“Software Build Tools Tcl 
Commands” in the Nios II 
Software Build Tools 
Reference chapter of the 
Nios II Software Developer’s 
Handbook

--set altera_iniche.iniche_default_if lan91c111

Specifies the default 
hardware interface for the 
NicheStack TCP/IP Stack - 
Nios II Edition

“Settings Managed by the 
Software Build Tools” in the 
Nios II Software Build Tools 
Reference chapter of the 
Nios II Software Developer’s 
Handbook
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf


Chapter 3: Getting Started from the Command Line 3–9
Software Build Tools Scripting Basics
Figure 3–2 shows the flow to create a BSP using the nios2-bsp script. The nios2-bsp 
script uses the .sopcinfo file to create the BSP files. You can override default settings 
chosen by nios2-bsp by supplying command-line arguments, Tcl scripts, or both.

Creating an Application Project with a Script
You use nios2-app-generate-makefile to create application projects. The script in 
Example 3–2 creates an application project and builds it.

Table 3–3 shows the meaning of each argument in Example 3–2.

Figure 3–2. nios2-bsp Command Flow

Quartus II files (e.g. standard.qpf)

Hardware system files (e.g. standard.sopcinfo)

BSP examples (e.g. hal_standard)

<design> (e.g. standard)

software_examples

bsp

create-this-bsp

app

software examples (e.g. hello_world)

create-this-app

Example 3–2. nios2-app-generate-makefile

nios2-app-generate-makefile --bsp-dir ../BSP \
--elf-name telnet-test.elf --src-dir source/

make

Table 3–3. nios2-app-generate-makefile Example Arguments

Argument Purpose

--bsp-dir ../BSP
Specifies the location of the BSP on which this 
application is based

--elf-name telnet-test.elf Specifies the name of the executable file

--src-dir source/
Tells nios2-app-generate-makefile where to find the 
C source files
January 2014 Altera Corporation Nios II Software Developer’s Handbook



3–10 Chapter 3: Getting Started from the Command Line
Running make
f For further information about each command argument in Table 3–3, refer to “Nios II 
Software Build Tools Utilities” in the Nios II Software Build Tools Reference chapter of 
the Nios II Software Developer’s Handbook. For more detail about the software example 
scripts, refer to “Nios II Design Example Scripts” in the Nios II Software Build Tools 
Reference chapter of the Nios II Software Developer’s Handbook.

Running make
nios2-bsp places all BSP files in the BSP directory, specified on the command line with 
argument --bsp-dir. After running nios2-bsp, you run make, which compiles the 
source code. The result of compilation is the BSP library file, also in the BSP directory. 
The BSP is ready to be linked with your application.

You can specify multiple targets on a make command line. For example, the following 
command removes existing object files in the current project directory, builds the 
project, downloads the project to a board, and runs it:

make clean download-elfr

You can modify an application or user library makefile with the 
nios2-lib-update-makefile and nios2-app-update-makefile utilities. With these 
utilities, you can execute the following tasks:

■ Add source files to a project

■ Remove source files from a project

■ Add compiler options to a project’s make rules

■ Modify or remove compiler options in a project’s make rules

Creating Memory Initialization Files
To create memory initialization files for a Nios II system, you can use the Nios II 
Command Shell. Change to the software application folder, and type:

make mem_init_generater

This command creates the memory initialization and simulation files for all memory 
devices. It also generates a Quartus II IP File (.qip). The .qip file tells the Quartus II 
software where to find the initialization files. Add the .qip file to your Quartus II 
project. 
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf


Chapter 3: Getting Started from the Command Line 3–11
Document Revision History
Document Revision History
Table 3–4 shows the revision history for this document.

Table 3–4. Document Revision History

Date Version Changes

January 2014 13.1.0

■ Updated GCC4 toolchain from 4.1.2 to GCC 4.7.3.

■ Removed references to the Nios II IDE.

■ Removed references to GCC 3.

■ Removed the “Using the Nios II C2H Compiler” section.

May 2011 11.0.0
■ Can auto-execute a Command in the Nios II Command Shell

■ The GCC 3 toolchain is an optional feature

February 2011 10.1.0
■ Do not mix versions of GCC.

■ Removed “Referenced Documents” section.

July 2010 10.0.0
■ Introduction of GCC 4.

■ Discuss usage of GCC 3 and GCC 4 command shells.

November 2009 9.1.0

■ Repurpose and retitle this chapter as an introduction to Nios II Software Build Tools 
command-line usage.

■ Information about the BSP Editor moved to the Getting Started with the Graphical User 
Interface chapter.

March 2009 9.0.0

■ Describe BSP Editor.

■ Reorganize and update information and terminology to clarify role of Nios II Software 
Build Tools.

■ Correct minor typographical errors.

May 2008 8.1.0 Maintenance release.

October 2007 7.2.0 Repurpose this chapter as a “getting started” guide. Move descriptive and reference material 
to separate chapters.

May 2007 7.1.0 Initial Release.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf


3–12 Chapter 3: Getting Started from the Command Line
Document Revision History
Nios II Software Developer’s Handbook January 2014 Altera Corporation


	3. Getting Started from the Command Line
	Advantages of Command-Line Software Development
	Outline of the Nios II SBT Command-Line Interface
	Utilities
	Scripts
	Tcl Commands
	Tcl Scripts
	The Nios II Command Shell
	Starting the Nios II Command Shell
	Auto-Executing a Command in the Nios II Command Shell


	Getting Started in the SBT Command Line
	What You Need
	Creating hello_world for an Altera Development Board
	Running hello_world on an Altera Development Board
	Debugging hello_world
	Import the hello_world Application
	Download Executable Code and Start the Debugger


	Software Build Tools Scripting Basics
	Creating a BSP with a Script
	Creating an Application Project with a Script

	Running make
	Creating Memory Initialization Files

	Document Revision History


