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8. Exception Handling
This chapter discusses how to write programs to handle exceptions in the Nios® II 
processor architecture. Emphasis is placed on how to process hardware interrupt 
requests by registering a user-defined interrupt service routine (ISR) with the 
hardware abstraction layer (HAL). This information applies to embedded software 
projects created with the Nios II Software Build Tools (SBT), either in Eclipse™ or on 
the command line.

This chapter contains the following sections: 

■ “Nios II Exception Handling Overview” on page 8–1

■ “Nios II Interrupt Service Routines” on page 8–7

■ “Improving Nios II ISR Performance” on page 8–18

■ “Debugging Nios II ISRs” on page 8–25

■ “HAL Exception Handling System Implementation” on page 8–26

■ “The Nios II Instruction-Related Exception Handler” on page 8–33

f For low-level details about handling exceptions and hardware interrupts on the 
Nios II architecture, refer to the Programming Model chapter of the Nios II Processor 
Reference Handbook.

Nios II Exception Handling Overview
The Nios II processor provides the following exception types:

■ Hardware interrupts

■ Software exceptions, which fall into the following categories:

■ Unimplemented instructions

■ Software traps

■ Miscellaneous exceptions

The Nios II processor offers two distinct approaches to handling hardware interrupts:

■ The internal interrupt controller (IIC)

■ The external interrupt controller (EIC) interface

The interrupt controllers are discussed in detail in “Interrupt Controllers” on 
page 8–3.
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Exception Handling Terminology
The following list of HAL terms outlines basic exception handling concepts:

■ Application context—The status of the Nios II processor and the HAL during 
normal program execution, outside of exception funnels and handlers.

■ Context switch—The process of saving the Nios II processor’s registers on a 
software exception or hardware interrupt, and restoring them on return from the 
exception handling routine or ISR.

■ Exception—A transfer of control away from a program’s normal flow of execution, 
caused by an event, either internal or external to the processor, which requires 
immediate attention. Exceptions include software exceptions and hardware 
interrupts.

■ Exception context—The status of the Nios II processor and the HAL after a 
software exception or hardware interrupt, when funnel code, a software exception 
handler, or an ISR is executing.

■ Exception handling system—The complete system of software routines that 
service all exceptions, including hardware interrupts, and pass control to software 
exception handlers and ISRs as necessary.

■ Exception (or interrupt) latency—The time elapsed between the event that causes 
the exception (such as an unimplemented instruction or interrupt request) and the 
execution of the first instruction at the exception (or interrupt vector) address. 

■ Exception (or interrupt) response time—The time elapsed between the event that 
causes the exception and the execution of the handler.

■ Exception overhead—Additional processing required to service a software 
exception or hardware interrupt, including HAL-specific processing and 
RTOS-specific processing if applicable. 

■ Funnel code—HAL-provided code that sets up the correct processor environment 
for an exception-specific handler, such as an ISR. 

■ Handler—Code specific to the exception type. The handler code is distinct from 
the funnel code, which takes care of general exception overhead tasks.

■ Hardware interrupt—An exception caused by an explicit hardware request signal 
from an external device. A hardware interrupt diverts the processor’s execution 
flow to a ISR, to ensure that a hardware condition is handled in a timely manner.

■ Implementation-dependent instruction—A Nios II processor instruction that is not 
supported on all implementations of the Nios II core. For example, the mul and div 
instructions are implementation-dependent, because they are not supported on 
the Nios II/e core.

■ Interrupt—Hardware interrupt.

■ Interrupt controller—Hardware enabling the Nios II processor to respond to an 
interrupt by transferring control to an ISR.

■ Interrupt request (IRQ)—Hardware interrupt.

■ Interrupt service routine (ISR)—A software routine that handles an individual 
hardware interrupt.
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■ Invalid instruction—An instruction that is not defined for any implementation of 
the Nios II processor.

■ Maskable exceptions—Exceptions that can be disabled with the status.PIE flag, 
including internal hardware interrupts, maskable external hardware interrupts, 
and software exceptions, but not including nonmaskable external interrupts.

■ Maximum disabled time—The maximum amount of continuous time that the 
system spends with maskable exceptions disabled.

■ Maximum masked time—The maximum amount of continuous time that the 
system spends with a single interrupt masked.

■ Miscellaneous exception—A software exception which is neither an 
unimplemented instruction nor a trap instruction. For further information, refer 
to “Miscellaneous Exceptions” on page 8–32.

■ Nested interrupts—See pre-emption.

■ Pre-emption—The process of a high-priority interrupt taking control when a 
lower-priority ISR is already running. Also: nested interrupts.

■ Software exception—An exception caused by a software condition; that is, any 
exception other than a hardware interrupt. This includes unimplemented 
instructions and trap instructions.

■ Unimplemented instruction—An implementation-dependent instruction that is 
not supported on the particular Nios II core implementation that is in your system. 
For example, in the Nios II/e core, mul and div are unimplemented.

■ Worst-case exception (or interrupt) latency—The value of the exception (or 
interrupt) latency, including the maximum disabled time or maximum masked 
time. Including the maximum disabled or masked time accounts for the case when 
the exception (or interrupt) occurs at the beginning of the masked or disabled 
time.

Interrupt Controllers
The configuration of Nios II exception processing depends on the type of hardware 
interrupt controller. You select the hardware interrupt controller when you instantiate 
the Nios II processor in the system integration tool, Qsys or SOPC Builder. This 
section describes the kinds of interrupt controllers available with the Nios II 
processor.

f For details about selecting a hardware interrupt controller, refer to the Instantiating the 
Nios II Processor chapter of the Nios II Processor Reference Handbook. 

Internal Interrupt Concepts
With the IIC, Nios II exception handling is implemented in classic RISC fashion. All 
exception types, including hardware interrupts, are dispatched through a single 
top-level exception funnel. This means that all exceptions (hardware and software) 
are handled by code residing at a single location, the exception address.
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The IIC is a simple, nonvectored hardware interrupt controller. Upon receipt of an 
interrupt request, the IIC transfers control to the general exception address. The 
hardware indicates which IRQ is currently asserted, and allows software to mask 
individual interrupts.

With the IIC, the HAL interrupt funnel identifies the hardware interrupt cause in 
software, and dispatches the registered ISR.

The IIC is available in all revisions of the Nios II processor.

External Interrupt Concepts
The EIC interface enables the Nios II processor to work with a separate external 
interrupt controller component. An EIC can be a custom component that you provide. 
Altera provides an example of an EIC, the vectored interrupt controller (VIC).

f For details about the VIC, refer to the Vectored Interrupt Controller Core chapter in the 
Embedded Peripherals IP User Guide.

With an EIC, hardware interrupts are handled separately from software exceptions. 
Hardware interrupts have separate vectors and funnels. Each interrupt can have its 
own handler, or handlers can be shared. Software exception handling is the same as 
with the IIC.

The EIC interface provides extensive capabilities for customizing your interrupt 
hardware. You can design, connect and configure an interrupt controller that is 
optimal for your application. 

When an external hardware interrupt occurs, the Nios II processor transfers control to 
an individual vector address, which can be unique for each interrupt. The HAL 
provides the following services:

■ Registering ISRs

■ Setting up the vector table

■ Transferring control from the vector table to your ISR

An EIC can be used with shadow register sets. A shadow register set is a complete 
alternate set of Nios II general-purpose registers, which can be used to maintain a 
separate runtime context for an ISR.

An EIC provides the following information about each hardware interrupt:

Requested Handler Address

The requested handler address (RHA) specifies the address of the funnel associated 
with the hardware interrupt. The availability of an RHA for each interrupt allows the 
Nios II processor to jump directly to the interrupt funnel specific to the interrupting 
device, reducing interrupt latency. 

Requested Interrupt Level

The Nios II processor uses the requested interrupt level (RIL) to prioritize the 
hardware interrupt request versus any interrupt it is currently processing. While 
handling an interrupt, the Nios II processor normally only takes higher-level 
interrupts.
Nios II Software Developer’s Handbook May 2011 Altera Corporation
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Requested Register Set

If shadow register sets are implemented on the Nios II core, an EIC specifies a 
requested register set (RRS) when it asserts an interrupt request. When the Nios II 
processor takes the hardware interrupt, the processor switches to the requested 
register set. When an interrupt has a dedicated register set, the ISR avoids the 
overhead of saving registers for a context switch.

Multiple hardware interrupts can be configured to share a register set. However, at 
run time, the Nios II processor does not allow pre-emption between interrupts 
assigned to the same register set unless this feature is specifically enabled. In this case, 
the ISRs must be written so as to avoid register corruption.

f Refer to the Vectored Interrupt Controller Core chapter in the Embedded Peripherals IP 
User Guide for an example of a driver that manages pre-emption within a register set.

Requested NMI Mode

If the interrupt is configured as a nonmaskable interrupt (NMI), the EIC asserts 
requested NMI (RNMI). Any hardware interrupt can be nonmaskable, depending on 
the configuration of the EIC. An NMI typically signals a critical system event 
requiring immediate handling, to ensure either system stability or deterministic 
real-time performance. 

Shadow Register Sets

Although shadow register sets can be implemented independently of the EIC 
interface, typically the two features are used together. Combining shadow register 
sets with an appropriate EIC, you can minimize or eliminate the context switch 
overhead for critical hardware interrupts.

Latency and Response Time
Exception (interrupt) latency, as defined in the previous section, is the time required 
for the hardware to respond to an exception. Response time, in contrast, is the time 
required to begin executing code specific to the exception cause, such as a particular 
ISR. Response time includes latency plus the time required for the HAL to carry out 
some or all of the following overhead tasks:

■ Context save—Saving registers on the stack

■ RTOS context switch—Calling context-switch function(s) if an RTOS is 
implemented

■ Dispatch handler—Determining the cause of the exception, and transferring 
control to a specific handler or ISR

If you are concerned with system performance, response time is the more important 
than latency, because it reflects the time elapsed between the physical event and the 
system’s specific response to that event.

This section discusses the available options for exception handling, and their impact 
on latency and response time.
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Internal or External Interrupt Controller
The Nios II IIC is nonvectored, requiring the processor to dispatch ISRs with a 
software routine. An EIC, by contrast, can be vectored. With a vectored EIC, such as 
the Altera® VIC, ISR dispatch is managed by hardware, eliminating the processing 
time required for ISR dispatch, and substantially reducing hardware interrupt 
response time.

An EIC has no impact on software exception latency or response time.

Shadow Register Sets
In conjunction with an EIC, shadow register sets speed up hardware interrupt 
response by making it unnecessary to save registers on the stack. This feature has no 
impact on interrupt latency, but significantly reduces interrupt response time.

Shadow register sets have no impact on software exception response time.

How the Hardware Works
The Nios II processor can respond to exceptions including software exceptions and 
hardware interrupts. When the Nios II processor responds to an exception, it 
performs the following tasks:

1. Saves the status register in estatus. This means that if hardware interrupts are 
enabled, the PIE bit of estatus is set.

2. Disables hardware interrupts.

3. Saves the next execution address in ea (r29).

4. Transfers control to the appropriate exception address, as follows:

■ Software exception or internal hardware interrupt—Nios II processor general 
exception address

■ External hardware interrupt—Device-specific interrupt address

All Nios II exception types are precise. This means that after an exception is handled, 
the Nios II processor can re-execute the instruction that caused the exception. 

The Nios II processor always re-executes the instruction after the software exception 
handler or ISR has completed, when the exception processing system returns to the 
application context. 

Several exception types, such as the advanced exceptions, are optional in the Nios II 
processor core. The presence of these exception types depends on how the hardware 
designer configures the Nios II core at the time of hardware generation.

The processor’s response to hardware interrupts depends on which interrupt 
controller is implemented. The following sections describe the hardware behavior 
with each interrupt controller.

f For details about the Nios II processor exception controller and hardware interrupt 
controllers, including a list of optional exception types, refer to the Processor 
Architecture chapter of the Nios II Processor Reference Handbook.
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How the Internal Interrupt Controller Works
With the IIC, 32 independent hardware interrupt signals are available. These interrupt 
signals allow software to prioritize interrupts, although the interrupt signals 
themselves have no inherent priority.

1 With the IIC, Nios II exceptions are not vectored. Therefore, the same exception 
address receives control for all types of exceptions. The general exception funnel at 
that address must determine the type of software exception or hardware interrupt.

How an External Interrupt Controller Works
With an EIC, the Nios II processor supports an arbitrary number of independent 
hardware interrupt signals. Interrupts are typically vectored, with interrupt priority 
levels associated in hardware. Vectoring allows the Nios II processor to transfer 
control directly to each ISR. Hardware interrupt levels allow the most critical 
interrupts to pre-empt lower-priority interrupts. Because both of these features are 
implemented in hardware, the system can handle an interrupt without executing 
general exception funnel code.

f The details of hardware interrupt vectoring and prioritization are specific to the EIC 
implementation. To see an example of an EIC implementation, refer to the Vectored 
Interrupt Controller Core chapter in the Embedded Peripherals IP User Guide.

1 The HAL supports external interrupt controllers only if they are connected in one of 
the following ways:

■ Directly to the Nios II EIC interface

■ Through the daisy-chain port on another EIC

Nios II Interrupt Service Routines
Software often communicates with peripheral devices using hardware interrupts. 
When a peripheral asserts its IRQ, it diverts the processor’s normal execution flow. 
When such an interrupt occurs, an appropriate ISR must handle this interrupt and 
return the processor to its pre-interrupt state on completion. 

When you create a board support package (BSP) project, the build tools include all 
needed device drivers. You do not need to write HAL ISRs unless you are interfacing 
to a custom peripheral. For reference purposes, this section describes the framework 
provided by HAL BSPs for handling hardware interrupts. 

For examples of HAL ISRs, refer to existing handlers for Altera components. 

f For more details about the Altera-provided HAL handlers, refer to the Developing 
Programs Using the Hardware Abstraction Layer chapter of the Nios II Software 
Developer’s Handbook.

HAL APIs for Hardware Interrupts
The HAL provides an enhanced application program interface (API) for writing, 
registering and managing ISRs. This API is compatible with both internal and external 
hardware interrupt controllers.
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Altera also supports a legacy hardware interrupt API. This API supports only the IIC. 
If you have a custom driver written prior to Nios II version 9.1, it uses the legacy API.

Both interrupt APIs include the following types of routines:

■ Routines to be called by a device driver to register an ISR

■ Routines to be called by an ISR to manage its environment

■ Routines to be called by BSP or application code to control ISR behavior

Both interrupt APIs support the following types of BSPs:

■ HAL BSP without an RTOS

■ HAL-based RTOS BSP, such as a MicroC/OS-II BSP

1 The legacy API is deprecated. Write new drivers using the enhanced API, even if they 
are only intended to support the IIC. Drivers for devices supporting an EIC must use 
the enhanced API. Existing legacy drivers continue to be supported until further 
notice. Make plans to port them to the enhanced API. 

When an EIC is present, the controller’s driver provides driver settings for the BSP, 
which can be used to configure the driver. The number and types of the settings 
depends on the EIC implementation and the number of EICs present. 

f For an example of EIC driver settings, refer to the Vectored Interrupt Controller Core 
chapter in the Embedded Peripherals IP User Guide.

Selecting an Interrupt API
When the SBT creates a BSP, it determines whether the BSP must implement the 
legacy interrupt API. Each driver that supports the enhanced API publishes this 
capability to the SBT through its <driver name>_sw.tcl file. The BSP implements the 
enhanced API if all drivers support it. It implements the legacy API only if required 
by the drivers.

In determining the interrupt API to use, the SBT ignores any devices whose interrupts 
are not connected to the Nios II processor associated with the BSP. 

A driver can publish its interrupt API support by way of a software property. The 
driver’s <driver name>_sw.tcl file uses the set_sw_property command to set 
supported_interrupt_apis to either legacy_interrupt_api, 
enhanced_interrupt_api, or both. 

Drivers supporting the enhanced API always publish that support. If 
supported_interrupt_apis is undefined, the SBT assumes that the driver only 
supports the legacy API.

Starting in 9.1, all Altera device drivers support both APIs. These drivers can be used 
in a BSP along with legacy drivers. The SBT determines whether the legacy API is 
required, and implements it only if it is required. If there are no drivers requiring the 
legacy API, the BSP implements the enhanced API.

A driver can be written to support only the enhanced API. However, you cannot 
combine such a driver with legacy drivers.
Nios II Software Developer’s Handbook May 2011 Altera Corporation
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f For details about writing a driver to support both APIs, refer to “Supporting Multiple 
Interrupt APIs” on page 8–11.

The Enhanced HAL Interrupt API
The enhanced HAL interrupt API defines the functions listed in Table 8–1 to manage 
hardware interrupt processing.

The functions in Table 8–1 work for both internal and external interrupt controllers. 

f For details about the enhanced interrupt API functions, refer to the HAL API Reference 
chapter of the Nios II Software Developer’s Handbook.

Using the enhanced HAL API to implement ISRs requires that you perform the 
following steps:

1. Write your ISR that handles hardware interrupts for a specific device. 

2. Ensure that your program registers the ISR with the HAL by calling the 
alt_ic_isr_register() function. alt_ic_isr_register() enables hardware 
interrupts for you.

The SBT inserts the following symbol definitions in system.h, indicating the 
configuration of the processor’s interrupt-related hardware options:

■ NIOS2_EIC_PRESENT—If defined, indicates that one or more EICs are present

■ NIOS2_NUM_OF_SHADOW_REG_SETS—Indicates how many shadow register sets are 
present. The maximum value is 63. If there are no shadow register sets, the value is 
0.

The External Interrupt Controller Driver

To be compliant with the HAL enhanced interrupt API, the driver for an EIC must 
support the functions listed under “The Enhanced HAL Interrupt API”. In addition, it 
can provide functions to support any special hardware features. For examples, refer to 
“Using the HAL Interrupt API with the VIC”.

Table 8–1. Enhanced HAL Interrupt API Functions

Function Name Implemented By

alt_ic_isr_register() Interrupt controller driver (1)

alt_ic_irq_enable() Interrupt controller driver (1)

alt_ic_irq_disable() Interrupt controller driver (1)

alt_ic_irq_enabled() Interrupt controller driver (1)

alt_irq_disable_all() HAL

alt_irq_enable_all() HAL

alt_irq_enabled() HAL

Note to Table 8–1:

(1) If the system is based on an EIC, these functions must be implemented by the EIC driver. If the system is based in 
the IIC, the functions are implemented by the HAL. For details about each function, refer to the HAL API Reference 
chapter of the Nios II Software Developer’s Handbook.
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Using the HAL Interrupt API with the VIC

The Altera driver for the VIC component supports the HAL enhanced interrupt API.

The VIC driver provides support for multiple, daisy-chained VIC devices. It also 
includes support for shadow register sets. A BSP driver setting allows you to enable 
automatic pre-emption (fast nested interrupts). Automatic pre-emption means that 
the Nios II processor leaves maskable exceptions enabled when accepting a hardware 
interrupt.

1 For more information about fast nested interrupts, refer to “Exception Processing” in 
the Programming Model chapter of the Nios II Processor Reference Handbook.

The VIC device driver also provides the following device-specific functions:

■ int alt_vic_sw_interrupt_set(alt_u32 ic_id, alt_u32 irq);

■ int alt_vic_sw_interrupt_clear(alt_u32 ic_id, alt_u32 irq);

■ alt_u32 alt_vic_sw_interrupt_status(alt_u32 ic_id, alt_u32 irq);

■ int alt_vic_irq_set_level(alt_u32 ic_id, alt_u32 irq, alt_u32 level);

f For a detailed discussion of the VIC device-specific driver routines, refer to the 
Vectored Interrupt Controller Core chapter in the Embedded Peripherals IP User Guide.

The EIC driver controls where hardware interrupt vector tables are located. For 
example, the Altera VIC driver locates the vector table in the .text section by default, 
but allows you to position the vector table in a different section with a driver setting.

1 The memory in which you place the vector table must be connected to both 
instruction and data master ports on the Nios II processor.

The Legacy HAL Interrupt API
The legacy HAL interrupt API defines the following functions to manage hardware 
interrupt processing:

■ alt_irq_register()

■ alt_irq_disable()

■ alt_irq_enable()

■ alt_irq_disable_all()

■ alt_irq_enable_all()

■ alt_irq_interruptible()

■ alt_irq_non_interruptible()

■ alt_irq_enabled()

f For details about these functions, refer to the HAL API Reference chapter of the Nios II 
Software Developer’s Handbook.

Legacy drivers do not define the supported_interrupt_apis property. The absence of 
this property indicates to the SBT that they require the legacy interrupt API.
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Using the legacy HAL API to implement ISRs requires that you perform the following 
steps:

1. Write your ISR that handles hardware interrupts for a specific device. 

2. Ensure that your program registers the ISR with the HAL by calling the 
alt_irq_register() function. alt_irq_register() enables hardware interrupts 
for you, by calling alt_irq_enable_all().

Supporting Multiple Interrupt APIs
When you write or update a custom device driver, Altera recommends that you write 
it in one of two ways:

■ Write it to support the enhanced HAL interrupt API—Write the driver this way if 
you intend to use it only in combination with other drivers supporting the 
enhanced API.

■ Write it to support both the enhanced and the legacy API—Write the driver this 
way if you need to use it in combination with legacy drivers supporting only the 
legacy API. 

1 Altera recommends using the enhanced API even if your Nios II processor 
implements the IIC. The enhanced API supports both types of interrupt controller, 
and the legacy API is deprecated.

When the SBT selects the interrupt API, it defines one of the following symbols in 
system.h, to identify which interrupt API is available:

■ ALT_ENHANCED_INTERRUPT_API_PRESENT—Defined if the enhanced API is 
implemented 

■ ALT_LEGACY_INTERRUPT_API_PRESENT—Defined if the legacy API is implemented 

In your driver code, use these symbols to determine which API calls to make.

To support both APIs, your driver must publish its interrupt API support by way of a 
software property. In your driver’s <driver name>_sw.tcl file, use the set_sw_property 
command to set supported_interrupt_apis to both legacy_interrupt_api and 
enhanced_interrupt_api. 

f For details about the set_sw_property command, refer to the “Software Build Tools 
Tcl Commands” section of the Nios II Software Build Tools Reference chapter of the 
Nios II Software Developer’s Handbook. 

HAL ISR Restrictions
When your system has an EIC, the HAL interrupt support imposes the following 
restrictions:

■ Nonmaskable hardware interrupts must use a shadow register set.

■ Nonmaskable hardware interrupts cannot share a register set with a maskable 
hardware interrupt.
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Writing an ISR
The ISR you write must match the prototype that alt_ic_isr_register() expects. 
The prototype for your ISR function must match the following prototype: 

void (*alt_isr_func) (void* isr_context)

The parameter definition of context is the same as for the alt_ic_isr_register() 
function. 

From the point of view of the HAL exception handling system, the most important 
function of an ISR is to clear the associated peripheral’s interrupt condition. The 
procedure for clearing an hardware interrupt condition is specific to the peripheral. 

f For details, refer to the relevant chapter in the Embedded Peripherals IP User Guide.

When the ISR has finished servicing the hardware interrupt, it must return to the HAL 
interrupt funnel that called it.

1 If you write your ISR in assembly language, use ret to return. The HAL interrupt 
funnel issues an eret after restoring the application context.

Using Interrupt Funnels
The HAL creates a vector table for each EIC connected to the Nios II processor. In the 
vector table, the HAL inserts a branch to the correct funnel for each interrupt-driven 
device supported by the BSP, depending on the device driver characteristics and 
pre-emption settings. Funnels can be shared by multiple hardware interrupts, if the 
drivers have compatible characteristics. 

The funnel code receives control from the general exception or interrupt vector, 
depending on which interrupt controller is implemented. The funnel performs tasks 
such as switching the stack pointer, saving registers and calling RTOS context-switch 
routines, and transfers control to the handler. When the handler returns, the funnel 
code performs tasks such as calling RTOS process-dispatch routines and restoring 
registers, and transfers control to the appropriate foreground task.

The HAL includes the following interrupt funnels:

■ Shadow register set, pre-emption disabled—Hardware interrupt assigned to a 
shadow register set, with pre-emption within the register set disabled. This funnel 
does not preserve register context. Hardware guarantees that only one ISR runs 
with the shadow register set at any time.

■ Shadow register set, pre-emption enabled—Hardware interrupt assigned to a 
shadow register set. An interrupt can pre-empt another interrupt using the same 
register set. This funnel preserves register context, so that handlers is assigned to 
the same register set do not corrupt one another’s context.

■ Nonmaskable interrupt—Nonmaskable hardware interrupt assigned to a shadow 
register set, with pre-emption within the register set disabled. This funnel does not 
preserve register context. Hardware guarantees that only one ISR runs in the 
shadow register set at any time.

The HAL funnel code is called from the vector table.
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Running in a Restricted Environment
ISRs run in a restricted environment. A large number of the HAL API calls are not 
available from ISRs. For example, accesses to the HAL file system are not permitted. 
As a general rule, when writing your own ISR, never include function calls that can 
block for any reason (such as waiting for a hardware interrupt).

f The HAL API Reference chapter of the Nios II Software Developer’s Handbook identifies 
those API functions that are not available to ISRs.

Be careful when calling ANSI C standard library functions inside of an ISR. Avoid 
using the C standard library I/O API, because calling these functions can result in 
deadlock within the system, that is, the system can become permanently blocked in 
the ISR. 

In particular, do not call printf() from within an ISR unless you are certain that 
stdout is mapped to a non-interrupt-based device driver. Otherwise, printf() can 
deadlock the system, waiting for a hardware interrupt that never occurs because 
interrupts are disabled. 

Managing Pre-Emption
The HAL enhanced interrupt API supports interrupt pre-emption. When pre-emption 
is enabled, a higher-level interrupt can take control even if an ISR is already running. 
A device driver must be specifically written to function correctly under pre-emption. 
When a device driver supports pre-emption, it publishes this capability through the 
isr_preemption_supported driver setting. When constructing the BSP, the SBT checks 
each device driver to determine whether it supports pre-emption. If all drivers in the 
BSP support pre-emption, it is enabled.

Legacy device drivers do not publish the isr_preemption_supported property. 
Therefore the SBT assumes that they do not support pre-emption. If your legacy 
custom driver supports pre-emption, and you want to allow pre-emption in the BSP, 
you must update the driver to use the enhanced interrupt API.

1 To enable the enhanced interrupt API, ensure that all drivers in the system are 
updated to use the enhanced interrupt API.

f For details about the isr_preemption_supported driver setting, refer to the 
set_sw_property command in the “Software Build Tools Tcl Commands” section of 
the Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s 
Handbook.

Operating systems can also publish the isr_preemption_supported property.

The HAL enhanced interrupt API supports automatic pre-emption. Automatic 
pre-emption means that maskable exceptions remain enabled when the processor 
accepts the hardware interrupt. This means that your ISR can immediately be 
pre-empted by a higher-level ISR, without any need to execute the eret instruction.

Automatic pre-emption can only take place when the pre-empting hardware interrupt 
uses a different register set from the interrupt being pre-empted.

Automatic pre-emption is only available if you enable it in the BSP settings.
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Registering an ISR with the Enhanced Interrupt API
Before the software can use an ISR, you must register it by calling 
alt_ic_isr_register(). The prototype for alt_ic_isr_register() is:

int alt_ic_isr_register(alt_u32 ic_id, 
alt_u32 irq, 
alt_isr_func isr,
void *isr_context,
void* flags)

The function has the following parameters:

■ ic_id is the interrupt controller identifier (ID) as defined in system.h. With 
daisy-chained EICs, ic_id identifies the EIC in the daisy chain. With the IIC, ic_id 
is not significant.

■ irq is the hardware interrupt number for the device, as defined in system.h. 

■ For the IIC, irq is the IRQ number. Interrupt priority corresponds inversely to 
the IRQ number. Therefore, IRQ0 represents the highest priority interrupt and 
IRQ31 is the lowest.

■ For an EIC, irq is the interrupt port ID.

■ isr_context points to a data structure associated with the device driver instance. 
isr_context is passed as the input argument to the isr function. It is used to pass 
context-specific information to the ISR, and can point to any ISR-specific 
information. The context value is opaque to the HAL; it is provided entirely for the 
benefit of the user-defined ISR.

■ isr is a pointer to the ISR function that is called in response to IRQ number irq. 
The ISR function prototype is:

void (void* isr_context);

The input argument provided to this function is the isr_context. 

1 Registering a null pointer for isr results in the interrupt being disabled.

■ flags is reserved.

The HAL registers the ISR by one of the following methods:

■ For the IIC, by the storing the function pointer, isr, in a lookup table. 

■ For an EIC, by configuring the vector table with the appropriate funnel code, as 
described in “Using Interrupt Funnels” on page 8–12.

The return code from alt_ic_isr_register() is zero if the function succeeded, and 
nonzero if it failed.

If the HAL registers your ISR successfully, the associated Nios II hardware interrupt 
(as defined by irq) is enabled on return from alt_ic_isr_register(). 

1 Hardware-specific initialization might also be required. 

When a specific interrupt occurs, the HAL code ensures that the registered ISR is 
correctly dispatched.
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f For details about hardware interrupt initialization specific to your peripheral, refer to 
the relevant chapter of the Embedded Peripherals IP User Guide. For details about 
alt_ic_isr_register(), refer to the HAL API Reference chapter of the Nios II Software 
Developer’s Handbook.

1 The HAL legacy interrupt API provides a different function for registering hardware 
interrupts. For all new and updated drivers, Altera recommends using the enhanced 
API described in this section. The legacy API function, alt_irq_register(), is 
described in the HAL API Reference chapter of the Nios II Software Developer’s Handbook.

Enabling and Disabling Interrupts
The HAL enhanced interrupt API provides the functions alt_ic_irq_disable(), 
alt_ic_irq_enable(), alt_ic_irq_enabled(), alt_irq_disable_all(), 
alt_irq_enable_all(), and alt_irq_enabled() to allow a program to disable 
hardware interrupts for certain sections of code, and reenable them later. 
alt_ic_irq_disable() and alt_ic_irq_enable() allow you to disable and enable 
individual interrupts. alt_irq_disable_all() disables all interrupts, and returns a 
context value. To reenable hardware interrupts, you call alt_irq_enable_all() and 
pass in the context parameter. In this way, interrupts are returned to their state prior 
to the call to alt_irq_disable_all(). alt_irq_enabled() returns nonzero if 
maskable exceptions are enabled. alt_ic_irq_enabled() determines whether a 
specified interrupt is enabled.

1 Disable hardware interrupts for as short a time as possible. Maximum interrupt 
latency increases with the longest amount of time interrupts are disabled. For more 
information about disabled interrupts, refer to “Keep Interrupts Enabled” on 
page 8–19.

f For details about these functions, refer to the HAL API Reference chapter of the Nios II 
Software Developer’s Handbook.

1 The HAL legacy interrupt API provides different functions for enabling and disabling 
individual interrupts. For all new and updated drivers, Altera recommends using the 
enhanced API described in this section. The legacy API functions, alt_irq_disable() 
and alt_irq_enable(), are described in the HAL API Reference chapter of the Nios II 
Software Developer’s Handbook.

Configuring an External Interrupt Controller
The driver for an EIC provides specialized driver settings that are created at the time 
you generate the BSP. These settings customize the driver to the EIC configuration 
found in the Nios II system. The number and type of settings depends on the EIC 
implementation, as well as on the number and configuration of EICs in the hardware 
system. The SBT creates the BSP with default values, selected to ensure useful system 
performance. You can optimize these settings at the time you create the BSP. For 
details of how to manipulate the EIC driver settings, refer to the documentation for 
your specific EIC.

The driver for an EIC can provide specialized functions to manage any 
implementation-specific features of the EIC. An example would be modifying 
interrupt priority levels at runtime.
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f For examples, refer to the Vectored Interrupt Controller Core chapter in the Embedded 
Peripherals IP User Guide.

C Example
Example 8–1 illustrates an ISR that services a hardware interrupt from a button 
parallel I/O (PIO) component. This example is based on a Nios II system with a 4-bit 
PIO peripheral connected to push buttons. An IRQ is generated any time a button is 
pushed. The ISR code reads the PIO peripheral’s edge capture register and stores the 
value to a global variable. The address of the global variable is passed to the ISR in the 
context pointer. 

Example 8–2 shows an example of the code for the main program that registers the 
ISR with the HAL.

Based on this code, the following execution flow is possible:

1. Button is pressed, generating an IRQ.

2. The ISR gains control.

■ With the IIC, the HAL general exception funnel gains control of the processor, 
and dispatches the handle_button_interrupts() ISR.

■ With an EIC, the processor branches to the address in the vector table, which 
transfers control to the handle_button_interrupts() ISR.

Example 8–1. An ISR to Service a Button PIO Interrupt

#include "system.h"
#include "altera_avalon_pio_regs.h"
#include "alt_types.h"

#ifdef ALT_ENHANCED_INTERRUPT_API_PRESENT
static void handle_button_interrupts(void* context)
#else
static void handle_button_interrupts(void* context, alt_u32 id)
#endif
{

/* Cast context to edge_capture's type. It is important that this 
be declared volatile to avoid unwanted compiler optimization. */

volatile int* edge_capture_ptr = (volatile int*) context;

/*
* Read the edge capture register on the button PIO.
* Store value.
*/
*edge_capture_ptr =
IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE);

/* Write to the edge capture register to reset it. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0);

/* Read the PIO to delay ISR exit. This is done to prevent a 
spurious interrupt in systems with high processor -> pio 
latency and fast interrupts. */

IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE); 
}
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3. handle_button_interrupts() services the hardware interrupt and returns.

4. Normal program operation continues with an updated value of edge_capture.

f Additional software examples that demonstrate implementing ISRs, such as the 
count_binary example project template, are installed with the Nios II Embedded 
Design Suite (EDS).

Upgrading to the Enhanced HAL Interrupt API
If you have custom device drivers, Altera recommends that you upgrade them to use 
the enhanced HAL interrupt API. The enhanced API maintains compatibility with 
the IIC, while supporting external interrupt controllers. The legacy HAL interrupt 
API is deprecated.

If you plan to use an EIC, you must upgrade your custom driver to the enhanced HAL 
interrupt API.

Upgrading your device driver is very simple, requiring only minor changes to some 
function calls.

Table 8–2 shows the legacy API functions that need to be modified, with the 
corresponding enhanced API functions.

Example 8–2. Registering the Button PIO ISR with the HAL 

#include "sys/alt_irq.h"
#include "system.h"

...
/* Declare a global variable to hold the edge capture value. */
volatile int edge_capture;
...

/* Initialize the button_pio. */
static void init_button_pio()
{

/* Recast the edge_capture pointer to match the
alt_irq_register() function prototype. */

void* edge_capture_ptr = (void*) &edge_capture;

/* Enable all 4 button interrupts. */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0xf);

/* Reset the edge capture register. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0x0);

/* Register the ISR. */
#ifdef ALT_ENHANCED_INTERRUPT_API_PRESENT

alt_ic_isr_register(BUTTON_PIO_IRQ_INTERRUPT_CONTROLLER_ID,
BUTTON_PIO_IRQ, 
handle_button_interrupts, 
edge_capture_ptr, 0x0);

#else
alt_irq_register( BUTTON_PIO_IRQ, 

edge_capture_ptr,
handle_button_interrupts ); 

#endif
}
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f For details of the API functions, refer to the HAL API Reference chapter of the Nios II 
Software Developer’s Handbook.

1 If your upgraded driver might need to function in a BSP with legacy drivers, code it to 
support both APIs, as described in “Supporting Multiple Interrupt APIs” on 
page 8–11.

Improving Nios II ISR Performance
If your software uses hardware interrupts extensively, the performance of ISRs is 
probably the most critical determinant of your overall software performance. This 
section discusses both hardware and software strategies to improve ISR performance. 

Software Performance Improvements
In improving your ISR performance, you probably consider software changes first. 
However, in some cases it might require less effort to implement hardware design 
changes that increase system efficiency. For a discussion of hardware optimizations, 
refer to “Hardware Performance Improvements” on page 8–23.

The following sections describe changes you can make in the software design to 
improve ISR performance.

Execute Time-Intensive Algorithms in the Application Context
ISRs provide rapid, low latency response to changes in the state of hardware. They do 
the minimum necessary work to clear the hardware interrupt condition and then 
return. If your ISR performs lengthy, noncritical processing, it can interfere with more 
critical tasks in the system.

If your ISR requires lengthy processing, design your software to perform this 
processing outside of the exception context. The ISR can use a message-passing 
mechanism to notify the application code to perform the lengthy processing tasks.

Deferring a task is simple in systems based on an RTOS such as MicroC/OS-II. In this 
case, you can create a thread to handle the processor-intensive operation, and the ISR 
can communicate with this thread using any of the RTOS communication 
mechanisms, such as event flags or message queues.

You can emulate this approach in a single-threaded HAL-based system. The main 
program polls a global variable managed by the ISR to determine whether it needs to 
perform the processor-intensive operation. 

Table 8–2. HAL Interrupt API Functions to Upgrade

Legacy API Function Enhanced API Function

alt_irq_register() alt_ic_isr_register()

alt_irq_disable() alt_ic_irq_disable()

alt_irq_enable() alt_ic_irq_enable()
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Implement Time-Intensive Algorithms in Hardware
Processor-intensive tasks must often transfer large amounts of data to and from 
peripherals. A general-purpose processor such as the Nios II processor is not the most 
efficient way to do this. Use direct memory access (DMA) hardware if it is available.

f For information about programming with DMA hardware, refer to “Using DMA 
Devices” in the Developing Programs Using the Hardware Abstraction Layer chapter of 
the Nios II Software Developer’s Handbook.

Increase Buffer Size
If you are using DMA to transfer large data buffers, the buffer size can affect 
performance. Small buffers imply frequent interrupts, which lead to high overhead.

Increase the size of the transaction data buffer(s). 

Use Double Buffering
Using DMA to transfer large data buffers might not provide a large performance 
increase if the Nios II processor must wait for DMA transactions to complete before it 
can perform the next task.

Double buffering allows the Nios II processor to process one data buffer while the 
hardware is transferring data to or from another.

Keep Interrupts Enabled
When interrupts are disabled, the Nios II processor cannot respond quickly to 
hardware interrupt events. Buffers and queues can fill or overflow. Even in the 
absence of overflow, maximum interrupt processing time can increase after interrupts 
are re-enabled, because the ISRs must process data backlogs.

Disable interrupts as infrequently as possible, and for the briefest time possible.

Instead of disabling all interrupts, call alt_ic_irq_disable() and 
alt_ic_irq_enable() to enable and disable individual interrupts.

To protect shared data structures, use RTOS structures such as semaphores.

Disable all interrupts only during critical system operations. In the code where 
interrupts are disabled, perform only the bare minimum of critical operations, and 
reenable interrupts immediately.

Use Fast Memory
ISR performance depends on memory speed.

For best performance, place the ISRs and the stack in the fastest available memory: 
preferably tightly-coupled memory (if available), or on-chip memory.

If it is not possible to place the main stack in fast memory, consider using a separate 
exception stack, mapped to a fast memory section, as described in the next section.
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f For more information about mapping memory, refer to “Memory Usage” in the 
Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II Software 
Developer’s Handbook. For more information about tightly-coupled memory, refer to 
the Cache and Tightly-Coupled Memory chapter of the Nios II Software Developer’s 
Handbook. 

Use a Separate Exception Stack
The HAL implements two types of separate exception stack. Their availability 
depends on the interrupt controller, as described in this section. Table 8–3 outlines the 
availability of separate exception stacks, and how they can be used with each type of 
interrupt controller.

1 Using a separate exception stack entails a slight additional overhead. When 
processing a software exception or hardware interrupt, the processor must execute an 
additional instruction on entry and exit, to change the stack pointer. Take this 
additional processing time into account if your interrupt response requirements are 
extremely strict.

Separate General Exception Stack

The separate general exception stack is available with either the internal or the 
external interrupt controller.

Use the hal.linker.enable_exception_stack BSP setting to enable a separate 
general exception stack.

The HAL general exception funnel code takes care of correctly changing the stack 
pointer on entry to and exit from an exception handler.

Separate Hardware Interrupt Stack

The separate hardware interrupt stack is available with the EIC interface. The separate 
hardware interrupt stack is not applicable to the IIC. With the IIC, hardware 
interrupts and software exceptions use the same stack.

The following BSP settings enable you to control the separate hardware interrupt 
stack:

■ hal.linker.enable_interrupt_stack enables a separate hardware interrupt 
stack.

■ hal.linker.interrupt_stack_size controls the size of the hardware interrupt 
stack.

■ hal.linker.interrupt_stack_memory_region_name enables you to control where 
the hardware interrupt stack is positioned in memory.
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The HAL funnel code takes care of correctly changing the stack pointer on entry to 
and exit from an ISR.

1 If your ISR is located in a vector table, the HAL does not provide funnel code. In this 
case, your code must manage the stack pointer, as well as all other funnel code 
functions.

f For further details about implementing a separate hardware interrupt stack, refer to 
AN595: Vectored Interrupt Controller Applications and Usage.

Use Nested Hardware Interrupts
By default, the HAL disables interrupts when it dispatches an ISR. This means that 
only one ISR can execute at any time, and ISRs are executed on a first-come 
first-served basis. This reduces the system overhead associated with interrupt 
processing, and simplifies ISR development. The ISR does not need to be reentrant. 
ISRs can use and modify any global or static data structures or hardware registers that 
are not shared with application code.

However, first-come first-served execution means that the HAL hardware interrupt 
priorities only have an effect if two IRQs are active at the same time. A low-priority 
interrupt occurring before a higher-priority interrupt can prevent the higher-priority 
ISR from executing. This is a form of priority inversion, and it can have a significant 
impact on ISR performance in systems that generate frequent interrupts. 

Table 8–3. Separate Exception Stack Usage
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A software system can achieve full hardware interrupt prioritization by using nested 
ISRs. With nested ISRs, higher-priority interrupts are allowed to interrupt 
lower-priority ISRs.

This technique can improve the response time for higher-priority interrupts. 

1 Nested ISRs increase the processing time for lower-priority hardware interrupts. 

If your ISR is very short, it might not be worth the overhead to enable nested 
hardware interrupts. Enabling nested interrupts for a short ISR can actually increase 
the response time for higher-priority interrupts.

1 If you use a separate exception stack with the IIC, you cannot nest hardware 
interrupts. For more information about separate exception stacks, refer to “Use a 
Separate Exception Stack”.

Nested Hardware Interrupts with the Internal Interrupt Controller

To implement nested hardware interrupts with the IIC, use the 
alt_irq_interruptible() and alt_irq_non_interruptible() functions to bracket 
code in a processor-intensive ISR. The call to alt_irq_interruptible() adjusts the 
interrupt mask so that higher-priority interrupts can take control from the running 
ISR. When your ISR calls alt_irq_non_interruptible(), the interrupt mask is 
returned to its previous state.

1 If your ISR calls alt_irq_interruptible(), it must call 
alt_irq_non_interruptible() before returning. Otherwise, the HAL exception 
handling system might lock up.

Nested Hardware Interrupts with an External Interrupt Controller

The HAL enhanced interrupt API supports nested hardware interrupts, also known 
as interrupt pre-emption. A device driver must be specifically written to function 
correctly under pre-emption. 

Legacy device drivers do not publish the isr_preemption_supported property. 
Therefore the SBT assumes that they do not support pre-emption. If your legacy 
custom driver supports pre-emption, and you want to allow pre-emption in the BSP, 
you must update the driver to use the enhanced HAL interrupt API.

The HAL enhanced interrupt API also supports automatic pre-emption. Automatic 
pre-emption means that maskable exceptions remain enabled when the processor 
accepts the hardware interrupt. 

f For details about pre-emption with an EIC, refer to “Managing Pre-Emption” on 
page 8–13.

In the vector table, the HAL inserts a branch to the correct funnel for each hardware 
interrupt, depending on the pre-emption settings. 
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Locate ISR Body in Vector Table
If you are using a vectored EIC, and you have a critical ISR of small size, you might 
achieve a performance improvement by positioning the ISR code directly in the vector 
table. In this way, you eliminate the overhead of branching from the vector table 
through the HAL funnel to your ISR.

The EIC’s driver provides a default vector table entry size. For example, with the 
Altera VIC, the default size is 16 bytes. To accommodate your ISR, adjust the entry 
size with a driver setting when you create the BSP.

1 Positioning an ISR in a vector table is an advanced and error-prone technique, not 
directly supported by the HAL. You must exercise great caution to ensure that the ISR 
code fits in the vector table entry. If your ISR overflows the vector table entry, it 
corrupts other entries in the vector table, and your entire interrupt handling system. 
When your ISR is located in the vector table, it does not need to be registered. Do not 
call alt_ic_isr_register(), because it overwrites the contents of the vector table. 
The HAL does not provide funnel code. Therefore, your code must manage all funnel 
code functions.

f For further details about locating an ISR in a vector table, refer to AN595: Vectored 
Interrupt Controller Applications and Usage.

Use Compiler Optimization
For the best performance both in exception context and application context, use 
compiler optimization level -O3. Level -O2 also produces good results. Removing 
optimization altogether significantly increases exception response time. 

f For further information about compiler optimizations, refer to “Reducing Code 
Footprint in Embedded Systems” in the Developing Programs Using the Hardware 
Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

Hardware Performance Improvements
Several simple hardware changes can provide a substantial improvement in ISR 
performance. These changes involve editing and regenerating the hardware 
component, and recompiling the Quartus® II design.

In some cases, these changes also require changes in the software architecture or 
implementation. For a discussion of these and other software optimizations, refer to 
“Software Performance Improvements” on page 8–18. 

The following sections describe changes you can make in the hardware design to 
improve ISR performance.

Use Vectored Hardware Interrupts
By default, the Nios II processor has a nonvectored IIC. The HAL provides software to 
dispatch each hardware interrupt to its specific ISR. By contrast, vectoring allows the 
processor to transfer control directly to the ISR with minimal software intervention.

The options available for hardware interrupt vectoring depend on the interrupt 
controller configured in the Nios II hardware, as described in this section.
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Using the Interrupt Vector Custom Instruction

The Nios II processor core offers an interrupt vector custom instruction that 
accelerates hardware interrupt vector dispatch in the HAL. You can include this 
custom instruction to improve your program’s interrupt response time. 

When the interrupt vector custom instruction is present in the Nios II processor, the 
HAL source detects it at compile time and generates code using the custom 
instruction.

When using an interrupt vector custom instruction, you cannot use a separate 
exception stack.

1 The interrupt vector custom instruction is only available in hardware systems 
generated by SOPC Builder.

f For further information about the interrupt vector custom instruction, refer to 
“Interrupt Vector Custom Instruction” in the Instantiating the Nios II Processor chapter 
of the Nios II Processor Reference Handbook.

Using an External Interrupt Controller

The Nios II EIC port allows you to connect a customizable external interrupt 
controller component. An EIC can be vectored. An example is the Altera VIC.

f For details about the VIC, refer to the Vectored Interrupt Controller Core chapter in the 
Embedded Peripherals IP User Guide.

Add Fast Memory
Increase the amount of fast on-chip memory available for data buffers. Ideally, 
implement tightly-coupled memory that the software can use for buffers.

f For further information about tightly-coupled memory, refer to the Cache and 
Tightly-Coupled Memory chapter of the Nios II Software Developer’s Handbook, or to the 
Using Nios II Tightly Coupled Memory Tutorial.

Add a DMA Controller
A DMA controller performs bulk data transfers, reading data from a source address 
range and writing the data to a different address range. Add DMA controllers to 
move large data buffers. This allows the Nios II processor to carry out other tasks 
while data buffers are being transferred. 

f For information about DMA controllers, refer to the DMA Controller Core and 
Scatter-Gather DMA Controller Core chapters in the Embedded Peripherals IP User Guide.

Place the Handler in Fast Memory
For the fastest execution of exception handler code, place the handler in a fast 
memory device. For example, an on-chip RAM with zero wait states is preferable to a 
slow SDRAM. For best performance, store exception handling code and data in 
tightly-coupled memory. 
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Use a Fast Nios II Core
For processing in both the exception context and the application context, the Nios II/f 
core is the fastest, and the Nios II/e core (designed for small size) is the slowest.

Select Hardware Interrupt Priorities
Hardware interrupt priority levels can have a significant impact on system 
performance. If two interrupts can be asserted at the same time, it is important to 
assign a higher priority level to the more critical interrupt, so that it runs in preference 
to the less critical interrupt.

Hardware Interrupt Priorities with the Internal Interrupt Controller

When selecting the IRQ for each peripheral, remember that the HAL hardware 
interrupt funnel treats IRQ0 as the highest priority. Assign each peripheral’s interrupt 
priority based on its need for fast servicing in the overall system. Avoid assigning 
multiple peripherals to the same IRQ.

Hardware Interrupt Priorities with an External Interrupt Controller

With an EIC, the hardware interrupt priority level can be more flexible than with 
the IIC. The method of assigning priority levels to IRQs depends on the specific EIC 
implementation.

For example, with the Altera VIC, you can adjust hardware interrupt priority levels at 
runtime, with the alt_vic_irq_set_level() function.

f For details about the VIC, refer to the Vectored Interrupt Controller Core chapter in the 
Embedded Peripherals IP User Guide.

Debugging Nios II ISRs
You can debug an ISR by setting breakpoints in the ISR. The debugger completely 
halts the processor on reaching a breakpoint. In the meantime, however, the other 
hardware in your system continues to operate. Therefore, it is inevitable that other 
interrupts are ignored while the processor is halted. You can use the debugger to step 
through the ISR code, but the status of other interrupt-driven device drivers is 
generally invalid by the time you return the processor to normal execution. You must 
reset the processor to return the system to a valid state.

With the IIC, the ipending register (ctl4) is masked to all zeros during 
single-stepping. This masking prevents the processor from servicing interrupts that 
are asserted while you single-step through code. As a result, if you try to single-step 
through a part of the exception handling system that reads the ipending register, such 
as alt_irq_entry() or alt_irq_handler(), the code does not detect any pending 
interrupts. This issue does not affect debugging software exceptions. You can set 
breakpoints in your ISR code (and single-step through it), because the interrupt 
funnel has already used ipending to determine which device caused the hardware 
interrupt. 
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HAL Exception Handling System Implementation
This section describes the HAL exception handling system implementation. This is 
one of many possible implementations of an exception handling system for the Nios II 
processor. Some features of the HAL exception handling system are constrained by 
the Nios II hardware, while others provide generally useful services.

You can take advantage of the HAL exception handling system without a complete 
understanding of the HAL implementation. For details about how to install ISRs 
using the HAL API, refer to “Nios II Interrupt Service Routines” on page 8–7.

Exception Handling System Structure
The exception handling system consists of the following components:

■ The general exception funnel

■ The software exception funnel

■ The hardware interrupt funnel(s)

■ An ISR for each peripheral that generates hardware interrupts

With the IIC, there is a single hardware interrupt funnel. This funnel manages 
processor context switch and RTOS overhead (if any). It determines the source of the 
IRQ, and dispatches the correct ISR.

With an EIC, hardware interrupt funnels are configured by the EIC driver. With a 
vectored EIC, such as the Altera VIC, there are multiple hardware interrupt funnels. 
Each funnel manages processor context switch if necessary, and RTOS overhead if any. 
ISR dispatch is managed by hardware.

With the IIC, when the Nios II processor generates an exception, the general exception 
funnel receives control. The general exception funnel passes control to either the 
hardware interrupt funnel or the software exception funnel. The hardware interrupt 
funnel passes control to one or more ISRs.

Each time an exception occurs, the exception handling system services either a 
software exception or hardware interrupts, with hardware interrupts having a higher 
priority. The HAL IIC support does not include nested exceptions, but can handle 
multiple hardware interrupts per context switch. For details, refer to “Hardware 
Interrupt Funnel” on page 8–28.

With an EIC, the general exception funnel handles only software exceptions. An IRQ 
causes the processor to transfer control to one of the interrupt funnels, which branches 
directly to the ISR.
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General Exception Funnel
The general exception funnel provided with the HAL is located at the Nios II 
processor’s exception address. When a software exception or internal hardware 
interrupt occurs, and control transfers to the general exception funnel, it does the 
following:

1. Switches to the separate exception stack (if enabled)

2. Stores register values onto the stack

3. Determines the type of exception, and passes control to the software exception 
funnel or the hardware interrupt funnel

Hardware Interrupt Dispatch with the Internal Interrupt Controller
With the IIC, the general exception funnel dispatches hardware interrupts as well as 
software exceptions. Figure 8–1 shows the algorithm that the HAL general exception 
funnel uses to distinguish between hardware interrupts and software exceptions.

The general exception funnel looks at the estatus register to determine the interrupt 
enable status. If the PIE bit is set, hardware interrupts were enabled at the time the 
exception happened. If so, the general exception funnel transfers control to the 
hardware interrupt funnel. The hardware interrupt funnel looks at the IRQ bits in 
ipending. If any IRQs are asserted, the interrupt funnel calls the appropriate 
hardware interrupt handler. 

If hardware interrupts are not enabled at the time of the exception, it is not necessary 
to look at ipending.

If no IRQs are active, there is no hardware interrupt, and the exception is a software 
exception. In this case, the general exception funnel calls the software exception 
funnel. 

All hardware interrupts are higher priority than software exceptions.

1 With an EIC, IRQs are dispatched by hardware. The HAL general exception funnel 
only handles software exceptions. 

f For details about the Nios II processor estatus and ipending registers, refer to the 
Programming Model chapter of the Nios II Processor Reference Handbook.

Returning from Exceptions
After returning from the ISR or software exception handler, the general exception 
funnel performs the following tasks:

1. Restores the stack pointer, if a separate exception stack is used

2. Restores the registers from the stack

3. Exits by issuing an eret (exception return) instruction
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Hardware Interrupt Funnel
The configuration of the HAL hardware interrupt funnel depends on the interrupt 
controller implemented in the Nios II processor core.

Interrupt Funnel for the Internal Interrupt Controller
With the IIC, the Nios II processor supports 32 hardware interrupts. In the HAL 
funnel, hardware interrupt 0 has the highest priority, and 31 the lowest. This 
prioritization is a feature of the HAL funnel, and is not inherent in the Nios II 
interrupt controller.

The hardware interrupt funnel calls the user-registered ISRs. It goes through the IRQs 
in ipending starting at 0, and finds the first (highest priority) active IRQ. Then it calls 
the corresponding registered ISR. After this ISR executes, the funnel begins scanning 
the IRQs again, starting at IRQ0. In this way, higher-priority interrupts are always 
processed before lower-priority interrupts. When all IRQs are clear, the hardware 
interrupt funnel returns to the top level. Figure 8–2 shows a flow diagram of the HAL 
hardware interrupt funnel. 

When the interrupt vector custom instruction is present in the Nios II processor, the 
HAL source detects it at compile time and generates code using the custom 
instruction. For further information, refer to “Using the Interrupt Vector Custom 
Instruction” on page 8–24.

Figure 8–1. HAL Exception Handling System with the Internal Interrupt Controller
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Interrupt Funnels for External Interrupt Controllers
With the EIC interface, the Nios II processor supports a potentially unlimited number 
of hardware interrupts on daisy-chained EICs. The interrupt priority level can be 
software-configurable. Details of setting interrupt priorities depend on the particular 
EIC implementation. The hardware ensures that the highest-priority interrupt is 
always serviced first.

You register ISRs at system initialization time. Interrupt dispatch is handled by 
hardware.

f For details, refer to “Exception Handling System Structure” on page 8–26.

The HAL provides the following interrupt funnels:

■ Shadow register set, pre-emption disabled

■ Shadow register set, pre-emption enabled

■ Nonmaskable interrupt

f For details, refer to “Using Interrupt Funnels” on page 8–12.

Software Exception Funnel
Software exceptions can include unimplemented instructions, traps, and 
miscellaneous exceptions.

Software exception handling depends on options selected in the BSP. If you have 
enabled unimplemented instruction emulation, the software exception funnel first 
checks whether an unimplemented instruction caused the exception. If so, it emulates 
the instruction. Otherwise, it handles traps and miscellaneous exceptions.

Figure 8–2. HAL Hardware Interrupt Funnel for the Internal Interrupt Controller
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Unimplemented Instructions
You can include a handler to emulate unimplemented instructions. The Nios II 
processor architecture defines the following implementation-dependent instructions:

■ mul 

■ muli 

■ mulxss 

■ mulxsu 

■ mulxuu 

■ div 

■ divu 

f For details about unimplemented instructions, refer to “Unimplemented Instructions” 
in the Processor Architecture chapter of the Nios II Processor Reference Handbook.

1 Unimplemented instructions are different from invalid instructions, which are 
described in “Invalid Instructions” on page 8–32.

When to Use the Unimplemented Instruction Handler

You do not normally need the unimplemented instruction handler, because the HAL 
includes software emulation for unimplemented instructions from its run-time 
libraries if you are compiling for a Nios II processor that does not support the 
instructions.

You might need the unimplemented instruction handler under the following 
circumstances:

■ You are running a Nios II program on an implementation of the Nios II processor 
other than the one you compiled for. The best solution is to build your program for 
the correct Nios II processor implementation. Resort to the unimplemented 
instruction handler only if it is not possible to determine the processor 
implementation at compile time.

■ You have assembly language code that uses an implementation-dependent 
instruction.

Figure 8–3 shows a flowchart of the HAL software exception funnel, including the 
optional instruction emulation logic. If instruction emulation is not enabled, this logic 
is omitted.

If unimplemented instruction emulation is disabled, but the processor encounters an 
unimplemented instruction, the software exception funnel treats the exception as a 
miscellaneous exception. Miscellaneous exceptions are described in “Miscellaneous 
Exceptions” on page 8–32.

Using the Unimplemented Instruction Handler

To include the unimplemented instruction handler, turn on the 
hal.enable_mul_div_emulation BSP property. The emulation routines occupy less 
than ¾ kilobyte(KB) of memory.
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1 An exception handler must never execute an unimplemented instruction. The HAL 
exception handling system does not support nested software exceptions.

Instruction-Related Exceptions
If the cause of the software exception is not an unimplemented instruction, the HAL 
software exception funnel checks for a registered instruction-related exception 
handler. If no instruction-related exception handler is registered, the exception is 
handled as described in “Software Trap Handling”. If a handler is registered, the HAL 
software exception funnel calls it, then restores context and returns. Refer to “The 
Nios II Instruction-Related Exception Handler” for a description of the 
instruction-related exception handler and how to register it.

Figure 8–3. HAL Software Exception Funnel
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Software Trap Handling
If no instruction-related exception handler is registered, the HAL software exception 
funnel checks for a trap instruction. If the exception is caused by a trap instruction, 
the trap exception handler executes a break instruction. The break instruction 
transfers control to a hardware debug core, if one is available. If the exception is not 
caused by a trap instruction, it is treated as a miscellaneous exception.

Miscellaneous Exceptions
If the software exception is not caused by an unimplemented instruction or a trap, it is 
a miscellaneous exception. 

If a debug core is present in the Nios II processor, traps and miscellaneous exceptions 
are handled identically, by executing a break instruction. Figure 8–3 shows a 
flowchart of the HAL software exception funnel, including the optional trap logic. If a 
debug core is present in the Nios II processor, the trap logic is omitted.

In a debugging environment, the processor executes a break, allowing the debugger 
to take control. In a nondebugging environment, the processor enters an infinite loop.

f For details about the Nios II processor break instruction, refer to the Programming 
Model and Instruction Set Reference chapters of the Nios II Processor Reference Handbook.

Miscellaneous exceptions can occur for these reasons:

■ Advanced exceptions, the memory protection unit (MPU), or the memory 
management unit (MMU) are implemented in the Nios II processor core. To 
handle advanced and MPU exceptions, refer to “The Nios II Instruction-Related 
Exception Handler”. To handle MMU exceptions, you need to implement a 
full-featured operating system, as mentioned in the Programming Model chapter of 
the Nios II Processor Reference Handbook.

■ You need to include the unimplemented instruction handler, discussed in 
“Unimplemented Instructions” on page 8–30.

■ A peripheral is generating spurious hardware interrupts. This is a symptom of a 
serious hardware problem. A peripheral might generate spurious hardware 
interrupts if it deasserts its interrupt output before an ISR has explicitly serviced it. 

Invalid Instructions
An invalid instruction word contains invalid codes in the OP or OPX field. For normal 
Nios II core implementations, the result of executing an invalid instruction is 
undefined; processor behavior is dependent on the Nios II core.

Therefore, the software exception funnel cannot detect or respond to an invalid 
instruction.

1 Invalid instructions are different from unimplemented instructions, which are 
described in “Unimplemented Instructions” on page 8–30.

f For more information, refer to the Nios II Core Implementation Details chapter of the 
Nios II Processor Reference Handbook.
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The Nios II Instruction-Related Exception Handler
The software exception funnel lets you handle instruction-related exceptions, such as 
the advanced exceptions. The instruction-related exception handler is a custom 
handler. Your software registers the instruction-related exception handler with the 
HAL at startup time.

1 The hal.enable_instruction_related_exceptions_api setting must be enabled in 
the BSP in order for you to register an instruction-related exception handler.

f For further information about the Nios II instruction-related exceptions, refer to the 
Programming Model chapter of the Nios II Processor Reference Handbook. For details 
about enabling instruction-related exception handlers, refer to “Settings Managed by 
the Software Build Tools” in the Nios II Software Build Tools Reference chapter of the 
Nios II Software Developer’s Handbook.

When you register an instruction-related exception handler, it takes the place of the 
break/optional trap logic. 

When you remove the instruction-related exception handler, the HAL restores the 
default break/optional trap logic.

Writing an Instruction-Related Exception Handler
The prototype for an instruction-related exception handler is as follows:

alt_exception_result handler (
alt_exception_cause cause,
alt_u32 addr,
alt_u32 bad_addr );

The instruction-related exception handler’s return value is a flag requesting that the 
HAL either re-execute the instruction, or skip it. 

The HAL exception funnel calls the instruction-related exception handler with the 
following arguments:

■ cause—A value representing the exception type, as shown in Table 8–4

■ addr—Instruction address at which exception occurred

■ bad_addr—Bad address register (if implemented)

Include the following header file in your instruction-related exception handler code:

#include “sys/alt_exceptions.h”

alt_exceptions.h provides type macro definitions required to interface your 
instruction-related exception handler to the HAL, including the cause codes shown in 
Table 8–4.

The API function alt_exception_cause_generated_bad_addr() is provided by the 
HAL, for the use of the instruction-related exception handler. This function parses the 
cause argument and determines if bad_addr contains the exception-causing address. 
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f For further information about Nios II processor exception causes, refer to “Exception 
Processing” in the Programming Model chapter of the Nios II Processor Reference 
Handbook.

If there is an instruction-related exception handler, it is called at the end of the 
software exception funnel (if the funnel has not recognized a hardware interrupt, 
unimplemented instruction or trap). It takes the place of the break or infinite loop. 
Therefore, to support debugging, execute a break on a trap instruction.

1 It is possible for an instruction-related exception to occur during execution of an ISR.

Registering an Instruction-Related Exception Handler
The HAL API function alt_instruction_exception_register() registers a single 
instruction-related exception handler.

The function prototype is as follows:

alt_instruction_exception_register (
alt_exception_result (*handler)

( alt_exception_cause, alt_u32, alt_u32 ));

Table 8–4. Nios II Exception Cause Codes

Exception Cause Code Cause Symbol (1)

Reset 0 NIOS2_EXCEPTION_RESET 

Processor-only Reset Request 1 NIOS2_EXCEPTION_CPU_ONLY_RESET_REQUEST 

Hardware Interrupt 2 NIOS2_EXCEPTION_INTERRUPT 

Trap Instruction 3 NIOS2_EXCEPTION_TRAP_INST 

Unimplemented Instruction 4 NIOS2_EXCEPTION_UNIMPLEMENTED_INST 

Illegal Instruction 5 NIOS2_EXCEPTION_ILLEGAL_INST 

Misaligned Data Address 6 NIOS2_EXCEPTION_MISALIGNED_DATA_ADDR 

Misaligned Destination Address 7 NIOS2_EXCEPTION_MISALIGNED_TARGET_PC 

Division Error 8 NIOS2_EXCEPTION_DIVISION_ERROR 

Supervisor-only Instruction Address 9 NIOS2_EXCEPTION_SUPERVISOR_ONLY_INST_ADDR 

Supervisor-only Instruction 10 NIOS2_EXCEPTION_SUPERVISOR_ONLY_INST 

Supervisor-only Data Address 11 NIOS2_EXCEPTION_SUPERVISOR_ONLY_DATA_ADDR 

Translation lookaside buffer (TLB) 
Miss 12 NIOS2_EXCEPTION_TLB_MISS 

TLB Permission Violation (execute) 13 NIOS2_EXCEPTION_TLB_EXECUTE_PERM_VIOLATION 

TLB Permission Violation (read) 14 NIOS2_EXCEPTION_TLB_READ_PERM_VIOLATION 

TLB Permission Violation (write) 15 NIOS2_EXCEPTION_TLB_WRITE_PERM_VIOLATION 

MPU Region Violation (instruction) 16 NIOS2_EXCEPTION_MPU_INST_REGION_VIOLATION 

MPU Region Violation (data) 17 NIOS2_EXCEPTION_MPU_DATA_REGION_VIOLATION 

Cause unknown (2) -1 NIOS2_EXCEPTION_CAUSE_NOT_PRESENT 

Notes to Table 8–4:

(1) Cause symbols are defined in sys/alt_exceptions.h.
(2) This value is passed to the instruction-related exception handler if the cause argument if the cause is not known; for example, if the cause 

register not implemented in the Nios II processor core.
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The handler argument is a pointer to the instruction-related exception handler.

To use alt_instruction_exception_register(), include the following header file:

#include "sys/alt_exceptions.h"

1 The hal.enable_instruction_related_exceptions_api setting must be enabled in 
the BSP in order for you to register an instruction-related exception handler. 

f For details, refer to “Settings Managed by the Software Build Tools” in the Nios II 
Software Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

1 Register the instruction-related exception handler as early as possible in function 
main(). This allows you to handle abnormal condition during startup. You register an 
exception handler from the alt_main() function. 

f For more information about alt_main(), refer to “Boot Sequence and Entry Point” in 
the Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II 
Software Developer’s Handbook.

Removing an Instruction-Related Exception Handler
To remove a registered instruction-related exception handler, your C code must call 
the alt_instruction_exception_register() function, as follows:

alt_instruction_exception_register ( null, null );

When the HAL removes the instruction-related exception handler, it restores the 
default break/optional trap logic.

Document Revision History
Table 8–5 shows the revision history for this document.

Table 8–5. Document Revision History (Part 1 of 2)

Date Version Changes

May 2011 11.0.0
■ Introduction of Qsys system integration tool

■ Interrupt vector custom instruction only available with SOPC Builder

February 2011 10.1.0 Removed “Referenced Documents” section.

July 2010 10.0.0 Maintenance release.

November 2009 9.1.0

■ Described HAL support for external interrupt controller interface.

■ Described HAL support for shadow register sets with external interrupt controller 
interface.

■ Described enhanced HAL interrupt API.

■ Legacy HAL interrupt API deprecated.

■ Removed information specific to the Nios II Integrated Development Environment (IDE).

March 2009 9.0.0
■ Reorganized and updated information and terminology to clarify role of Nios II Software 

Build Tools.

■ Corrected minor typographical errors.

May 2008 8.0.0 Maintenance release.
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October 2007 7.2.0 Maintenance release.

May 2007 7.1.0
■ Added table of contents to “Introduction” section.

■ Added Referenced Documents section.

March 2007 7.0.0 Maintenance release.

November 2006 6.1.0 ■ Describes support for the interrupt vector custom instruction. 

May 2006 6.0.0

■ Corrected error in alt_irq_enable_all() usage.

■ Added illustrations.

■ Revised text on optimizing ISRs.

■ Expanded and revised text discussing HAL exception handler code structure.

October 2005 5.1.0

■ Updated references to HAL exception-handler assembly source files in section “HAL 
Exception Handler Files”.

■ Added description of alt_irq_disable() and alt_irq_enable() in section “Nios II 
Interrupt Service Routines”.

May 2005 5.0.0 Added tightly-coupled memory information.

December 2004 1.2 Corrected the “Registering the Button PIO ISR with the HAL” example.

September 2004 1.1
■ Changed examples.

■ Added ISR performance data.

May 2004 1.0 Initial release.
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