
INV ITED
P A P E R

Hardware/Software Codesign:
The Past, the Present, and
Predicting the Future
This paper reviews the past, present, and future prospects for hardware/software

codesign, which is used extensively in embedded electronic system products

for automobiles, industrial design automation, avionics, mobile devices,

home appliances, and other products.

By Jürgen Teich, Senior Member IEEE

ABSTRACT | Hardware/software codesign investigates the

concurrent design of hardware and software components of

complex electronic systems. It tries to exploit the synergy of

hardware and software with the goal to optimize and/or satisfy

design constraints such as cost, performance, and power of the

final product. At the same time, it targets to reduce the time-to-

market frame considerably. This paper presents major achieve-

ments of two decades of research on methods and tools for

hardware/software codesign by starting with a historical sur-

vey of its roots, by highlighting its major research directions

and achievements until today, and finally, by predicting in

which direction research in codesign might evolve in the

decades to come.

KEYWORDS | Cosimulation; cosynthesis; coverification; design

space exploration; electronic system level (ESL); hardware/

software codesign; virtual prototyping

I . INTRODUCTION

Hardware/software codesign emerged basically as a new

discipline to design complex integrated circuits (ICs) in

the early 1990s. At that time, it was already clear that large

16- and 32-b microprocessors would not just be available as

discrete components on board-level systems, but as
software-programmable components of any IC design.

At that time, the concurrent design of hardware and
software was already daily business, at least to micropro-

cessor companies, by having carefully to decide how to

design the interface between the microprocessor hardware

and the software. This task involving the definition and

implementation of the instruction set architecture has not,

however, been consciously treated as a task of codesign

yet. Nevertheless, it did motivate and stimulate those re-

search goals that today’s codesign methodologies already
try to accomplish: satisfying the need for system-level de-

sign (SLD) automation, allowing the development of cor-

rect electronic systems comprising billions of transistors,

running programs with million lines of codes, and finally,

integrating not only a single microprocessor, but possibly

multiple microprocessors on a single chip [system-on-a-

chip (SoC)] with or without any accelerators, and complet-

ing such a design process within a typical 18–24-month
time-to-market frame.

Driven by the technological advances predicted by

Gordon Moore, hardware/software codesign techniques

have become a must for a successful electronic system

design today and, as such, are used more and more in

companies that are developing embedded electronic sys-

tem products. Here, the number and range of application

domains that are steadily increasing include important
industrial branches such as automotive, industrial design

automation, avionics, mobile devices, home appliances,

and many more. Finally, for our future of expected di-

minishing technical progressVthe life after Moore’s lawV
codesign might become even more important for two

reasons. On the one hand, sale numbers of successful new

technical products will not be driven so much any more by

Manuscript received December 16, 2011; accepted December 20, 2011. Date of

publication March 22, 2012; date of current version May 10, 2012.

The author is with the Department of Computer Science, University of

Erlangen-Nuremberg, 91058 Erlangen, Germany (e-mail: teich@cs.fau.de).

Digital Object Identifier: 10.1109/JPROC.2011.2182009

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 14110018-9219/$31.00 �2012 IEEE

just technological progress, but more and more by tools to
design better quality and more reliable systems with a

given technology than any competitor. On the other hand,

the slowdown of technological progress will also justify to

spend more design time on a careful analysis and explora-

tion of design options.

Now, before delving into technical topics, the major

purposes and intentions of hardware/software codesign are

summarized. These are explained by looking at different
interpretations of the syllable co of the word codesign.

• Co-ordination: Codesign techniques are used today

to coordinate the design steps of interdisciplinary

design groups including firmware, operating sys-

tem (OS), and application developers on the

software side, as well as hardware developers and

chip designers on the other side to work together on

all parts of a system. This is also the original
interpretation of the Latin syllable co in the word

codesign. The following other interpretations are

more subtle.

• Co-ncurrency: Tight time-to-market windows force

hardware and software developers to work con-

currently instead of starting the firmware and

software development as well as their test only

after the hardware platform is available. It can be
seen that codesign has provided an enormous

progress to avoid this bottleneck by either starting

from an executable specification and/or applying the

concept of virtual platforms and virtual prototyping
in order to run the concurrently developed soft-

ware on a simulation model of the platform already

at a very early stage. Also, testing and partitioning

to concurrently executing software and hardware
components requires special cosimulation tech-

niques to reflect concurrency and synchronization

of subsystems.

• Co-rrectness: Needless to say, the correctness chal-

lenges of complex hardware and software require

techniques to not only verify the correctness of

each individual subsystem, but also coverify their

correct interactions after their integration.
• Co-mplexity: Of course, codesign techniques are

mainly driven by the complexity of today’s electro-

nic system designs and serve as a means (or at least

try) to close the well-known design gap to produce

correctly working and highly optimized (e.g., with

respect to cost, power, performance) system

implementations.

This paper gives a survey on the historic achievements
and current research directions of hardware/software

codesign and is structured as follows. Starting with a

summary of the historic roots of codesign techniques and

corresponding achievements beginning in the early 1990s

in Section II, the major facets and available methodologies

of modern codesign are presented in Section III. In

Section IV, different variants of hardware/software code-

sign that have simultaneously emerged are introduced and
explained such as the joint design of analog and digital

parts of an IC. Subsequently, we try also to predict the

future of codesign methodologies that will need to emerge

in the next decades. These changes and required future

developments are on the one hand stimulated by clouds

coming up on Moore’s horizon to deal with the growing

imperfection and variability at the root components of

each codesign: the transistor. Here, the hardware/software
tradeoff and interplay will definitely become more

important in order to solve dependability issues. On the

other hand, we can recognize a trend and desire to build

more flexibility [1] and runtime adaption into a system

design for the purpose of optimization and reduction of the

system cost. Thus, we will see that error resiliency as well

as adaptivity will require to change the system function-

ality and partitioning into hardware and software dynam-
ically at runtime. Hence, some codesign techniques will

need to move into the product so as to achieve the required

adaptivity online. As a matter of fact, this opens a variety of

new challenges that need to be solved in the future.

II . THE EVOLUTION OF CODESIGN

In this section, the evolution of codesign is summarized

starting as an emerging discipline in the early 1990s to a

mainstream engineering technology in its second generation.

Note that the literature available on major achieve-
ments as well as tools and frameworks on codesign has

become so vast1 that it is impossible to survey all of this

meritorious work in a single paper. Therefore, the major

research themes addressed in each decade of research may

only be emphasized by highlighting some important

approaches.

A. Early Work
Although the joint design of hardware and software has

been exercised already since the introduction of the first

microprocessor by the joint engineering of hardware

architecture and instruction set architecture, the discovery

and subsequent boom by considering codesign as an

essential step toward SLD automation of complex
electronic systems started in the 1980s [2] and early

1990s [3], [4], respectively.

Hardware/software codesign, sometimes also named

software/hardware codesign or just codesign equivalently,

started to be considered as the process of concurrent and

coordinated design of an electronic system comprising

hardware as well as software components based on a sys-

tem description that is implementation independent by the
aid of design automation.

In the initial work by Prakash and Parker [5], a cosyn-

thesis problem was formulated as a mixed integer-linear

1This is similar to the amount of different writing options available for
the discipline of hardware/software codesign itself.

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

1412 Proceedings of the IEEE | Vol. 100, May 13th, 2012

program which simultaneously determines a multiprocessor
topology as well as a schedule and allocation of tasks onto the

architecture. Since then, the problem of automatically

partitioning tasks or processes into hardware and software

was soon recognized as an increasingly important research

topic with the advent of forming a research community

starting in 1992 [6]. This first IFIP International Workshop

on Hardware/Software Codesign took place in Grassau,

Germany. Under this name or simply CODES/CASHE, major
subsequent events dedicated to this new research field were

organized in Colorado (1992), Cambridge, MA (1993) and

Grenoble, France (1994), respectively. Later, the event was

simply called CODES and organized in places such as

Braunschweig, Germany (1997), Seattle, WA (1998), Rome,

Italy (1999), San Diego, CA (2000), Copenhagen, Denmark

(2001), and Estes Park, CO (2002). Finally, in 2003, CODES

became the International Conference on Hardware/Software
Codesign and System Synthesis [7] as a merger with the IEEE

International Symposium on System Synthesis. Since then, it

has been still the major yearly conference event worldwide

focusing on all issues of hardware/software codesign. Since

2006, this important event has been organized under the

direction of the Embedded Systems Week (ESWEEK) [7]

with other major conferences such as EMSOFT and CASES.

B. Codesign Achievements: The First Generation
In the early years, much focus had been put on tackling

the problem of partitioning a given functional specification

into hardware and software, hence a problem of biparti-
tioning. A given functional specification such as a set of

communicating modules or tasks specified in a C-like dialect

is mapped onto a given hardware platform consisting of a

single processor central processing unit (CPU) and a user-
defined (application-specific) hardware block or application-

specific integrated circuit (ASIC) with both parts communi-

cating over a bus and using a shared memory or registers for

buffer implementation. Hence, except for the question which

parts to implement on the ASIC, the target platform was

already fixed. Here, two initial quite complementary

approaches are worth highlighting: In the Vulcan approach

developed by Gupta et al. in Stanford, CA [8], the idea was to
start with a hardware-only solution and to migrate as many

tasks as possible to software while satisfying performance

constraints with the goal to reduce design costs. The Cosyma

design system developed simultaneously at the Technical

University of Braunschweig [9] took exactly the opposite

point of departure by starting with a software-only partition

of blocks with subsequent migration of tasks to hardware in

order to satisfy performance constraints while trying to
minimize the cost of the resulting hardware blocks. Even if

these two approaches also involved the application of high-

level hardware synthesis within the partitioning loop to

estimate the performance of different hardware implemen-

tations of tasks, both early approaches were quite restricted

not only by the simple architectural model, but also in the

execution model: both assumed that the implementation was

single-threaded and that the CPU and ASIC worked mutually
exclusively. Thus, the CPU had to wait in an idle mode for the

hardware to complete a function and was thus treated rather

as an accelerator and not even as a coprocessor. Nevertheless,

these two early approaches stimulated a lot of work on

subsequent investigations of partitioning approaches and

architectural extensions.

C. Codesign Achievements: The Second Generation
In the next few years and until the early 2000s, not

only the problem of hardware/software partitioning was

elaborated on more and extended considerably for more

complex types of architectures, including more than one

CPU, but also the assumption of just single-threaded prog-

ram execution was extended to multiprogramming and

multiprocessing. Finally, also cosimulation [10], [11] started

to become an important area of research for the early
validation of design decisions.

In cosimulation, the execution of software on the CPU

is simulated using a virtual model of the processor hard-

ware or together with the synthesized hardware part of the

system design. The reason for doing so is the complexity of

the system design when performing a pure gate level or

register transfer level (RTL) hardware simulation, which is

typically much too slow. Therefore, the processors need to
be modeled at a higher level of abstraction than the

implemented hardware part. According to [12], the cosim-

ulation problem lies in coupling different models to make

the hardware simulation sufficiently accurate. An example

product at that time was Seamless CVS from Mentor

Graphics that used a processor model (i.e., an instruction

set simulator) and bus models to abstract processor inter-

action with the memory. Although an even more abstract
behavioral modeling of the software may abstract com-

pletely from the hardware by only modeling the interface

timing behavior, and by allowing the software simulation

to run on any host coupled to a simulator of the hardware

parts, timing and performance analysis is typically re-

stricted here to the hardware part. In the area of cosim-

ulation, Zivojnovic and Meyr [11] proposed to also use

compiled simulation to speed up cosimulation. An impor-
tant framework for cosimulation of heterogeneous systems

was and still is the Ptolemy framework from the University

of California at Berkeley [13]. It may be used to cosimulate

and understand the relationships between several models

of computation such as data flow and discrete-event

models. Also, formal techniques for timing analysis have

evolved in the community, notably Li and Malik’s algo-

rithms for worst case execution time (WCET) analysis [14]
and the application and performance analysis of schedul-

ing techniques known from real-time systems to estimate

best case, worst case, and average case timing behavior of

mixed hardware/software systems adequately. As perfor-

mance is one of the most critical factors for optimization or

used as a constraint during codesign, the real-time calculus
as developed by Thiele et al. [15] in the late 1990s and the

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1413

work on compositional timing analysis by Ernst et al. [16]
are also noteworthy.

Of course, the architectural assumptions of the presented

early works do not hold in today’s complex SoC architectures.

First, a system may contain not only one, but several CPUs of

different types such as reduced instruction set computer

(RISC) cores, digital signal processors (DSPs), application-

specific instruction set processors (ASIPs), or very long

instruction word (VLIW) processors. In 1998, a graph-based
approach was published in [17] and presented earlier at

CODES 1997 [18] that allows to formally model heteroge-

neous target architectures including their interconnect. A

specification graph consisting of a task graph with data

dependencies and an architecture graph describing the

variety of available hardware components and their commu-

nication facilities was defined there with the goal to formalize

and generalize the partitioning problem. In this graph-based
model, edges between tasks and resources are used to de-

scribe restricted mapping possibilities. Each mapping edge

may be annotated with any number of cost attributes such as

the code size, power, and other mapping-related quality

attributes. Also, the timing delays caused by transporting data

of the communicating tasks over the communication links are

considered and mapped by introducing the so-called

communication tasks between the data-dependent tasks
and mapping these onto communication resources as an

integral part of the partitioning problem. Also in [17], it was

shown that the problem of finding a feasible allocation of a set

of resources and mapping (binding) of tasks onto these

resources is NP-complete. Hence, finding a feasible imple-

mentation based on this formalized model of application and

architecture graph motivates the application of sophisticated

approximation algorithms. The above idea and benefits of
separately modeling the application and target architecture

spread fast in the community and were refined and developed

much further under the name of platform-based design

(PBD); see, e.g., [19]–[21].

When looking at even more realistic SoC implementa-

tions, as of today, also complex communication networks need

to be considered for performance and cost analysis, including

not only processor buses and point-to-point connections, but
also network-on-a-chip (NoC) type of interconnect. One

example of such a complex multiprocessor SoC (MPSoC)

target architecture is shown in Fig. 7. The communication of

tasks may thus involve several hops and require routing to be

determined on top of the mapping of tasks; see, e.g., [22].

Hence, the early bipartitioning approaches that were based on

the assumption that the architecture is given and fixed are not

applicable when designing a complex SoC. Also, single-
objective optimization techniques such as the minimization of

hardware cost under performance constraints or maximizing

performance under cost constraints were seen as too

restrictive and too special as each product in mind may have

completely different objectives, including cost, power con-

sumption, or recently also reliability [23]. In order to be able

to explore the design space of different hardware solutions and

partitions, it is thus important to not only allow a designer to
implement his/her own evaluation functions easily into a

computer-aided design (CAD) environment for codesign, but

also to allow multiple objectives to be considered simulta-

neously and without any a priori bias or weighting. Finally,

also the problem of interface synthesis between hardware and

software parts of an SoC was recognized in the codesign

community as an important field of research; see, e.g., [24]. In

this area, methods to generate interface circuits from timing
diagrams, or Petri nets automatically, were investigated. Also,

the important problem of automatic refinement of abstract

communication protocols such as in process networks onto

bus protocols falls in this area. One of the first early attempts

to not only propose synthesis for hardware and software alone,

but also offer refinement techniques for interfaces is the

CoWare system [25].

In the following section, important new achievements
to adequately treat deficiencies of the first-generation

approaches and tools for codesign are summarized.

For more detailed surveys of the state of the art at that

time, the surveys by Ernst [12] of 1998 and by Wolf [26],

which appeared in 2003, are recommended.

III . FACETS AND ACHIEVEMENTS OF
MODERN ESL-BASED CODESIGN:
CODESIGN 3.0

Today, we already live in a third generation of codesign

technology with cross-level design environments for the

synthesis of complex electronic systems becoming slowly

available. During the last decade, many important mile-

stones of progress with respect to the initial findings have

been achieved. They were mainly driven by the following
system design challenges.

• Heterogeneous SoC technology has become a reality

today through the advances in microelectronics and

nanoelectronics. Today, a complex system com-

prising several microprocessors of different types

ranging from digital signal processors (DSP), appli-

cation-specific instruction set processors (ASIPs) for

special domain-specific functions, and microcon-
trollers can be integrated into a single multibillion

transistor SoC together with customizable hardware

accelerator intellectual property (IP) blocks and

analog IPs, peripherals, and memory blocks.

• Hardware and software complexity: The hardware

complexity of many electronic embedded systems is

not only manifesting itself in SoC technology on a

single chip, but also at the level of distributed
communicating electronic devices such as electronic

control units (ECUs) in a modern car. Here, as many

as 70–90 ECUs providing special services such as

stability control, antilock braking, or entertainment

functions, are interconnected. So, not only the chip

industry but also many companies designing embed-

ded systems have discovered the need to deal with

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

1414 Proceedings of the IEEE | Vol. 100, May 13th, 2012

the enormous complexity of today’s systems. Indeed,
modeling, simulation, optimization, and synthesis of

such networked systems should also be in the scope

of codesign technology. Finally, the enormous

complexity has risen even faster in the software

world for embedded systems. Imagine that again in a

single vehicle, more than 100 million lines of code

coexist and coexecute today. Imagine also the

complexity of testing and verifying properties such
as safety in such a complex system.

• Integration panacea: From the view of the devel-

oper of an electronic embedded system [27]–[30], a

final obstacle has been and still is the lack of stan-

dards and ways to describe and integrate subsys-

tems developed by potentially other companies and

reuse these in order to respect reasonable time-to-

market windows. Again, this holds very true for the
automotive domain. Here, integration of ECUs

usually starts on a test board that connects differ-

ent subsystems. Heavy testing scenarios are then

applied to analyze functional correctness and de-

tect potential timing errors before an integration

into the vehicle happens. Interestingly, the inte-

gration tests are done very often without having

and knowing the individual software implemented
in each subsystem as these are developed by sup-

pliers. AUTomotive Open System ARchitecture

(AUTOSAR) [31] is an open and standardized

automotive software architecture, jointly devel-

oped by automobile manufacturers, suppliers, and

tool developers. One of its major goals is to faci-

litate the exchange and update of software and

hardware over the service life of the vehicle.
Driven by the above challenges, it was soon discovered

that there must be a way to raise the abstraction level at

which designers express their systems under design, giving

birth to the idea of electronic system level (ESL) design as

well as ways to interface and reuse designs across different

abstraction levels. In the following, some major milestones

are summarized, considering the time from roughly 2005

until today as the third generation of codesign.

A. Reduction of the Time-to-Market Frame and
Design Risks Through the Concurrent Analysis,
Exploration, and Design of Hardware and Software

Fig. 1(a) shows a typical development timeline of a

classical electronic system design involving hardware as well

as software components. Let us assume that the typical time

frame of a company’s product is bound to a maximum of
24 months. Here, based on a common specification and

maybe on some initial high-level simulations, hardware

decisions are taken first. In the worst case, the firmware and

software teams can therefore not start to develop and test

their software until the hardware design is available. This

also has the great risk of delaying the whole product design

chain in case conceptual hardware design errors or

production errors are detected late or even only once the

software is running on the available prototype. Also, there is

no way to explore potential options for different choices of

implementations with respect to multiple objectives such as

cost versus performance versus extendibility, etc., so that

typically, the hardware design decisions are taken based on

the experience of a hardware designer team and the progress

and success of the software by a software engineering team.
The shortcomings of this classical design chain are

multifold:

• long critical path resulting in long and often

unpredictable time-to-market frame;

• risks for potential errors in each part of the design

chain uncovered only very late;

• risk for overdesigning or underdesigning a system due

to the missing early evaluation of design options.
In Fig. 1(b), the experience is shown of companies

using modern ESL-based codesign tools such as

SystemCoDesigner [32], an ESL tool developed by our

Fig. 1. (a) Classical design flow and (b) ESL design flow starting from an

executable specification and allowing for concurrent development

of hardware and software after an initial delay for specification and

design space exploration. Savings of up to six months may be expected.

At the same time, the risk of late design errors and of overdesigning

and underdesigning a system is reduced.

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1415

group. Here, the initial system specification starts with a
functional, but already executable, specification of the

system, e.g., in C, C++, or SystemC. Also, depending on

an existing platform or hardware IPs, a platform model

needs to be developed including cost models. Based on this

initial modeling overhead, an early design space explora-

tion of potential solutions in a choice of system compo-

nents, interconnect, and memory layout as well as the

distribution of software functions, and thus design trade-
offs, is possible. This step, of course, requires a big re-

thinking as this may take a considerable amount of time for

modeling the system architecture, for parameterizing the

models for design space exploration, and also for calibrat-

ing these accordingly. Nevertheless, the benefits will be

great in the sense that the executable specification may be

used as a golden reference model for the software develop-

ment process, including the firmware and testing envi-
ronment. Indeed, such a specification and the use of

cosimulation tools may also help to reveal errors in the test

and firmware development cycle very early. The risk of

hidden errors or overdesigning or underdesigning a system

with respect to the given constraints may also be reduced

considerably. According to our experience, the advantage

of introducing codesign may lead to savings of up to six

months in the time-to-market frame in many cases, as
shown in Fig. 1(b).

B. The Double Roof Model of Codesign
Apart from the necessity of specification, formal analysis,

and cosimulation tools for performance and cost analysis, it

was soon discovered and agreed on that the major synthesis

problem in codesign of electronic systems, in the following

also synonymously called ESL or SLD in [32]–[34] today,
involves three major so-called mapping tasks.

• Allocation: Select a set of system resources includ-

ing processors, hardware IP blocks (e.g., inter-

faces, memories, etc.), and their interconnection

network, thereby composing the system architec-

ture in terms of resources. These resources could

be existing as library templates. Alternatively, the

design flow should be able to synthesize them.
• Binding: Map functionality (e.g., tasks, processes,

functions, or basic blocks) onto processing re-

sources, variables and data structures onto mem-

ories, and communications to routes between

corresponding resources.

• Scheduling: Determine when functions are executed

on the proper resources including function execu-

tion, memory accesses, and communication. This
might involve either the definition of a partial order

of execution or the specification of schedulers for

each CPU and communication and memory re-

sources involved as well as task priorities, etc.

Hence, in contrast to the early work in codesign, the

platform or resource allocation is not assumed fixed but

rather considered a part of the so-called design space of dif-

ferent allocations, bindings, and schedule decisions. Also, the
binding does not only consider mutually exclusive shared

memory and single bus communications, but also it must

determine routes from sources to destination, thereby

reflecting very complex interconnection networks of today’s

very large-scale integration (VLSI) designs, including not

only bus structures but also networks-on-a-chip (NoCs).

Codesign, however, does not only provide important

design aids at the system level. At the same time, it should
allow to combine existing (semi)automated design steps

and interface different abstraction levels to a large degree.

Thereby, codesign will accomplish the necessary design
refinements automatically, save development time, and al-

low for the fast verification of the above design steps [29].

In the double roof model (Fig. 2) according to [28] and

[35], typical abstraction levels of electronic design auto-

mation are depicted.
The double roof model defines the typical top–down

design process for embedded hardware/software systems.

The left-hand side of the roof shows typical abstraction

levels encountered during the software design process,

whereas the right-hand side corresponds to typical refine-

ment steps during the hardware design process. Each side is

organized in different abstraction levels, e.g., module (task)

and block (instruction) levels for typical software design
steps, and architecture and logic levels for the hardware

design processes, respectively. There is one common level

of abstraction: the ESL that has been described above and at

which one cannot yet distinguish between hardware and

software.

Now, the two shown roofs describe the typical two

views a developer encounters when designing a complex

hardware/software system. The upper roof describes the
functional or specification view of the system at the corre-

sponding abstraction level, whereas the lower roof de-

scribes its structural implementation, including allocated

Fig. 2. The double roof model of codesign. Shown is the system level at

the top connecting the software (left) and hardware development

chains (right) through successive synthesis refinements (vertical

arrows). Each synthesis step maps a functional specification onto a

structural implementation on the next lower level of abstraction.

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

1416 Proceedings of the IEEE | Vol. 100, May 13th, 2012

resources as well as schedule and binding decisions and the
corresponding code.

Design automation is visualized in the double roof

model by vertical arrows, each representing a synthesis step.

For example, during logic synthesis, a given specification of

a system of Boolean equations or a finite-state machine

(FSM) provided in the form of either a table, diagram, or

alternatively hardware description language (HDL) spec-

ification is given at the level of the functional roof. Logic
synthesis then generates a netlist implementing this FSM

by choosing variable encodings, applying logic minimiza-

tion, and finally allocating logic gates and memory

elements from a library. So, at the structural roof of the

diagram, one would see the netlist as a result of the

refinement. Hence, through a synthesis step, a specification
is transformed into an implementation at the next lower

level of abstraction. Horizontal arrows indicate the step of
passing information about the implementation at a certain

level directly to the next lower level of abstraction as an

additional specification information or constraints. For

example, at the architecture level on the hardware side, the

allocation would involve determining how many functional

units such as multipliers and adders of each type will be

chosen to compose the data path of the resulting hardware

component. Here, the information on the choice of the
functional unit such as a carry-ripple-adder with a certain

precision would serve as an additional input at the func-

tional level for subsequent logic synthesis of this adder.

The double roof model can be seen as extending the

Y-chart [36] by an explicit separation of software and hard-

ware design. Of course, there is no fully automated design

flow for all shown abstraction levels available today. Also,

each design might require different refinement steps and
different tools to choose from during the design of an

embedded system.

Also, a pure top–down design might not be possible or

desirable for many companies in many product cases. For

example, some components such as CPU types and numbers

might have been chosen already early or will be reused in

new product lines and thus need to be considered during the

mapping. Similarly, during hardware design, some existing
IP blocks available in the company will be instantiated

instead of synthesizing them from the scratch. Such a meet-
in-the-middle design strategy is not a contradiction, but rather

a special case of the design flow, because we will see that

resource allocations might either be fixed or chosen during a

synthesis step on the basis of synthesis constraints. In

particular, it will be shown later that the usage of existing

components may be achieved by constraining the synthesis
problem to use already preallocated components while at the

same time reducing the design space.

Now, let us look at the typical design flow more closely.

The design process represented by the double roof model

typically starts with an ESL specification given by a func-

tional (behavioral) specification of the whole system

(either model based or language based). Here, the function-

al entities to be mapped are typically communicating tasks,
processes, or subalgorithms that are part of the specifi-

cation. Additionally, a set of mapping constraints and imple-

mentation constraints (maximum area, minimal throughput,

etc.) is given. The platform model at ESL is typically a struc-

tural model consisting of architectural components such as

processors, buses, and other interconnect components such

as links and NoCs, memories, and hardware IP blocks that

might be used as accelerators or external communication
interface blocks. The task of ESL synthesis is the process of

selecting an appropriate platform architecture out of this

variety, determining a mapping of the behavioral model onto

that architecture, and generating a corresponding imple-

mentation of the behavior running on the platform. The

result is a refined model containing all design decisions and

typically multiple nonfunctional quality metrics, such as

throughput, latency, area, and power consumption. If
selected, components of this refined model are then used

as input to the design process at lower abstraction levels, and

basically each hardware component and software processor

in the system architecture may be refined further separately.

Synthesis at lower levels of abstraction is a similar pro-

cess. Also there, a behavioral or functional specification is

refined into a structural implementation. However, de-

pending on the abstraction level, the granularity of objects
handled during synthesis differs and some decisions might be

more important than others. For instance, at the task
(module) level on the software side, communicating process-

es/threads are bound to one or multiple processors on which

they must be prioritized and scheduled depending on an off-

the-shelf real-time operating system (RTOS) or a custom-

generated runtime environment. This step might also involve

the generation of source code in a target programming
language for subsequent code compilation. Finally, at the

block level, each piece of software code such as a function,

a method, or a basic block is (cross-)compiled and linked

according to the selected processor and RTOS. Hence, the

synthesis tools we encounter here are compiler tools.

On the other hand, at the architecture level on the

hardware side, processes and tasks selected to be imple-

mented as hardware accelerators are synthesized down to
an RTL description in the form of controller state ma-

chines that drive a data path consisting of functional units,

register files, memories, and proper interconnect. This

refinement step is commonly referred to as behavioral,
architectural, or high-level synthesis [37]. Today, there are

many tools available to perform high-level synthesis auto-

matically; see Cynthesizer from FORTE [38], the Cyber-

Workbench from NEC [39], the C-to-Silicon-Compiler
from Cadence [40], and CatapultC from Mentor Graphics

[41] for four commercially available products. Finally, at

the logic level, the granularity of the objects considered

during logic synthesis then corresponds to Boolean formu-

las implemented by logic gates and flip flops. Certainly, the

refinement might continue to even lower abstraction

levels such as the transistor level for physical design.

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1417

In summary, the double roof model tries not only to
put into perspective the system level as a new and

important abstraction level for the design of electronic

embedded systems, but also to concatenate existing

design abstraction and synthesis levels for their integra-

tion and interplay. It will be shown later when discussing

the requirements of modern SLD frameworks that the

integration of certain design tools between abstraction

levels is not always free and easy to achieve and still
needs either some manual interaction or customizability.

This is a very important feature in ESL design, as each

company might want to customize its own tool suite.

Even for each individual product, such a tool chain

must be customizable according to different design

objectives.

Nevertheless, the double roof model helps to reason

about the mentioned three major challenges of hardware
and software design complexity as well as the problem of

integration and reuse of subsystems designed at lower

levels of abstraction. As a matter of fact, the three major

design tasks that need to be provided by any synthesis tool,

namely allocation, binding, and scheduling problems, are

existent on each of the presented abstraction levels. In

[28], it is shown that the differences are mainly different

types of resources, different optimization goals, and differ-
ent optimization techniques to solve these three abstract

problem classes.

Later in Section III-E, we will introduce in more detail

one ESL design framework called SystemCoDesigner [32]

to give an example of a cross-level ESL design framework

that has already been applied successfully to many

application areas and systems, varying from SoC design

to the design of networked embedded systems such as
networks of ECUs in the automotive area. It is, however,

beyond the scope of this paper and also impossible to

present all existing academic as well as commercially

available frameworks that enable a cross-level codesign

according to the double roof model presented here.

Surveys such as given by Densmore et al. [42] provide an

excellent comprehensive overview of more than 90

available point tools that focus on individual or subsets
of ESL design tasks. Also, worth mentioning is the survey

by Sangiovanni-Vincentelli on ESL design frameworks [33]

and by Gerstlauer et al. [43]. The latter provides a

taxonomy for ESL synthesis methodologies and also

compares six available academic frameworks including

Daedalus [44]–[46] developed in The Netherlands by the

groups of Stefanov, Pimentel, and Deprettere; System-On-

Chip Environment (SCE) [47] developed jointly between
the University of Irvine and the University of Austin by the

groups of Gajski, Dömer, and Gerstlauer; SystemCoDe-

signer [32] developed by our group in Erlangen, Germany;

Metropolis [48] from the University of California

Berkeley; Koski [49] developed by Kangas et al.; and

finally PeaCE and Hope [50], [51] developed in Seoul,

Korea, by the group of Soonhoi Ha.

C. Model-Based Versus Language-Based Specification
of Applications and Platforms

It has been and still is an ongoing debate on which

languages are preferable to be used for system specification

and whether one single language should be used to fit all

requirements. Experience shows that the opinions still

differ here quite a lot. Some approaches favor the so-called

model-based design over the language-based design because

in order to allow for the analysis of system properties and
for guaranteeing them during synthesis, strong mathemat-

ical formalisms are needed. In the following, an overview

of the pros and cons of several languages used during

codesign and also domain-specific model-based approaches

is given. In [52], Lee and Sangiovanni-Vincentelli present a

framework for comparing models of computation. In [53],

Ha et al. give a survey of applying model-based design

techniques to MPSoC targets.

1) Languages for Hardware, Software, and Codesign: For

the design of hardware, expressing concurrency and tim-

ing is a must. Therefore, central to the so-called HDLs is

the need of a concept of concurrent processes and signals.

The concept of a signal differs from that of a variable in a

software programming language by the fact that it carries

events that appear at certain time steps and which may
trigger other signals to change. Simulation of a hardware

circuit is then achieved by event-based simulation. For

digital circuit designers, the two dominant design lan-

guages to start from are VHDL [54] and SystemVerilog;

see, e.g., [55]. The latter builds upon the widely used HDL

Verilog. Both VHDL and SystemVerilog cover well all

functional and structural (netlist) views shown in the

hardware side (right) of the double roof model in Fig. 2.
Also, the two synthesis levels of architectural (behavioral)

as well as logic synthesis are well tool-supported today.

However, it is not likely that these languages will be widely

accepted by software designers whoVat least in the area of

the development of electronic embedded systemsVprefer

widely spread programming languages such as C or C++

instead. Therefore, the question is: Why not use an impe-

rative widespread language such as C or C++ or its deri-
vatives to start the system and hardware synthesis from?

Although there also exist tools and frameworks that take C

or extensions of C as the point of departure for hardware

synthesis, the major problem is that for efficient hardware

generation, parallelization techniques need to be applied

to extract concurrency from a sequential specification.

Often, important sources of parallelism such as complex

loop specifications are not efficiently parallelizable. Also,
the C or C++ language itself is not able to express timing

which is not only important on the hardware side of the

roof, but also on the software side, i.e., for safety-critical

systems with hard real-time constraints [56].

As an intermediate solution, changes and extensions of

pure C and C++ have been developed to cover both sides

of the roof well. Here, the languages SystemC (see, e.g.,

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

1418 Proceedings of the IEEE | Vol. 100, May 13th, 2012

[57]) and SpecC [47], [58] are well known and established.
Whereas SpecC is a superset of ANSI C, SystemC is a class

library of the C++ language, both offering all useful data

types and concurrent programming structures known from

the HDLs mentioned above. In order to simulate a

SystemC program, an event-based simulation library is

available so that timing aspects of a codesign may be

evaluated for correctness not only functionally, but also

with respect to the timing properties. Concerning hard-
ware synthesis from SystemC, Forte [38], Cadence [40],

and Mentor Graphics [41] all offer tools for hardware

synthesis from subsets of SystemC, and C++, respectively.

For the development of software in safety-critical do-

mains such as avionics, special programming languages

called synchronous are successfully applied with strong

formal semantics that permit an easier verification of pro-

perties as well as automatic code generation. Among these
languages are well-known Esterel [59], Signal [60], and

Lustre [61]. For the synchronous language Quartz [62]

developed by Schneider et al., the analysis and synthesis of

MPSoC code is also investigated, e.g., by generation of

OpenMP parallel code [63].

2) Important Models of Computation for Codesign: Prog-

ramming languages often miss a rigorous formal semantics
or are too expressive to prove important system properties

such as liveness, boundedness, or nonfunctional properties

such as on timing or cost. In this context, restricted models

of computation such as FSMs, timed automata, process
networks, Petri nets, and data-flow models of computation

[64], [65] have their strength. Whereas the first ones are

mainly used to describe, analyze, and verify reactive sys-

tems, the latter ones are mainly used to describe signal,
image, and stream processing systems using the notion of

actors [52].

D. Design Space Exploration
It has been explained that designing hardware and

software separately from each other may lead to under-

designed system implementations not meeting all non-

functional properties such as timing, cost, or power
consumption. Alternatively, design decisions for the allo-

cation of resources might have been taken too strictly,

leading to too costly and thus overdesigned system imple-

mentations and reducing the later win margins per unit

sold.

As a consequence, design space exploration (DSE) has

soon started to become a distinguishing element of code-

sign technology. In the following, the basic elements and
achievements in the area of design space exploration of

electronic embedded systems at the system level are

shortly described. Note that the ideas and techniques

particular to design space exploration also hold and may be

applied similarly to any other abstraction level shown in

the double roof model in Fig. 2 such as the exploration of

software schedules for digital signal processor targets [66]

at the module level or at the architectural level, e.g., for
exploring the design space of massively parallel loop

accelerators [67].

In [17] and [18], the distinction between the functional
specification model and the architecture model was made and

the tasks of system synthesis were defined as the three steps

of allocation of resources from the architecture model,

binding of tasks or similar entities of the functional speci-

fication onto the allocated resources, and of scheduling
these properly. Hence, the design space is given by the set

of all possible permutations of allocations, bindings, and

schedules.2 Any such triple satisfying a certain number of

additional nonfunctional constraints such as on cost,

performance, power, temperature, etc., is called a feasible
solution. From a feasible solution, the corresponding

structural implementation can be derived easily. Often,

the scheduled code for each resource may be generated
automatically as a refinement of the initial specification.

Now, system design space exploration, as the name

says, is the task to explore the set of feasible implementa-

tions 1) efficiently and 2) finding not only one of these, but

3) many and also 4) optimal ones. The problem here is

threefold and is summarized in Fig. 3.

• Exploration cost and exploration strategies (algo-
rithms): What are good algorithms for exploring
vast and in general discrete search spaces with

millions of potential solutions? Of course, any

known search technique might be applied to find

feasible implementation candidates such as ran-

domized search techniques, techniques relying on

iterative improvement such as simulated anneal-

ing, or exact techniques based on integer-linear

program (ILP) formulations.
• Multiobjective nature and evaluation of nonfunctional

properties: However, classic single-objective search

techniques like those mentioned above require a

single objective function to optimize. So, in case

one wants to find the best design options for two or

more objectives such as cost and performance, one

has to provide a weighting function to combine

both objectives into one function which corre-
sponds already to a decision making by the designer

because of the choice of a proper weighting. In

order to perform a real nonbiased design space

exploration and shift the process of decision mak-

ing later to the design engineer when seeing which

tradeoffs for implementation are achievable, true

multiobjective exploration techniques are advisable.

Here, population-based approaches that simulta-
neously scan the search space such as evolutionary

algorithms [17], [68] have become the state of the

2Note that a schedule may be a function assigning an absolute or
relative start time to a task. Alternatively, it might be just a priority for a
scheduling policy such as the fixed-priority scheduling, or a number
indicating an absolute or partial order of execution.

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1419

art. Special Pareto-front3 exploring evolutionary

algorithms such as SPEA2 [69] and NSGA-II [70]

have been tuned to explore Pareto-optimal or at

least close to Pareto-optimal quality sets for
system-level synthesis problems very efficiently.

Here, the dimensionality (number of objectives) as

well as the so-called evaluation functions for each

design objective may be chosen deliberately and in

a user-specific way.

• How to flexibly evaluate the quality of a design point?
Finally, not only the vast search space and the time

for exploring it need to be taken into account, but
also how flexibly different customizable objectives

may be specified and evaluated. In today’s explora-

tion tools, a great flexibility is necessary as each

company using such an exploration tool might not

only have a different tool chain in their double roof

model, but also for each individual product and a

different number of objectives to evaluate at each

abstraction level to be explored. For example, in

case of a field-programmable gate array (FPGA)
target for system implementation, the cost objectives

could be the number of logic gates, flip flops, and

block random access memories (RAMs) used

together with two performance objectives such as

throughput and clock rate of the synthesized system.

For a chip on a mobile phone, the objectives could be

minimizing the power consumption and chip area.

Now, for their evaluation, the exploration model
might be annotated and used to write user-specific

cost functions. Alternatively, a synthesis or estima-

tion tool for each objective might be used such as a

worst case execution time (WCET) [71] estimation

tool for determining the WCET of a task when

mapped to a certain processor resource. In order to

achieve this desired customizability, the concept of

general evaluation functions according to Fig. 3 has
been developed. Hence, the acceptance of design

space exploration tools depends greatly on the

flexibility of customizability and automatic integra-

tion of user- and system-specific evaluator functions

and a highly efficient exploration kernel.

In Section III-E, one example of such a flexible explo-

ration framework called SystemCoDesigner will be de-

scribed in more detail.

1) Some Recent Advances in Design Space Exploration: In

[72], Lahiri et al. describe a design space exploration

methodology for the optimization of on-chip communica-

tion architectures. In [73], Bacivarov and Jerraya describe

how to explore the interconnect architecture of a system.

In [74], Pasricha and Dutt describe a framework for cosyn-

thesis of memory and communication architectures for
MPSoC targets. Similarly, Pimentel et al. use evolutionary

algorithms for exploration of the application mapping

problem in MPSoC design [68].

Another important observation when using multiobjec-

tive evolutionary algorithms for design space exploration at

the ESL is that for highly constrained search spaces, they may

not find any feasible solution at all, depending on the coding

of the search space and nature of the space of feasible
solutions. Thus, extensions have been proposed, e.g., to

add the number of constraint violations as an additional

objective to be minimized in order to steer the search at least

toward the space of feasible solutions. Unfortunately, many

points might be explored and evaluated multiple times in

case no special care is taken in the implementation of the set

of genetic operators that is applied to a given population of

points. An important breakthrough to also efficiently
explore highly constrained huge search spaces was the

introduction of symbolic techniques [75], as shown in Fig. 4.

In particular, it was shown that the problem of finding a

feasible implementation may be formulated as a problem of

Boolean satisfiability (SAT). Hence, a SAT solver may be

used to find out whether there exists a feasible solution with

respect to a number of constraints on allocation, binding,

3In multiobjective optimization, a solution candidate is called
nondominated (with respect to a given reference set of solutions), if no
solution of the reference set is (equal or) better in each objective than the
considered candidate. A solution candidate is called Pareto-optimal in case
it is a nondominated point with respect to the set of all feasible solutions
as the reference set. For a given optimization problem, the Pareto-front
denotes the set of all Pareto-optimal points.

Fig. 3. Facets of tools for performing design space exploration (DSE)

based on an application model or model of computation (MoC)

and an architecture (platform) model (MoA). During DSE, the design

space of implementation candidates is explored. Each synthesis

candidate is evaluated according to typically multiple user-defined

objectives that are implemented by evaluation functions.

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

1420 Proceedings of the IEEE | Vol. 100, May 13th, 2012

and possibly also scheduling. According to Fig. 4, this SAT

solver works in interplay with a multiobjective evolutionary
algorithm (EA). This EA, however, does not directly

determine (select) a number of next points to explore in

the search space but rather controls and varies the strategy

of the SAT solver in which priority to assign variables and

to which value (0 or 1). The most recent work deals with

1) extending this approach by particular pruning functions

and 2) enhancing the SAT techniques and pseudo-Boolean

(PB) solvers to allow for more general, i.e., nonlinear
constraints to be formulated using the concept of

background theories [76], [77]. Finally, in [78], Wild-

ermann et al. have extended symbolic design space

exploration for runtime reconfigurable multimode systems.

E. SystemCoDesigner
This section is concluded by introducing one specific

instance of a codesign framework to explain the above fea-

tures in detail. For the introduction and comparison of

other academic codesign frameworks, we refer, e.g., to [43].

The goal of the SystemCoDesigner project [32] is to

automatically map applications written in SystemC [57] to

a heterogeneous MPSoC platform. By automating as many

design steps as possible, an early evaluation of different
design options is possible. The overall design flow is shown

in Fig. 5.

In the first step, the designer writes an actor-oriented

application model using SystemC. In the second step, dif-

ferent hardware accelerators may be generated automat-

ically for actors in the application model using behavioral

synthesis and stored in a component library. This library

also contains other synthesizable IP cores such as pro-
cessors, buses, memories, etc. Before automatically ex-

ploring the design space, the designer has to define an

MPSoC platform model from resources in the component

library as well as mapping constraints for the actors.

During DSE, allocations as well as bindings of tasks to

processing resources and communications to routes in the

architecture are determined and evaluated for objectives

such as cost, power, and performance using the concept of
user-definable evaluation functions. From the set of

nondominated solutions, the designer may then select

promising implementations for subsequent rapid proto-

typing.

1) Scope of Methodology: Currently, SystemCoDesigner

supports mainly the design of streaming applications.

These applications are typically modeled by the help of
dataflow graphs where vertices represent actors and edges

represent data dependencies. Due to the complexity of

Fig. 4. Multiobjective DSE in SystemCoDesigner [75]. Shown is the

exploration kernel according to Fig. 3 using a combination of a SAT

solver and an evolutionary multiobjective algorithm (EA) that basically

steers the solution strategy of the SAT solver (setting variables in

which priority and to which phase, i.e., 0 or 1).

Fig. 5. ESL design flow using SystemCoDesigner [32].

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1421

many streaming applications, they often cannot be mod-
eled as static dataflow graphs [64], [65], where consump-

tion and production rates are known at compile time.

Rather they are described as a combination of static and

dynamic dataflow models, e.g., Kahn process networks [79].

On the other hand, SystemC has become a de facto
standard in industrial SLD flows. Hence, SystemCoDe-

signer assumes that the application model is written in

SystemC and represents a dataflow model, i.e., SystemC
modules (actors) only communicate via SystemC first-in-

first-out (FIFO) channels and their functionality is

implemented in a single SystemC thread. Such input

descriptions can be transformed into a special subset of

SystemC called SysteMoC [32]. An application modeled in

SysteMoC resembles the FunState model of computation

(functions driven by state machines) [80] that allows to

express nondeterministic dynamic dataflow models.
A SysteMoC model is composed of SysteMoC actors

that communicate via queues with FIFO semantics. Each

SysteMoC actor is defined by an FSM specifying the com-

munication behavior and methods controlled by the FSM.

If activated by the FSM, these methods are executed

atomically and data consumption and production are only

performed after computing a method.

As an example, Fig. 6(a) from [43] shows a Motion-JPEG
decoder in SysteMoC. It consists of several actors

interconnected by communication channels (edges) pro-

cessing a stream of data. Fig. 6(b) exemplarily shows the

SystemC definition of the PPM sink actor. The corre-

sponding representation as a SysteMoC actor is shown in

Fig. 6(c). The FSM controlling the communication behavior

of the SysteMoC actor checks for available input data

(e.g.,#i1 � 1) and available space on the output channels
(e.g.,#o1 � 1) to store results. Furthermore, constant

methods called guards (e.g., check) can be used to test

values of internal variables and data in the input channels. If

the predicates annotated to a state transition are evaluated to

true, this transition can be taken and the annotated methods

called action (e.g.,transform) will be processed atomically.

From SysteMoC actor code, both hardware accelerators

and software module implementations may be generated
automatically [32]. The latter one is achieved by straight-

forward code transformations, whereas the hardware accel-

erators are built with Forte’s Cynthesizer [38] in the loop.

This allows for quick extraction of important performance

parameters like the achieved throughput and the required

area. These values can be used later to evaluate different

solutions found during automatic design space exploration.

The generated hardware accelerators (synthesizable
RTL code) are stored in the component library. From this

library, including further synthesizable IP cores, the de-

signer can specify his/her MPSoC platform template. Fur-

thermore, the designer has to specify mapping constraints

for each SysteMoC actor.

After design space exploration, the designers may se-

lect any MPSoC implementation best suited for their

needs. Once this selection has been made, the last step of

the proposed ESL design flow is the rapid prototyping of a

corresponding FPGA-based implementation in terms of

the model refinement. For this purpose, the resulting

platform is assembled. Moreover, the program code for
each processor is generated according to the binding of the

actors, resulting in a transaction level model (TLM). In

order to generate high-quality software schedules,

SystemCoDesigner supports the automatic classification

of actors into synchronous or cyclostatic dataflow [81]

and clustering static actors bound to the same processor

into a single dynamic actor [82]. Finally, the implemen-

tation is compiled into an FPGA bit stream using the Xilinx
Embedded Development Kit (EDK) [83].

2) SystemCoDesigner Design Steps: All manual work in the

SystemCoDesigner design flow has been performed after

setting up the platform model together with the mapping

constraints. Starting with this input model, System-

CoDesigner automatically explores the design space. For

this purpose, it optimizes the implementation of the
streaming application while considering several objectives

simultaneously, e.g., latency, throughput, area, and power

Fig. 6. (a) Block diagram of a Motion-JPEG decoder. (b) SystemC

code of an actor that can be transformed into a SysteMoC actor

given in (c) [43].

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

1422 Proceedings of the IEEE | Vol. 100, May 13th, 2012

consumption. While area consumption is assumed to be a
linear cost function, timing and power estimation may be

evaluated through a simulation-based performance evalu-

ation during exploration.

SystemCoDesigner generates task-accurate perfor-

mance models automatically from the SysteMoC model

and the performance values annotated in the input model

[32]. For this purpose, the platform model is translated

into the so-called virtual architecture, again written in
SystemC. The performance evaluation is done by linking

the SysteMoC model to the virtual architecture. During

such a performance simulation, each invocation of an

action of an actor is then relayed to the virtual component

the actor is bound to. The virtual component then blocks

the actor’s execution until the estimated execution time

of the action and possible other preemption times expire.

The resulting combined functional and timing simulation
allows the evaluation of arbitrary complex application

models. However, in case of the existence of nondeter-

minism in the application model, this might lead to some

inaccuracy also in the performance evaluation.

Beside evaluating a single design point, design space

exploration is responsible for covering the search space. In

order to perform decision making automatically, System-

CoDesigner translates the input model into a PB formula.
The variables of this formula encode the resource alloca-

tion, the actor binding, the queue mapping, and the rout-

ing of transactions on the communication structure such as

in a complex NoC, as shown in Fig. 7. Each variable as-

signment satisfying this formula corresponds to a feasible

implementation of the application. A PB solver is used to

identify these solutions [32]; see also Fig. 4. The

optimization is performed using the SPEA2 [69] multi-
objective evolutionary algorithm. The decision strategy of

the PB solver is varied by mutation and crossover performed

by SPEA2. This variation leads to different solutions.

3) SystemCoDesigner Experiences: For the experimental

evaluation of the SystemCoDesigner design flow, a

Motion-JPEG decoder as shown in Fig. 6(a) is used; see

[43] for more details. The Motion-JPEG decoder case study
consists of 8000 SysteMoC lines of code, supporting inter-

leaved and noninterleaved baseline profile without sub-

sampling. The complete specification results in about

5� 1033 possible implementation alternatives. Thanks to

the integration of Forte Cynthesizer, the hardware accele-

rators for the different actors can be obtained directly from

the SysteMoC specification. Furthermore, as SysteMoC

offers a higher level of abstraction compared to RTL, the
designer can progress more quickly. Taking the number of

lines of codes as a measure for complexity, the RTL design

would be 8–10 times more costly.

On the basis of the above specification, the design space

has been explored using SystemCoDesigner. The objectives

taken into account during design space exploration were:

1) throughput; 2) latency; 3) number of required flip flops;

4) lookup tables; and 5) block RAMs. During exploration,

7600 different solutions were evaluated in two days, 17 h,

and 46 min. The simulation time per solution is about 30 s

for Motion-JPEG streams consisting of four quarter

common intermediate format (QCIF) frames. As a result,

366 nondominated solutions were found, each of them rep-

resenting a particular hardware/software implementation.
Finally, many of these solutions were automatically

prototyped onto a Xilinx Virtex II FPGA. Concerning the

accuracy of model-based estimation and implementation, a

discrepancy of up to 30% can be identified when comparing

the FPGA implementations with the performance estima-

tions during design space exploration. The differences in the

required hardware sizes (� 15%) occurring between the

predicted values and those measured in hardware may be
explained by postsynthesis optimizations such as elimination

of unused block RAMs. The discrepancies between the

performance estimations for latency and throughput and

those measured for hardware/software solutions mainly

arise due to schedule overhead on the processors.

IV. CODESIGN 4.0 OR: RESEARCH
PERSPECTIVES FOR THE NEXT
DECADES OF CODESIGN

In this section, some important directions that codesign

needs to take in order to be able to develop complete

embedded system implementations in their operating

environment are mentioned. This includes, for example,

Fig. 7. Example of a complex MPSoC target architecture including

several tiles of different processor CPUs, tightly coupled processor

arrays (TCPAs), memory, and input/output (I/O) tile interconnected by

a NoC [84].

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1423

the simultaneous consideration of the analog parts in an
electronic system and possibly the mechanical parts as

well. So far, most advances in the area of codesign have

been made only in automation of the design of the digital

parts of a hardware/software system. Notably, the area of

cyber–physical systems (CPSs) has already moved in this

direction.

Subsequently, we also try to predict the biggest chal-

lenges of codesign techniques in order to cope with many
upcoming problems of exploding design complexity with a

special focus on the use and application of multicore pro-
cessing, and problems of reliability and fault tolerance aris-

ing from the imperfections of future nanoelectronic

devices and the postsilicon era. As a result, adaptivity of

future embedded systems to react on changes in the

environment and/or internal state of operation will be

required.
Nevertheless, the following predictions have to be

taken under consideration carefully as they reflect perso-

nal opinions of the author only.

A. Variations and Extensions of Codesign
Recently, a new buzzword called CPS [30], [85] has

brought a lot of attention to the embedded system commu-

nity. According to Wikipedia, Ba cyber-physical system
(CPS) is a system featuring a tight combination of, and

coordination between, the system’s computational and

physical elements. Today, a pre-cursor generation of cyber-

physical systems can be found in areas as diverse as aero-

space, automotive, chemical processes, civil infrastructure,

energy, healthcare, manufacturing, transportation, enter-

tainment, and consumer appliances. This generation is

often referred to as embedded systems. In embedded sys-
tems the emphasis tends to be more on the computational

elements, and less on an intense link between the compu-

tational and physical elements [112].[
With respect to the above definition of a CPS that

steers and controls physical processes by interacting with

its environment and communicating with other (sub)-

systems, some extensions of previous work on codesign

that take mainly the development of the digital parts into
account, or focusing just on a single-chip (SoC) solutions,

are of great interest and will be explained next.

1) Analog/Digital Codesign: When looking at the imple-

mentation of an electronic embedded system, it might also

be of interest to investigate the tradeoff where to place the

border between analog and digital signal processing, be-

cause today, analog circuits and digital circuits may be
integrated on a single die. In radio applications, for exam-

ple, it is common to implement the radio-frequency (RF)

parts in analog circuitry, and process the remaining parts

by digital circuitry and in software by digital signal pro-

cessors and microcontrollers. However, the analog parts

do not scale well. Due to this fact and due to the high

processing power of today’s microprocessors, the wireless

transmission community argues that the analog/digital
boundary has shifted much to software-defined radio.

Nevertheless, at least some Ph.D. dissertations have tried

to investigate the quest for the best partitioning of

functionality into analog and digital circuits systematically;

see, e.g., [86], including the placement of analog-to-digital

(A/D) converters and digital-to-analog (D/A) converters at

their boundaries, or the work by Wolff et al. [87].

2) Architecture/Compiler Codesign: Another facet of

hardware/software codesign and need for design space

exploration techniques has been recognized in the area of

architecture/compiler codesign [88]. Here, the idea is to

jointly develop the microarchitecture of a domain-specific

processor such as an application-specific instruction set pro-

cessor (ASIP) [89], [90] for a given domain of applications,

given by a set of applications (programs). By exploring the
joint design space of architecture variants (such as the

number of issue units, register file architecture, and

instruction set options) and compiler optimizations (such

as the order and type of intermediate and architecture-

specific code optimizations), the goal is to find the set of

Pareto-optimal settings in terms of processor architecture as

well as compilation flow. Of course, this might result in a

considerable effort of compiler retargeting. Nevertheless, for
certain processor platforms, such as customizable very

large instruction word (VLIW) processors, it was shown

that a considerable amount of design automation is

possible in order to optimize program execution latency

as well as generated program code and data footprints.

See, e.g., the work by Fischer et al. [88] or more recent

work by Leupers et al. [91] and O’Boyle et al. [92].

B. Controller/Scheduler Codesign
Also with respect to the design of CPSs, some recent

work looks at jointly developing the control application of

a plant with its typical objectives of stability, and energy

of control together with the often distributed digital

system implementation, which may be a network of

controllers communicating over a bus system. Obviously,

the scheduling of different control functions and the
communication delays may also have an impact on the

quality of control. Recent work considering these two

optimization problems jointly has been reported by

Samii et al. [93] and Schneider and Chakraborty [94],

just to give two examples. Apart from the joint design

space exploration of control algorithm and system

implementation, the cosimulation of the environment

(plant) and embedded system has become a focus of design
automation; see, e.g., [95].

C. Codesign for Dependability of Future
Nanoelectronic Systems

It has been shown that the double roof model of codesign

(Fig. 2) is just becoming ready and waterproof, and recog-

nized as a means to close the gap of design automation on the

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

1424 Proceedings of the IEEE | Vol. 100, May 13th, 2012

highest possible level, namely the design and exploration of
systems. Yet, we see another leakage at its fundaments that

demands renovation. According to technological roadmaps

of the silicon semiconductor industry, a big threat here is the

imperfection of future nanoelectronics we will experience in

the next decades. As soon as we reach technology sizes where

each transistor on a chip contains only a few dopant atoms,

the variability of transistor switching behavior becomes

severely larger. Also, effects of negative bias temperature
instability (NBTI) and electromigration will lead to a severe

degradation of expected lifetimes of such devices. Finally, the

correctness of data processing is threatened by the increased

likelihood of soft errors caused by particles. Here, one can see

that not only memories will be affected, but also logic and

wiring.

Inevitably, new techniques will have to be developed

on the base of the hardware side of the double roof model
to keep the dream of cross-level design automation alive.

But, what needs to be done here exactly? In our opinion,

this involves not only new modeling efforts of the imper-

fections of hardware at the transistor level but also new

methods to analyze and compensate for errors at this level.

Borkar [96] names these challenges as designing reliable

systems from unreliable components.

On the one hand, we believe that deterministic models will
have to be replaced and extended by stochastic models for the

proper analysis and cosimulation of device effects. We need

to work with the distributions of device behaviors and reason

about expected system behavior and performance numbers.

We also need to deal with time-variant behavioral models in

order to cope with wear and tear effects.

Inevitably, this will lead and stimulate also new research

directions in codesign in the following way. For example,
whereas we have to cope with aging hardware, software

obviously does not age. This opportunity might be exploited

by applying software redundancy measures such as spatial
redundancy by code replication or temporal redundancy by

recomputation to obtain a higher level of reliability of the

system. Also, in some applications, errors on the processed

data might be negligible to some degree, e.g., in image or

audio processing. In other areas such as (bank) transaction
processing, a plethora of more sophisticated error detection

and correction methods need to be applied in order to avoid

any corruption of data. The full potpourri of available coding
technology (e.g., error detecting and correcting codes) as well

as fault tolerance (e.g., dual and triple modular redundancy)

techniques may be applied here as a design space for

reliability-increasing and reliability-preserving techniques with

obvious tradeoffs between:
• error coverage;

• cost of error detection/correction;

• level of gained reliability.

The first works that look at reliability as a design con-

straint or an objective during design space exploration

have already been published; see, e.g., the early work of

Vargas et al. [97], GlaQ et al., [98], Bolchini et al. [99],

Kandemir et al. [100], and Atienza et al. [101]. Pop et al.
[102] investigate the effects of scheduling and voltage

scaling for the exploration of energy/reliability tradeoffs in

fault-tolerant time-triggered systems. On the software

side, Marwedel et al. also investigate whether it makes

sense to define special data type declarations in software

programming languages for instructing a compiler to

protect these variables against soft and other errors; see,

e.g., [103].
The need for dealing with dependability issues in an

embedded system design has been recognized in many

countries. For example, in Germany, the German Science

Foundation (DFG) has started to fund a priority program

called Dependable Embedded Systems for research in this

area in 2011 (see [104] and [105] for an overview) with J.

Henkel from the Karlsruhe Institute of Technology (KIT)

being the coordinator. As an another example, the National
Science Foundation (NSF) has established an expedition

called Variability-Aware Software for Efficient Computing with
Nanoscale Devices [106], also gathering about a dozen of

mostly multi-institutional collaborative projects across five

categories of research between the University of California

San Diego, University of California Los Angeles, University

of California Irvine, University of Illinois at Urbana-

Champaign, the University of Michigan, and Stanford
University.

In the next one or two decades, we dare to predict that

we will try to just fix the transistor levels of abstraction on

the hardware side of the double roof model, but leave the

way software as well as the system and the architecture are

designed unchanged as much as possible. Nevertheless, the

consideration of unreliability and aging of hardware will

require comprehensive use of remedies coming from all
abstraction levels including the logic level, the architecture

level, and software levels.

However, it is very difficult to predict what models of

computation and effects we will face in 50 years from now.

Moreover, we believe that in the next 100 years we will

definitely see the postsilicon era become a reality, 3-D
design become mature, and new principles such as carbon

nanotubes as well as single-electron transistor technolo-
gies or quantum computers demanding again a completely

new rethinking, remastering, or adding of new abstraction

levels into the double roof model.

D. Codesign of Runtime Adaptive Systems
A final challenge to codesign we foresee is also stimu-

lated to some degree by the expected imperfection of

future nanoelectronic devices. Obviously, electronic em-
bedded systems will require a certain degree of runtime
adaptivity in order to cope with unpredicted and unfore-

seen situations, the more they become connected and the

more they become cyber–physical.
In such scenarios of application, an electronic embed-

ded system might not be therefore optimally designed any

more when being designed statically. Here, we foresee that

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1425

the classical offline system optimization and design space
exploration will shift to the runtime more and more. This

opportunity is not only available through the adaptation of

software running on the platform, but also due to the ad-

vent of reconfigurable hardware technology such as FPGAs.

Today, FPGAs allow to prototype and implement complete

SoC designs including multiple processors available as

either programmable soft cores or hard macros integrated

into the FPGA. Tools for building hardware modules are
available to not only reconfigure the whole configuration

of an FPGA, but often any 1-D or 2-D partially reconfigurable
region on the array of reconfigurable cells; see, e.g., [107].

So, runtime adaptivity may be technically achieved on

both software and hardware sides opening the doors to

thinking about online techniques for hardware/software co-
design that run in the embedded system itself in order to

achieve a situation-aware optimization of the partitioning
of hardware and software. One of the first approaches

proposed here was by Stitt et al. [108]. In [109], the

results of a priority program on dynamically reconfigur-

able hardware that was funded between 2003 and 2009 in

Germany, are reported. In [110], to give an example, a

distributed online approach to hardware/software code-

sign for scenarios in the automotive domain was

presented by Streichert et al. There, the adaptation runs
in two phases. Upon detection of an error such as a link

transmission failure, new routes of messages are deter-

mined decentrally and instantiated. In case of a node

failure, software tasks are also migrated to other nodes.

This self-adaptive phase is called a repair phase. Finally,

in a phase of constant and error-free operation, the

system performs an optimization phase where, according

to a decentralized load distribution algorithm, the tasks
are assigned to ready nodes depending on and for

balancing their individual loads. On each node being an

FPGA, the local decision of whether to instantiate an

accepted task either as a hardware or a software node is

also taken at runtime. Although being quite visionary and

currently not ready for product integration due to ques-

tions of standardization and testing, we believe that the

future will go in this direction and that enough
processing power will be available in a system to perform

such runtime adaptations automatically, also in the many-

core era [111].

V. CONCLUSION

In this paper, we have tried to show that the application

and knowledge of hardware/software codesign techniques
is a must for all those who want to keep up with the

challenges of more and more complex electronic system

designs in the future. This does not only hold for SoC

designers, but also for software and hardware engineers

involved in the development of distributed systems such as

complex automotive networked systems, avionics, manu-

facturing systems, and embedded systems in general.

In this area, the tool-supported specification, model-
ing, partitioning, and synthesis of subsystems at the system

level is of utmost importance in order to be able to build

increasingly complex products with tight nonfunctional

constraints such as cost, performance, power, and also

temperature and reliability in a timely manner.

Our own experience in working with quite a few in-

dustrial developers of electronic embedded systems has

shown that after an initial hesitation to apply newest
methodologies such as virtual prototyping, cosimulation,

and design space exploration as well as cosynthesis, an

early introduction of codesign techniques has meanwhile

shown indispensable benefits for much better optimization

results due to an early tradeoff analysis and shorter time-

to-market frame due to concurrent development of hard-

ware and software.

Nevertheless, the available tool landscape and support
for codesign are still not mature in many aspects. In the

future, threats such as the imperfection of future transistor

technology, the complexity wall of codesign systems with

100–1000 processors [111] on a single chip that will be

available by 2020, and the challenges of systems requiring

runtime adaptivity with respect to dynamic requirements

will need to be tackled.

Mission Statements on the Future of Codesign: In the fol-

lowing, conclusions and predictions on future research

directions in codesign, again reflecting the individual opi-

nion of the author, are summarized.

• The Wall of Complexity: SoC technology will be

already dominated by 100–1000 core multipro-

cessing on a chip by 2020. Changes will affect the

way companies design embedded software and
new languages, and tool chains will need to emerge

in order to cope with this enormous complexity.

Development of concurrent software and exploi-

tation of parallelism will definitely find a renais-

sance; this time not for applications running in

computer centers and in high-performance com-

puting, but as part of low-cost embedded system

daily-life devices.
• The Wall of Heterogeneity: In order to cope with the

quest to also include the environment in the design

of future cyber–physical systems, the heterogene-

ity will definitely continue to grow as well in SoCs

as in distributed systems of systems. Here, the facets

of A/D, mechanical/electronic, and controller/

scheduler codesign have been mentioned as inter-

esting research directions.
• The Wall of Dependability: Also, as has been shown,

the correctness of future electronic embedded sys-

tems is definitely menaced by the imperfection of

future transistor technology. Codesign will be man-

datory to detect and compensate for such errors as

well as aging effects in the future. There is no doubt

that changes are required at the transistor level of

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

1426 Proceedings of the IEEE | Vol. 100, May 13th, 2012

the double roof model. However, we are afraid that

potentially also other levels of abstraction will be

infiltrated and changes required such as probabi-

listic logic, revolutionary new ways to code data,

and for computer arithmetics. This might also

happen due to postsilicon inventions requiring a
complete renovation of the codesign house.

• The Need for Self-Adaptivity: We do believe that not

only due to dependability reasons but also due to

the uncertainty of the environment and commu-

nication partners of complex interacting cyber–

physical systems, runtime adaptivity will be a must

for guaranteeing the efficiency of a system. Due to

the availability of reconfigurable hardware and
multicore processing, which in our view will also

take a more important role in the tool chain for

system simulation and evaluation, online codesign

techniques might become standard in the future.

• The Need for Cross-Layer Coverification: One huge

part of the design time according to Fig. 1 is already

spent on the verification, either in a simulative way

or using formal techniques. We believe that with
respect to the above threats, coverification [29]

will finally require an increasing proportion of the

design time in the future. Progress in ESL might

therefore diminish in case verification techniques

cannot cope with the modeling of errors and ways

to retrieve and correct them, or, even better, prove

that certain properties formulated as constraints

during synthesis will hold in the implementation
by construction. In our view, too little effort is

spent in this important area of joint coverification

of hardware and software. In the double roof

model (according to Fig. 2), the verification pro-

cess on one level of abstraction needs to prove that

an implementation (the structural view) indeed

satisfies the specification (behavioral view). A

textbook dedicated just to presenting which veri-
fication techniques exist today for software verifi-

cation as well as hardware verification and on

which level of the double roof model these may be

applied has been published in 2010 [29]. In this

textbook, the process of coverification is first

treated independently of the levels of software or

hardware and classified into the three fields of the

verification task (what will be verified and which

kind of proof will be carried out?), the verification
goal (what will be the expected output of the veri-

fication method, e.g., a negative or positive
answer?), and the verification methodology (e.g., a

simulative or a formal proof technique or a proto-

type implementation). According to this classifi-

cation, the book then describes which methods

currently exist and may be applied at each level of

the double roof model in order to verify that an

implementation satisfies the properties of a spe-

cification at each level. The discussed techniques
include techniques for equivalence checking as well

as functional and nonfunctional property checking.

The area of cross-layer coverification reveals, how-

ever, many unsolved problems that will require big

research efforts in the future.

Summary Generations of Codesign: We conclude this

paper with our historic view on four distinguished gener-
ations of codesign. These are summarized in Table 1.

Finally, it is also very fortunate to see from a researcher’s

point of view that many open and fundamental questions

will definitely appear and that these will stimulate and keep

our lives busy, hopefully for the next 100 years.4 h

Acknowledgment

The author would like to particularly thank the fol-

lowing companies that stimulated the research on

advances in new codesign technologies through funding

and evaluation: IBM for applying codesign during spe-
cification and for performance analysis of chip designs and

system architectures as well as during firmware and test

software development; Siemens Industrial and Healthcare

Sectors for design space exploration and system synthesis;

Intel Mobile Communications (IMC) for applying ESL

Table 1 Historic View at Four Generations of Codesign as Discussed in This Paper

4The following list of roughly 100 citations only represents a very
small sample of existing relevant work on such a broad field of research as
codesign. It is far from being complete in many areas, and several facets of
this research discipline were only presented here in an introductory way.

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1427

design for power modeling and evaluation of mobile
communication platforms; and AUDI and Daimler for

system-level simulation and analysis of timing of complex

ECU architecture designs in the automotive sector. The

author would also like to thank several experts in the

field for suggestions on how to improve a draft version of

this paper, in particular, to S. Chakraborty, P. Eles, S. Ha,

T. Mitra, and C. Haubelt, a former main developer of

SystemCoDesigner. Finally, he would also like to thank all
the members and researchers at the Chair for Hardware/

Software Co-Design for supportive criticism and suggestions

for improvements, in particular, to J. Falk, J. Gladigau,

M. GlaQ, F. Hannig, M. Streubühr, S. Wildermann, and

D. Ziener. Thanks also to the German Research Founda-

tion (DFG) for funding its Transregional Collaborative

Research Center SFB/TR89.

REF ERENCE S

[1] C. Haubelt, J. Teich, K. Richter, and R. Ernst,
BSystem design for flexibility,[in Proc. Conf.
Des. Autom. Test Eur., Washington, DC,
2002, pp. 854–861.

[2] C. U. Smith, G. A. Frank, and J. L. Cuadrado,
BAn architecture design and assessment
system for software/hardware codesign,[in
Proc. 22nd ACM/IEEE Des. Autom. Conf.,
1985, pp. 417–424.

[3] W. Wolf, BSpecial issue on hardware/
software codesign,[IEEE Des. Test
Comput., vol. 10, no. 3, p. 5, Sep. 1993.

[4] G. De Micheli, BExtending CAD tools
and techniques,[Computer, vol. 26, no. 1,
pp. 85–87, Jan. 1993.

[5] S. Prakash and A. C. Parker, BSynthesis
of application-specific heterogeneous
multiprocessor systems,[in Proc. 19th
Annu. Int. Symp. Comput. Archit., 1992,
p. 434.

[6] BCodes/CASHE 92,’’ Proc. 1st IFIP Int.
Workshop Hardware/Software Codesign,
1992.

[7] Embedded Systems Week. [Online].
Available: http://www.esweek.org

[8] R. K. Gupta and G. De Micheli,
BHardware-software cosynthesis for
digital systems,[IEEE Des. Test Comput.,
vol. 10, no. 3, pp. 29–41, Jul. 1993.

[9] R. Ernst, J. Henkel, and T. Benner,
BHardware-software cosynthesis for
microcontrollers,[IEEE Des. Test Comput.,
vol. 10, no. 4, pp. 64–75, Oct. 1993.

[10] C. Liem, F. Naçabal, C. Valderrama,
P. Paulin, and A. Jerraya, BSystem-on-a-chip
cosimulation and compilation,[IEEE Des.
Test Comput., vol. 14, no. 2, pp. 16–25,
Apr. 1997.

[11] V. Živojnovic and H. Meyr, BCompiled
HW/SW co-simulation,[in Proc. 33rd Annu.
Des. Autom. Conf., 1996, pp. 690–695.

[12] R. Ernst, BCodesign of embedded systems:
Status and trends,[IEEE Des. Test Comput.,
vol. 15, no. 2, pp. 45–54, Apr. 1998.

[13] J. Buck, S. Ha, E. A. Lee, and
D. G. Messerschmitt, BPtolemy: A
framework for simulating and prototyping
heterogeneous systems,[in Readings in
Hardware/Software Co-Design, G. De Micheli,
R. Ernst, and W. Wolf, Eds. Norwell, MA:
Kluwer, 2002, pp. 527–543.

[14] Y.-T. S. Li, S. Malik, and A. Wolfe,
BPerformance estimation of embedded
software with instruction cache modeling,[
in Readings in Hardware/Software Co-Design,
G. De Micheli, R. Ernst, and W. Wolf, Eds.
Norwell, MA: Kluwer, 2002, pp. 167–178.

[15] L. Thiele, S. Chakraborty, and M. Naedele,
BReal-time calculus for scheduling hard
real-time systems,[in Proc. Proc. Int. Symp.
Circuits Syst., 2000, pp. 101–104.

[16] R. Henia, A. Hamann, M. Jersak, R. Racu,
K. Richter, and R. Ernst, BSystem level
performance analysisVThe SymTA/S
approach,[Inst. Electr. Eng. Proc.VComput.

Digit. Tech., vol. 152, no. 2, pp. 148–166,
2005.

[17] T. Blickle, J. Teich, and L. Thiele,
BSystem-level synthesis using evolutionary
algorithms,[J. Des. Autom. Embedded
Syst., vol. 3, no. 1, pp. 23–58, Jan. 1998.

[18] J. Teich, T. Blickle, and L. Thiele,
BAn evolutionary approach to system-level
synthesis,[in Proc. 5th Int. Workshop
Hardware/Software Codesign, Braunschweig,
Germany, Mar. 1997, pp. 167–171.

[19] R. Goering, BPlatform-based design: A
choice, not a panacea,[EE Times, Sep. 2002.
[Online]. Available: http://www.eetimes.
com/electronics-news/4043754/Platform-
based-design-A-choice-not-a-panacea.

[20] K. Keutzer, S. Malik, S. Member,
A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli, BSystem-level
design: Orthogonalization of concerns
and platform-based design,[IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst.,
vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[21] A. Sangiovanni-Vincentelli and G. Martin,
BPlatform-based design and software design
methodology for embedded systems,[IEEE
Des. Test Comput., vol. 18, no. 6, pp. 23–33,
Nov. 2001.

[22] R. Marculescu, U. Y. Ogras, L.-S. Peh,
N. E. Jerger, and Y. Hoskote, BOutstanding
research problems in NOC design: System,
microarchitecture, and circuit perspectives,[
Trans. Comput.-Aided Des. Integr. Ciruits
Syst., vol. 28, no. 1, pp. 3–21, Jan. 2009.

[23] M. GlaQ, M. Lukasiewycz, C. Haubelt, and
J. Teich, BTowards scalable system-level
reliability analysis,[in Proc. ACM/EDAC/
IEEE Des. Autom. Conf., Anaheim, CA,
Jun. 2010, pp. 234–239.

[24] P. H. Chou, R. B. Ortega, and
G. Borriello, BThe Chinook hardware/
software co-synthesis system,[in Proc. 8th
Int. Symp. Syst. Synthesis, 1995, pp. 22–27.

[25] K. Van Rompaey, I. Bolsens, H. De Man,
and D. Verkest, BCoWareVA design
environment for heterogenous hardware/
software systems,[in Proc. Conf. Eur.
Des. Autom., Los Alamitos, CA, 1996,
pp. 252–257.

[26] W. Wolf, BA decade of hardware/software
codesign,[Computer, vol. 36, no. 4,
pp. 38–43, Apr. 2003.

[27] P. Marwedel, Embedded System Design.
New York: Springer-Verlag, 2006.

[28] J. Teich and C. Haubelt, Digitale
Hardware/Software-Systeme: Synthese und
Optimierung, 2nd ed. Berlin, Germany:
Springer-Verlag, 2007.

[29] C. Haubelt and J. Teich, Digitale
Hardware/Software-Systeme: Spezifikation
und Verifikation. Berlin, Germany:
Springer-Verlag, 2010.

[30] E. A. Lee and S. A. Seshia, Introduction
to Embedded SystemsVA Cyber-Physical
Systems Approach, 1st ed. Berkeley, CA,
USA: Lee and Seshia, 2010.

[31] AUTOSAR. [Online]. Available: http://www.
autosar.org

[32] J. Keinert, M. Streubühr, T. Schlichter,
J. Falk, J. Gladigau, C. Haubelt, J. Teich, and
M. Meredith, BSystemCoDesignerVAn
automatic ESL synthesis approach by design
space exploration and behavioral synthesis
for streaming applications,[ACM Trans.
Des. Autom. Electron. Syst., vol. 14, no. 1,
pp. 1–23, 2009.

[33] A. Sangiovanni-Vincentelli, BQuo Vadis
SLD: Reasoning about the trends and
challenges of system level design,[Proc.
IEEE, vol. 95, no. 3, pp. 467–506, Mar. 2007.

[34] G. Martin, BOverview of the MPSoC design
challenge,[in Proc. Des. Autom. Conf.,
San Francisco, CA, Jul. 2006, pp. 274–279.

[35] J. Teich, BEmbedded system synthesis
and optimization,[in Proc. Workshop Syst.
Des. Autom., Rathen, Germany, Mar. 2000,
pp. 9–22.

[36] D. D. Gajski and R. H. Kuhn, BNew
VLSI tools,[IEEE Comput., vol. 16, no. 12,
pp. 11–14, Dec. 1983.

[37] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and
S. Y.-L. Lin, High-Level SynthesisVIntroduction
to Chip and System Design. Boston, MA:
Kluwer, 1992.

[38] Forte Design Systems. [Online]. Available:
http://www.forteds.com

[39] NEC System Technologies, Ltd.,
CyberWorkBench. [Online]. Available:
http://www.necst.co.jp/product/cwb

[40] Cadence. [Online]. Available: http://www.
cadence.com/products/sd/silicon_compiler

[41] Mentor Graphics. [Online]. Available: http://
www.mentor.com/esl/catapult/overview

[42] D. Densmore, R. Passerone, and
A. Sangiovanni-Vincentelli, BA
platform-based taxonomy for ESL design,[
IEEE Des. Test Comput., vol. 23, no. 5,
pp. 359–374, Sep.–Oct. 2006.

[43] A. Gerstlauer, C. Haubelt, A. D. Pimentel,
T. P. Stefanov, D. D. Gajski, and J. Teich,
BElectronic system-level synthesis
methodologies,[Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 28, no. 10,
pp. 1517–1530, Oct. 2009.

[44] H. Nikolov, M. Thompson, T. Stefanov,
A. D. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, and E. F. Deprettere,
BDaedalus: Toward composable multimedia
MP-SoC design,[in Proc. ACM/IEEE
Int. Des. Autom. Conf., Jun. 2008,
pp. 574–579.

[45] M. Thompson, T. Stefanov, H. Nikolov,
A. D. Pimentel, C. Erbas, S. Polstra, and
E. F. Deprettere, BA framework for rapid
system-level exploration, synthesis, and
programming of multimedia MP-SoCs,[in
Proc. Int. Conf. Hardware/Software Codesign
Syst. Synthesis, 2007, pp. 9–14.

[46] H. Nikolov, T. Stefanov, and E. Deprettere,
BAutomated integration of dedicated
hardwired IP cores in heterogeneous
MPSoCs designed with ESPAM,[EURASIP

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

1428 Proceedings of the IEEE | Vol. 100, May 13th, 2012

J. Embedded Syst., vol. 2008, 2008, Article ID
726096.

[47] R. Dömer, A. Gerstlauer, J. Peng, D. Shin,
L. Cai, H. Yu, S. Abdi, and D. Gajski,
BSystem-on-chip environment: A
SpecC-based framework for heterogeneous
MPSoC design,[EURASIP J. Embedded
Syst., vol. 2008, no. 647953, p. 13, 2008.

[48] F. Balarin, Y. Watanabe, H. Hsieh,
L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, BMetropolis:
An integrated electronic system design
environment,[Computer, vol. 36, no. 4,
pp. 45–52, Apr. 2003.

[49] T. Kangas, P. Kukkala, H. Orsila, E. Salminen,
M. Hännikäinen, T. D. Hännikäinen,
J. Riihimäki, and K. Kuusilinna, BUML-based
multi-processor SoC design framework,[
ACM Trans. Embedded Comput. Syst., vol. 5,
no. 2, pp. 281–320, May 2006.

[50] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and
Y.-P. Joo, BPeaCE: A hardware-software
codesign environment of multimedia
embedded systems,[ACM Trans. Des. Autom.
Electron. Syst., vol. 12, no. 3, pp. 1–25, 2007.

[51] S. Kwon, Y. Kim, W.-C. Jeun, S. Ha, and
Y. Paek, BA retargetable parallel
programming framework for MPSoC,[
ACM Trans. Des. Autom. Electron. Syst.,
vol. 13, no. 3, pp. 39:1–39:18, 2008.

[52] E. A. Lee and A. Sangiovanni-Vincentelli,
BA Framework for Comparing Models of
Computation,[IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 17, no. 12,
pp. 1217–1229, Dec. 1998.

[53] H.-W. Park, H. Oh, and S. Ha,
BMultiprocessor SoC design methods
and tools,[IEEE Signal Process. Mag.,
vol. 26, no. 6, pp. 72–79, Nov. 2009.

[54] IEEE Standard VHDL Language Reference
Manual, IEEE, Piscataway, NJ.

[55] T. Fitzpatrick, A. Salz, D. Rich, and
S. Sutherland, System Verilog for
Verification. Secaucus, NJ:
Springer-Verlag, 2006.

[56] G. C. Buttazzo, Hard Real-Time Computing
Systems: Predictable Scheduling Algorithms
And Applications. Santa Clara, CA:
Springer-Verlag, 2004, ser. Real-Time
Systems.

[57] T. Grötker, S. Liao, G. Martin, and S. Swan,
System Design With SystemC. Norwell, MA:
Kluwer, 2002.

[58] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer,
and S. Zhao, SpecC: Specification Language
and Design Methodology. Norwell, MA:
Kluwer, 2000.

[59] A. Benveniste and G. Berry, BThe
synchronous approach to reactive and
real-time systems,[Proc. IEEE, vol. 79, no. 9,
pp. 1270–1282, Sep. 1991.

[60] P. Le Guernic, A. Benveniste, P. Bournai, and
T. Gautier, BSignal: A data flow-oriented
language for signal processing,[IEEE Trans.
Acoust. Speech Signal Process., vol. ASSP-34,
no. 2, pp. 362–374, 1986.

[61] N. Halbwachs, P. Caspi, P. Raymond, and
D. Pilaud, BThe synchronous data flow
programming language LUSTRE,[Proc.
IEEE, vol. 79, no. 9, pp. 1305–1320,
Sep. 1991.

[62] K. Schneider, BThe synchronous
programming language quartz,[Dept.
Comput. Sci., Univ. Kaiserslautern,
Kaiserslautern, Germany, Internal Rep. 375,
Dec. 2009.

[63] D. Baudisch, J. Brandt, and K. Schneider,
BMultithreaded code from synchronous
programs: Extracting independent threads

for OpenMP,[in Design, Automation and Test
in Europe (DATE). Dresden, Germany:
EDA Consortium, 2010, pp. 949–952.

[64] E. A. Lee and D. G. Messerschmitt,
BSynchronous data flow,[Proc. IEEE,
vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[65] G. Bilsen, M. Engels, R. Lauwereins, and
J. Peperstraete, BCyclo-static dataflow,[
IEEE Trans. Signal Process., vol. 44, no. 2,
pp. 397–408, Feb. 1996.

[66] J. Teich, E. Zitzler, and S. S. Bhattacharyya,
B3D exploration of software schedules
for DSP algorithms,[in Proc. 7th Int.
Workshop Hardware/Software Codesign,
1999, pp. 168–172.

[67] F. Hannig and J. Teich, BDesign space
exploration for massively parallel processor
arrays,[in Proc. 6th Int. Conf. Parallel
Comput. Technol., London, U.K., 2001,
pp. 51–65.

[68] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel,
BMultiobjective optimization and
evolutionary algorithms for the application
mapping problem in multiprocessor
system-on-chip design,[IEEE Trans. Evol.
Comput., vol. 10, no. 3, pp. 358–374,
Jun. 2006.

[69] E. Zitzler, M. Laumanns, and L. Thiele,
BSPEA2: Improving the strength Pareto
evolutionary algorithm for multiobjective
optimization,[in Proc. Evol. Methods Des.
Optim. Control, Barcelona, Spain, 2002,
pp. 19–26.

[70] K. Deb, A. Pratap, S. Agarwal, and
T. Meyarivan, BA fast and elitist
multiobjective genetic algorithm: NSGA-II,[
IEEE Trans. Evol. Comput., vol. 6, no. 2,
pp. 182–197, Apr. 2002.

[71] R. Wilhelm, J. Engblom, A. Ermedahl,
N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenström, BThe
worst-case execution time problem-overview
of methods and survey of tools,[ACM
Trans. Embedded Comput. Syst., vol. 7, no. 3,
pp. 36:1–36:53, 2008.

[72] K. Lahiri, A. Raghunathan, and S. Dey,
BDesign space exploration for optimizing
on-chip communication architectures,[
IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 23, no. 6, pp. 952–961,
Jun. 2004.

[73] F. Dumitrascu, I. Bacivarov, L. Pieralisi,
M. Bonaciu, and A. A. Jerraya, BFlexible
MPSoC platform with fast interconnect
exploration for optimal system performance
for a specific application,[in Proc. Int. Conf.
Des. Autom. Test Eur., 2006, pp. 166–171.

[74] S. Pasricha and N. Dutt, BA framework for
co-synthesis of memory and communication
architectures for MPSoC,[IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst.,
vol. 26, no. 3, pp. 408–420, Mar. 2007.

[75] M. Lukasiewycz, M. GlaQ, C. Haubelt, and
J. Teich, BEfficient symbolic multi-objective
design space exploration,[in Proc. 13th
Asia South Pacific Des. Autom. Conf., Seoul,
Korea, Jan. 2008, pp. 691–696.

[76] F. Reimann, M. GlaQ, C. Haubelt, M. Eberl,
and J. Teich, BImproving platform-based
system synthesis by satisfiability modulo
theories solving,[in Proc. 8th Int. Conf.
Hardware/Software Codesign Syst. Synthesis,
Scottsdale, AZ, Oct. 2010, pp. 135–144.

[77] F. Reimann, M. Lukasiewycz, M. GlaQ, and
J. Teich, BSymbolic system synthesis in the
presence of stringent real-time constraints,[
in Proc. ACM/EDAC/IEEE Des. Autom. Conf.,
San Diego, CA, Jun. 2011, pp. 393–398.

[78] S. Wildermann, F. Reimann, D. Ziener, and
J. Teich, BSymbolic design space exploration
for multi-mode reconfigurable systems,[in
Proc. Int. Conf. Hardware/Software Codesign
Syst. Synthesis, Oct. 2011, pp. 129–138.

[79] G. Kahn, BThe semantics of a simple
language for parallel programming,[in
Proc. IFIP Congr., 1974, pp. 471–475.

[80] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein,
R. Ernst, and J. Teich, BFunStateVAn
internal design representation for codesign,[
IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 9, no. 4, pp. 524–544,
Aug. 2001.

[81] C. Zebelein, J. Falk, C. Haubelt, and J. Teich,
BClassification of general data flow actors
into known models of computation,[in Proc.
6th ACM/IEEE Int. Conf. Formal Methods
Models Codesign, Anaheim, CA, Jun. 2008,
pp. 119–128.

[82] J. Falk, J. Keinert, C. Haubelt, J. Teich, and
S. Bhattacharyya, BA generalized static
data flow clustering algorithm for MPSoC
scheduling of multimedia applications,[in
Proc. Int. Conf. Embedded Software, Atlanta,
GA, Oct. 2008, pp. 189–198.

[83] XILINX, Embedded System Tools Reference
ManualVEmbedded Development Kit EDK
8.1ia, Oct. 2005.

[84] S. Roloff, F. Hannig, and J. Teich,
BApproximate time functional simulation
of resource-aware programming concepts
for heterogeneous MPSoCs,[in Proc. 17th
Asia South Pacific Des. Autom. Conf., 2012,
pp. 187–192.

[85] W. Wolf, BCyber-physical systems,[
IEEE Comput., vol. 42, no. 3, pp. 88–89,
Mar. 2009.

[86] F. Heuschen and K. Waldschmidt, BAnalog/
digital co-design,[in Proc. Int. Workshop
Distrib. Parallel Embedded Syst., Archit.
Des. Distrib. Embedded Syst., Deventer,
The Netherlands, 2001, pp. 23–32.

[87] F. G. Wolff, M. J. Knieser, D. J. Weyer, and
C. A. Papachristou, BUsing codesign
techniques to support analog functionality,[
in Proc. 7th Int. Workshop Hardware/Software
Codesign, 1999, pp. 79–84.

[88] D. Fischer, J. Teich, R. Weper, U. Kastens,
and M. Thies, BDesign space characterization
for architecture/compiler co-exploration,[in
Proc. Int. Conf. Compilers Archit. Synthesis
Embedded Syst., 2001, pp. 108–115.

[89] K. Atasu, L. Pozzi, and P. Ienne, BAutomatic
application-specific instruction-set
extensions under microarchitectural
constraints,[in Proc. 40th Annu. Des. Autom.
Conf., 2003, pp. 256–261.

[90] P. Yu and T. Mitra, BCharacterizing
embedded applications for instruction-set
extensible processors,[in Proc. Des. Autom.
Conf., 2004, pp. 723–728.

[91] O. Wahlen, T. Glökler, A. Nohl,
A. Hoffmann, R. Leupers, and H. Meyr,
BApplication specific compiler/architecture
codesign: A case study,[in Proc. Joint
Conf. Lang. Compilers Tools Embedded Syst.,
Software Compilers Embedded Syst., 2002,
pp. 185–193.

[92] C. Dubach, T. M. Jones, and M. F. O’Boyle,
BExploring and predicting the architecture/
optimising compiler co-design space,[in
Proc. Int. Conf. Compilers Archit. Synthesis
Embedded Syst., 2008, pp. 31–40.

[93] S. Samii, A. Cervin, P. Eles, and Z. Peng,
BIntegrated scheduling and synthesis
of control applications on distributed
embedded systems,[in Proc. Conf. Des.
Autom. Test Eur., Leuven, Belgium, 2009,
pp. 57–62.

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1429

[94] D. Goswami, R. Schneider, and
S. Chakraborty, BCo-design of cyber-physical
systems via controllers with flexible delay
constraints,[in Proc. 16th Asia South Pacific
Des. Autom. Conf., Yokohama, Japan, 2011,
pp. 225–230.

[95] N. Mühleis, M. GlaQ, L. Zhang, and J. Teich,
BA co-simulation approach for control
performance analysis during design space
exploration of cyber-physical systems,[
SIGBED Rev., vol. 8, pp. 23–26, Jun. 2011.

[96] S. Borkar, BDesigning reliable systems
from unreliable components: The challenges
of transistor variability and degradation,[
IEEE Micro, vol. 25, no. 6, pp. 10–16,
Nov. 2005.

[97] F. Vargas, E. Bezerra, L. Wulff, and
D. Barros, Jr., BOptimizing HW/SW codesign
towards reliability for critical-application
systems,[in Proc. 7th Asian Test Symp.,
Washington, DC, 1998, p. 52.

[98] M. GlaQ, M. Lukasiewycz, F. Reimann,
C. Haubelt, and J. Teich, BSymbolic system
level reliability analysis,[in Proc. Int. Conf.
Comput.-Aided Des., San Jose, CA, Nov. 2010,
pp. 185–189.

[99] C. Bolchini, L. Pomante, F. Salice, and
D. Sciuto, BReliability properties assessment
at system level: A co-design framework,[
J. Electron. Test., vol. 18, pp. 351–356,
Jun. 2002.

[100] S. Tosun, N. Mansouri, E. Arvas,
M. T. Kandemir, Y. Xie, and W.-L. Hung,
BReliability-centric hardware/software

co-design,[in Proc. Int. Symp. Quality
Electron. Des., 2005, pp. 375–380.

[101] D. Atienza, G. De Micheli, L. Benini,
J. L. Ayala, P. G. Del Valle, M. DeBole, and
V. Narayanan, BReliability-aware design
for nanometer-scale devices,[in Proc. Asia
South Pacific Des. Autom. Conf., 2008,
pp. 549–554.

[102] P. Pop, K. H. Poulsen, V. Izosimov, and
P. Eles, BScheduling and voltage scaling for
energy/reliability trade-offs in fault-tolerant
time-triggered embedded systems,[in
Proc. 5th IEEE/ACM Int. Conf. Hardware/
Software Codesign Syst. Synthesis, 2007,
pp. 233–238.

[103] M. Engel, F. Schmoll, A. Heinig, and
P. Marwedel, BUnreliable yet
usefulVReliability annotations for data
in cyber-physical systems,[in Proc. Workshop
Software Lang. Eng. Cyber-Phys. Syst., Berlin,
Germany, Oct. 2011.

[104] Dependable Embedded Systems. [Online].
Available: http://spp1500.itec.kit.edu

[105] J. Henkel, L. Bauer, J. Becker, O. Bringmann,
U. Brinkschulte, S. Chakraborty, M. Engel,
R. Ernst, H. Härtig, L. Hedrich,
A. Herkersdorf, R. Kapitza, D. Lohmann,
P. Marwedel, M. Platzner, W. Rosenstiel,
U. Schlichtmann, O. Spinczyk, M. Tahoori,
J. Teich, N. Wehn, and H.-J. Wunderlich,
BDesign and architectures for dependable
embedded systems,[in Proc. 7th IEEE/ACM/
IFIP Int. Conf. Hardware/Softw. Codes. Syst.
Synth., Taipei, Taiwan, Oct. 2011, pp. 69–78.

[106] [Online]. Available: http://www.
variability.org

[107] M. Majer, J. Teich, A. Ahmadinia, and
C. Bobda, BThe Erlangen Slot Machine:
A dynamically reconfigurable FPGA-based
computer,[J. VLSI Signal Process. Syst.,
vol. 47, pp. 15–31, Apr. 2007.

[108] G. Stitt, R. Lysecky, and F. Vahid, BDynamic
hardware/software partitioning: A first
approach,[in Proc. 40th Annu. Des. Autom.
Conf., 2003, pp. 250–255.

[109] M. Platzner, J. Teich, and N. Wehn, Eds.,
Dynamically Reconfigurable SystemsV
Architectures, Design Methods and
Applications. New York: Springer-Verlag,
2010.

[110] C. Haubelt, D. Koch, F. Reimann,
T. Streichert, and J. Teich,
BReCoNetsVDesign methodology for
embedded systems consisting of small
networks of reconfigurable nodes and
connections,[in Dynamically Reconfigurable
Systems. New York: Springer-Verlag, 2010,
pp. 223–243.

[111] J. Teich, J. Henkel, A. Herkersdorf,
D. Schmitt-Landsiedel,
W. Schröder-Preikschat, and G. Snelting,
BInvasive computing: An overview,[in
Multiprocessor System-on-ChipVHardware
Design and Tool Integration, M. Hübner and
J. Becker, Eds. Berlin, Germany:
Springer-Verlag, 2011, pp. 241–268.

[112] [Online]. Available: http://en.wikipedia.org/
wiki/Cyber-physical_system

ABOUT THE AUT HOR

Jürgen Teich (Senior Member, IEEE) received the

M.S. degree (Dipl.-Ing.; with honors) from the

University of Kaiserslautern, Kaiserslautern,

Germany, in 1989 and the Ph.D. degree (summa

cum laude) from the University of Saarland,

Saarbruecken, Germany, in 1993. His Ph.D. disser-

tation entitled BA compiler for application-specific

processor arrays[summarizes his work on ex-

tending techniques for mapping computation

intensive algorithms onto dedicated very large-

scale integration (VLSI) processor arrays.

In 1994, he joined the DSP design group of Prof. E. A. Lee and

D. G. Messerschmitt in the Department of Electrical Engineering and

Computer Sciences (EECS), University of California at Berkeley, Berkeley,

where he was working in the Ptolemy project (PostDoc). From 1995 to

1998, he held a position at the Institute of Computer Engineering and

Communications Networks Laboratory (TIK), ETH Zurich, Switzerland,

finishing his Habilitation entitled BSynthesis and optimization of digital

hardware/software systems[in 1996. From 1998 to 2002, he was Full

Professor in the Electrical Engineering and Information Technology

Department, University of Paderborn, Paderborn, Germany, holding a

chair in Computer Engineering. Since 2003, he has been Full Professor in

the Department of Computer Science, University of Erlangen-Nuremberg,

Erlangen, Germany, holding a chair in Hardware/Software Co-Design. He

is an author of two textbooks on codesign edited by Springer in 2007 [28]

and 2010 [29], respectively. He is involved in many interdisciplinary

national basic research projects as well as industrial projects. Currently,

he is supervising more than 30 Ph.D. students. His research interests are

massiveparallelism, embedded systems, codesign, and computer architecture.

Dr. Teich has been a member of multiple program committees of well-

known conferences and workshops. Since 2004, he has also been an

elected reviewer for the German Research Foundation (DFG) for the area

of Computer Architecture and Embedded Systems. In 2011, he was

elected member of the Academia Europaea. Since 2010, he has also been

the coordinator of the Transregional Research Center 89 on Invasive

Computing funded by the DFG.

Teich: Hardware/Software Codesign: The Past, the Present, and Predicting the Future

1430 Proceedings of the IEEE | Vol. 100, May 13th, 2012

