
ModelSim® Tutorial

Software Version 10.1a 

 

© 1991-2012 Mentor Graphics Corporation 
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.



This document is for information and instruction purposes. Mentor Graphics reserves the right to make 
changes in specifications and other information contained in this publication without prior notice, and the 
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been 
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in 
written agreements between Mentor Graphics and its customers. No representation or other affirmation 
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor 
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR 
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) 
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, 
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF 
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97 

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely 
at private expense and are commercial computer software provided with restricted rights. Use, 
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the 
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted 
Rights clause at FAR 52.227-19, as applicable. 

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

SupportNet: supportnet.mentor.com/
Send Feedback on Documentation: supportnet.mentor.com/doc_feedback_form

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of 
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the 
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to 
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’ 
trademarks may be viewed at: www.mentor.com/trademarks.

http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form
http://www.mentor.com/trademarks


ModelSim Tutorial, v10.1a 3
 

Table of Contents

Chapter 1
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Before you Begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Example Designs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2
Conceptual Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Basic Simulation Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Project Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Multiple Library Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Debugging Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 3
Basic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Create the Working Design Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Compile the Design Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Load the Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Run the Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Set Breakpoints and Step through the Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 4
Projects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Create a New Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Add Objects to the Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Changing Compile Order (VHDL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Compile the Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Load the Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Organizing Projects with Folders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Add Folders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Moving Files to Folders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Simulation Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 5
Working With Multiple Libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Creating the Resource Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Creating the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Linking to the Resource Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Verilog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
VHDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Linking to a Resource Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



Table of Contents

4 ModelSim Tutorial, v10.1a

Permanently Mapping VHDL Resource Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 6
Analyzing Waveforms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Loading a Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Add Objects to the Wave Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Zooming the Waveform Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Using Cursors in the Wave Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Working with a Single Cursor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Working with Multiple Cursors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 7
Viewing And Initializing Memories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

View a Memory and its Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Navigate Within the Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Export Memory Data to a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Initialize a Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Interactive Debugging Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 8
Automating Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Creating a Simple DO File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Running in Command-Line Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Using Tcl with the Simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Index

End-User License Agreement



ModelSim Tutorial, v10.1a 5
 

List of Figures

Figure 2-1. Basic Simulation Flow - Overview Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2-2. Project Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2-3. Multiple Library Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3-1. The Create a New Library Dialog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3-2. work Library Added to the Library Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3-3. Compile Source Files Dialog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3-4. Verilog Modules Compiled into work Library . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3-5. Loading Design with Start Simulation Dialog  . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3-6. The Design Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3-7. The Object Window and Processes Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3-8. Using the Popup Menu to Add Signals to Wave Window . . . . . . . . . . . . . . . . . 19
Figure 3-9. Waves Drawn in Wave Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 3-10. Setting Breakpoint in Source Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3-11. Setting Restart Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3-12. Blue Arrow Indicates Where Simulation Stopped. . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3-13. Values Shown in Objects Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3-14. Parameter Name and Value in Source Examine Window  . . . . . . . . . . . . . . . . 23
Figure 4-1. Create Project Dialog - Project Lab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4-2. Adding New Items to a Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 4-3. Add file to Project Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 4-4. Newly Added Project Files Display a ’?’ for Status . . . . . . . . . . . . . . . . . . . . . . 28
Figure 4-5. Compile Order Dialog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 4-6. Library Window with Expanded Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4-7. Structure(sim) window for a Loaded Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4-8. Adding New Folder to Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 4-9. A Folder Within a Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 4-10. Creating Subfolder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 4-11. A folder with a Sub-folder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 4-12. Changing File Location via the Project Compiler Settings Dialog. . . . . . . . . . 33
Figure 4-13. Simulation Configuration Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 4-14. A Simulation Configuration in the Project window . . . . . . . . . . . . . . . . . . . . . 35
Figure 4-15. Transcript Shows Options for Simulation Configurations . . . . . . . . . . . . . . . . 35
Figure 5-1. Creating New Resource Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 5-2. Compiling into the Resource Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 5-3. Verilog Simulation Error Reported in Transcript . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 5-4. VHDL Simulation Warning Reported in Main Window  . . . . . . . . . . . . . . . . . . 42
Figure 5-5. Specifying a Search Library in the Simulate Dialog. . . . . . . . . . . . . . . . . . . . . . 43
Figure 6-1. Panes of the Wave Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 6-2. Zooming in with the Mouse Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 6-3. Working with a Single Cursor in the Wave Window . . . . . . . . . . . . . . . . . . . . . 49



List of Figures

6 ModelSim Tutorial, v10.1a

Figure 6-4. Renaming a Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 6-5. Interval Measurement Between Two Cursors. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 6-6. A Locked Cursor in the Wave Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 7-1. The Memory List in the Memory window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 7-2. Verilog Memory Data Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 7-3. VHDL Memory Data Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 7-4. Verilog Data After Running Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 7-5. VHDL Data After Running Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 7-6. Changing the Address Radix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 7-7. New Address Radix and Line Length (Verilog. . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 7-8. New Address Radix and Line Length (VHDL)  . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 7-9. Goto Dialog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 7-10. Editing the Address Directly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 7-11. Searching for a Specific Data Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 7-12. Export Memory Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 7-13. Import Memory Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 7-14. Initialized Memory from File and Fill Pattern  . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 7-15. Data Increments Starting at Address 251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 7-16. Original Memory Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 7-17. Changing Memory Content for a Range of Addresses**OK . . . . . . . . . . . . . . 65
Figure 7-18. Random Content Generated for a Range of Addresses. . . . . . . . . . . . . . . . . . . 66
Figure 7-19. Changing Memory Contents by Highlighting. . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 7-20. Entering Data to Change**OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 7-21. Changed Memory Contents for the Specified Addresses . . . . . . . . . . . . . . . . . 67
Figure 8-1. Wave Window After Running the DO File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 8-2. The counter.wlf Dataset in the Main Window Workspace . . . . . . . . . . . . . . . . . 72



ModelSim Tutorial, v10.1a 7
 

Chapter 1
Introduction

Assumptions
Using this tutorial for ModelSim™ is based on the following assumptions: 

• You are familiar with how to use your operating system, along with its window 
management system and graphical interface: OpenWindows, OSF/Motif, CDE, KDE, 
GNOME, or Microsoft Windows XP.

• You have a working knowledge of the language in which your design and/or test bench 
is written (such as VHDL, Verilog). Although ModelSim is an excellent application to 
use while learning HDL concepts and practices, this tutorial is not intended to support 
that goal. 

Before you Begin
Preparation for some of the lessons leaves certain details up to you. You will decide the best 
way to create directories, copy files, and execute programs within your operating system. 
(When you are operating the simulator within ModelSim’s GUI, the interface is consistent for 
all platforms.)

Examples show Windows path separators - use separators appropriate for your operating system 
when trying the examples.

Example Designs
ModelSim comes with Verilog and VHDL versions of the designs used in these lessons. This 
allows you to do the tutorial regardless of which license type you have. Though we have tried to 
minimize the differences between the Verilog and VHDL versions, we could not do so in all 
cases. In cases where the designs differ (e.g., line numbers or syntax), you will find language-
specific instructions. Follow the instructions that are appropriate for the language you use.



ModelSim Tutorial, v10.1a8

Introduction
Before you Begin



ModelSim Tutorial, v10.1a 9
 

Chapter 2
Conceptual Overview

Introduction

ModelSim is a verification and simulation tool for VHDL, Verilog, SystemVerilog, and mixed-
language designs. 

This lesson provides a brief conceptual overview of the ModelSim simulation environment. It is 
divided into fourtopics, which you will learn more about in subsequent lessons.

• Basic simulation flow — Refer to Chapter 3, Basic Simulation.

• Project flow — Refer to Chapter 4, Projects.

• Multiple library flow — Refer to Chapter 5, Working With Multiple Libraries.

• Debugging tools — Refer to remaining lessons.

Basic Simulation Flow
The following diagram shows the basic steps for simulating a design in ModelSim.

Figure 2-1. Basic Simulation Flow - Overview Lab

Create a working library

Compile design files

Load and Run simulation

Debug results



ModelSim Tutorial, v10.1a10

Conceptual Overview
Project Flow

• Creating the Working Library

In ModelSim, all designs are compiled into a library. You typically start a new 
simulation in ModelSim by creating a working library called "work," which is the 
default library name used by the compiler as the default destination for compiled design 
units.

• Compiling Your Design

After creating the working library, you compile your design units into it. The ModelSim 
library format is compatible across all supported platforms. You can simulate your 
design on any platform without having to recompile your design.

• Loading the Simulator with Your Design and Running the Simulation

With the design compiled, you load the simulator with your design by invoking the 
simulator on a top-level module (Verilog) or a configuration or entity/architecture pair 
(VHDL). 

Assuming the design loads successfully, the simulation time is set to zero, and you enter 
a run command to begin simulation.

• Debugging Your Results

If you don’t get the results you expect, you can use ModelSim’s robust debugging 
environment to track down the cause of the problem.

Project Flow
A project is a collection mechanism for an HDL design under specification or test. Even though 
you don’t have to use projects in ModelSim, they may ease interaction with the tool and are 
useful for organizing files and specifying simulation settings.

The following diagram shows the basic steps for simulating a design within a ModelSim 
project.



Conceptual Overview
Multiple Library Flow

ModelSim Tutorial, v10.1a 11
 

Figure 2-2. Project Flow

As you can see, the flow is similar to the basic simulation flow. However, there are two 
important differences:

• You do not have to create a working library in the project flow; it is done for you 
automatically.

• Projects are persistent. In other words, they will open every time you invoke ModelSim 
unless you specifically close them.

Multiple Library Flow
ModelSim uses libraries in two ways: 1) as a local working library that contains the compiled 
version of your design; 2) as a resource library. The contents of your working library will 
change as you update your design and recompile. A resource library is typically static and 
serves as a parts source for your design. You can create your own resource libraries, or they 
may be supplied by another design team or a third party (e.g., a silicon vendor).

You specify which resource libraries will be used when the design is compiled, and there are 
rules to specify in which order they are searched. A common example of using both a working 
library and a resource library is one where your gate-level design and test bench are compiled 
into the working library, and the design references gate-level models in a separate resource 
library.

The diagram below shows the basic steps for simulating with multiple libraries.

Create a project

Add files to the project

Run simulation

Debug results

Compile design files



ModelSim Tutorial, v10.1a12

Conceptual Overview
Debugging Tools

Figure 2-3. Multiple Library Flow

You can also link to resource libraries from within a project. If you are using a project, you 
would replace the first step above with these two steps: create the project and add the test bench 
to the project.

Debugging Tools
ModelSim offers numerous tools for debugging and analyzing your design. Several of these 
tools are covered in subsequent lessons, including:

• Using projects

• Working with multiple libraries

• Setting breakpoints and stepping through the source code

• Viewing waveforms and measuring time

• Viewing and initializing memories

• Creating stimulus with the Waveform Editor

• Automating simulation

Create a working library

Compile design files

Run simulation

Debug results

Link to resource libraries



ModelSim Tutorial, v10.1a 13
 

Chapter 3
Basic Simulation

Introduction

In this lesson you will go step-by-step through the basic simulation flow:

1. Create the Working Design Library

2. Compile the Design Units

3. Load the Design

4. Run the Simulation

Design Files for this Lesson

The sample design for this lesson is a simple 8-bit, binary up-counter with an associated test 
bench. The pathnames are as follows:

Verilog – <install_dir>/examples/tutorials/verilog/basicSimulation/counter.v and tcounter.v

VHDL – <install_dir>/examples/tutorials/vhdl/basicSimulation/counter.vhd and tcounter.vhd

This lesson uses the Verilog files counter.v and tcounter.v. If you have a VHDL license, use 
counter.vhd and tcounter.vhd instead. Or, if you have a mixed license, feel free to use the 
Verilog test bench with the VHDL counter or vice versa.

Related Reading

User’s Manual Chapters: Design Libraries, Verilog and SystemVerilog Simulation, and VHDL 
Simulation. 

Reference Manual commands: vlib, vmap, vlog, vcom, view, and run.

Create the Working Design Library
Before you can simulate a design, you must first create a library and compile the source code 
into that library.

1. Create a new directory and copy the design files for this lesson into it.

Start by creating a new directory for this exercise (in case other users will be working 
with these lessons). 



ModelSim Tutorial, v10.1a14

Basic Simulation
Create the Working Design Library

Verilog: Copy counter.v and tcounter.v files from 
/<install_dir>/examples/tutorials/verilog/basicSimulation to the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from 
/<install_dir>/examples/tutorials/vhdl/basicSimulation to the new directory. 

2. Start ModelSim if necessary.

a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

Upon opening ModelSim for the first time, you will see the Welcome to ModelSim 
dialog. Click Close.

b. Select File > Change Directory and change to the directory you created in step 1. 

3. Create the working library.

a. Select File > New > Library.

This opens a dialog where you specify physical and logical names for the library 
(Figure 3-1). You can create a new library or map to an existing library. We’ll be 
doing the former.

Figure 3-1. The Create a New Library Dialog

b. Type work in the Library Name field (if it isn’t already entered automatically).

c. Click OK.

ModelSim creates a directory called work and writes a specially-formatted file 
named _info into that directory. The _info file must remain in the directory to 
distinguish it as a ModelSim library. Do not edit the folder contents from your 
operating system; all changes should be made from within ModelSim.



Basic Simulation
Compile the Design Units

ModelSim Tutorial, v10.1a 15
 

ModelSim also adds the library to the Library window (Figure 3-2) and records the 
library mapping for future reference in the ModelSim initialization file 
(modelsim.ini).

Figure 3-2. work Library Added to the Library Window

When you pressed OK in step 3c above, the following was printed to the Transcript window:

vlib work
vmap work work

These two lines are the command-line equivalents of the menu selections you made. Many 
command-line equivalents will echo their menu-driven functions in this fashion. 

Compile the Design Units
With the working library created, you are ready to compile your source files.

You can compile by using the menus and dialogs of the graphic interface, as in the Verilog 
example below, or by entering a command at the ModelSim> prompt.

1. Compile counter.v and tcounter.v.

a. Select Compile > Compile. This opens the Compile Source Files dialog 
(Figure 3-3).

If the Compile menu option is not available, you probably have a project open. If so, 
close the project by making the Library window active and selecting File > Close 
from the menus.

b. Select both counter.v and tcounter.v modules from the Compile Source Files dialog 
and click Compile. The files are compiled into the work library.

c. When compile is finished, click Done.



ModelSim Tutorial, v10.1a16

Basic Simulation
Load the Design

Figure 3-3. Compile Source Files Dialog

2. View the compiled design units.

a. In the Library window, click the ’+’ icon next to the work library and you will see 
two design units (Figure 3-4). You can also see their types (Modules, Entities, etc.) 
and the path to the underlying source files. 

Figure 3-4. Verilog Modules Compiled into work Library

Load the Design
1. Load the test_counter module into the simulator.

a. In the Library window, click the ‘+’ sign next to the work library to show the files 
contained there. 

b. Double-click test_counter to load the design.



Basic Simulation
Load the Design

ModelSim Tutorial, v10.1a 17
 

You can also load the design by selecting Simulate > Start Simulation in the menu 
bar. This opens the Start Simulation dialog. With the Design tab selected, click the 
’+’ sign next to the work library to see the counter and test_counter modules. Select 
the test_counter module and click OK (Figure 3-5).

Figure 3-5. Loading Design with Start Simulation Dialog

When the design is loaded, a Structure window opens (labeled sim). This window 
displays the hierarchical structure of the design as shown in Figure 3-6. You can 
navigate within the design hierarchy in the Structure (sim) window by clicking on 
any line with a ’+’ (expand) or ’-’ (contract) icon. 



ModelSim Tutorial, v10.1a18

Basic Simulation
Load the Design

Figure 3-6. The Design Hierarchy

In addition, an Objects window and a Processes window opens (Figure 3-7). The 
Objects window shows the names and current values of data objects in the current 
region selected in the Structure (sim) window. Data objects include signals, nets, 
registers, constants and variables not declared in a process, generics, parameters.

The Processes window displays a list of HDL processes in one of four viewing 
modes: Active, In Region, Design, and Hierarchical. The Design view mode is 
intended for primary navigation of ESL (Electronic System Level) designs where 
processes are a foremost consideration. By default, this window displays the active 
processes in your simulation (Active view mode).

Figure 3-7. The Object Window and Processes Window



Basic Simulation
Run the Simulation

ModelSim Tutorial, v10.1a 19
 

Run the Simulation
We’re ready to run the simulation. But before we do, we’ll open the Wave window and add 
signals to it. 

1. Open the Wave window.

a. Enter view wave at the command line.

The Wave window opens in the right side of the Main window. Resize it so it is 
visible. 

You can also use the View > Wave menu selection to open a Wave window. The 
Wave window is just one of several debugging windows available on the View 
menu.

2. Add signals to the Wave window.

a. In the Structure (sim) window, right-click test_counter to open a popup context 
menu.

b. Select AddTo > Wave > All items in region (Figure 3-8).

All signals in the design are added to the Wave window.

Figure 3-8. Using the Popup Menu to Add Signals to Wave Window

3. Run the simulation.

a. Click the Run icon.

The simulation runs for 100 ns (the default simulation length) and waves are 
drawn in the Wave window. 

b. Enter run 500 at the VSIM> prompt in the Transcript window.



ModelSim Tutorial, v10.1a20

Basic Simulation
Set Breakpoints and Step through the Source

The simulation advances another 500 ns for a total of 600 ns (Figure 3-9).

Figure 3-9. Waves Drawn in Wave Window

c. Click the Run -All icon on the Main or Wave window toolbar.

The simulation continues running until you execute a break command or it 
hits a statement in your code (e.g., a Verilog $stop statement) that halts the 
simulation.

d. Click the Break icon to stop the simulation.

Set Breakpoints and Step through the Source
Next you will take a brief look at one interactive debugging feature of the ModelSim 
environment. You will set a breakpoint in the Source window, run the simulation, and then step 
through the design under test. Breakpoints can be set only on executable lines, which are 
indicated with red line numbers.

1. Open counter.v in the Source window.

a. Select View > Files to open the Files window.

b. Click the + sign next to the sim filename to see the contents of vsim.wlf dataset.

c. Double-click counter.v (or counter.vhd if you are simulating the VHDL files) to 
open the file in the Source window.

2. Set a breakpoint on line 36 of counter.v (or, line 39 of counter.vhd for VHDL).

a. Scroll to line 36 and click in the Ln# (line number) column next to the line number.

A red ball appears in the line number column at line number 36 (Figure 3-10), 
indicating that a breakpoint has been set.



Basic Simulation
Set Breakpoints and Step through the Source

ModelSim Tutorial, v10.1a 21
 

Figure 3-10. Setting Breakpoint in Source Window

3. Disable, enable, and delete the breakpoint.

a. Click the red ball to disable the breakpoint. It will become a black ball.

b. Click the black ball again to re-enable the breakpoint. It will become a red ball.

c. Click the red ball with your right mouse button and select Remove Breakpoint 36.

d. Click in the line number column next to line number 36 again to re-create the 
breakpoint.

4. Restart the simulation.

a. Click the Restart icon to reload the design elements and reset the simulation 
time to zero.

The Restart dialog that appears gives you options on what to retain during 
the restart (Figure 3-11).

Figure 3-11. Setting Restart Functions

b. Click the Restart button in the Restart dialog.



ModelSim Tutorial, v10.1a22

Basic Simulation
Set Breakpoints and Step through the Source

c. Click the Run -All icon.

The simulation runs until the breakpoint is hit. When the simulation hits the 
breakpoint, it stops running, highlights the line with a blue arrow in the 
Source view (Figure 3-12), and issues a Break message in the Transcript window.

Figure 3-12. Blue Arrow Indicates Where Simulation Stopped.

When a breakpoint is reached, typically you want to know one or more signal 
values. You have several options for checking values:

• look at the values shown in the Objects window (Figure 3-13)

Figure 3-13. Values Shown in Objects Window

• set your mouse pointer over a variable in the Source window and a yellow box 
will appear with the variable name and the value of that variable at the time of 
the selected cursor in the Wave window

• highlight a signal, parameter, or variable in the Source window, right-click it, 
and select Examine from the pop-up menu to display the variable and its current 
value in a Source Examine window (Figure 3-14)



Basic Simulation
Set Breakpoints and Step through the Source

ModelSim Tutorial, v10.1a 23
 

Figure 3-14. Parameter Name and Value in Source Examine Window

• use the examine command at the VSIM> prompt to output a variable value to 
the Transcript window (i.e., examine count)

5. Try out the step commands.

a. Click the Step Into icon on the Step toolbar.

This single-steps the debugger.

Experiment on your own. Set and clear breakpoints and use the Step, Step Over, and 
Continue Run commands until you feel comfortable with their operation.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Simulate > End Simulation. 

2. Click Yes when prompted to confirm that you wish to quit simulating.



ModelSim Tutorial, v10.1a24

Basic Simulation
Set Breakpoints and Step through the Source



ModelSim Tutorial, v10.1a 25
 

Chapter 4
Projects

Introduction

In this lesson you will practice creating a project. 

At a minimum, projects contain a work library and a session state that is stored in an .mpf file. A 
project may also consist of:

• HDL source files or references to source files

• other files such as READMEs or other project documentation

• local libraries

• references to global libraries

Design Files for this Lesson

The sample design for this lesson is a simple 8-bit, binary up-counter with an associated test 
bench. The pathnames are as follows:

Verilog – <install_dir>/examples/tutorials/verilog/projects/counter.v and tcounter.v

VHDL – <install_dir>/examples/tutorials/vhdl/projects/counter.vhd and tcounter.vhd

This lesson uses the Verilog files tcounter.v and counter.v. If you have a VHDL license, use 
tcounter.vhd and counter.vhd instead.

Related Reading

User’s Manual Chapter: Projects. 

Create a New Project
1. Create a new directory and copy the design files for this lesson into it.

Start by creating a new directory for this exercise (in case other users will be working 
with these lessons). 

Verilog: Copy counter.v and tcounter.v files from 
/<install_dir>/examples/tutorials/verilog/projects to the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from 
/<install_dir>/examples/tutorials/vhdl/projects to the new directory. 



ModelSim Tutorial, v10.1a26

Projects
Create a New Project

2. If you just finished the previous lesson, ModelSim should already be running. If not, 
start ModelSim.

a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

b. Select File > Change Directory and change to the directory you created in step 1. 

3. Create a new project.

a. Select File > New > Project (Main window) from the menu bar.

This opens the Create Project dialog where you can enter a Project Name, Project 
Location (i.e., directory), and Default Library Name (Figure 4-1). You can also 
reference library settings from a selected .ini file or copy them directly into the 
project. The default library is where compiled design units will reside. 

b. Type test in the Project Name field.

c. Click the Browse button for the Project Location field to select a directory where the 
project file will be stored. 

d. Leave the Default Library Name set to work.

e. Click OK.

Figure 4-1. Create Project Dialog - Project Lab

Add Objects to the Project
Once you click OK to accept the new project settings, a blank Project window and the “Add 
items to the Project” dialog will appear (Figure 4-2). From the dialog you can create a new 
design file, add an existing file, add a folder for organization purposes, or create a simulation 
configuration (discussed below). 



Projects
Create a New Project

ModelSim Tutorial, v10.1a 27
 

Figure 4-2. Adding New Items to a Project

1. Add two existing files.

a. Click Add Existing File.

This opens the Add file to Project dialog (Figure 4-3). This dialog lets you browse to 
find files, specify the file type, specify a folder to which the file will be added, and 
identify whether to leave the file in its current location or to copy it to the project 
directory.

Figure 4-3. Add file to Project Dialog

b. Click the Browse button for the File Name field. This opens the “Select files to add 
to project” dialog and displays the contents of the current directory.

c. Verilog: Select counter.v and tcounter.v and click Open.
VHDL: Select counter.vhd and tcounter.vhd and click Open.

This closes the “Select files to add to project” dialog and displays the selected files 
in the “Add file to Project” dialog (Figure 4-3).

d. Click OK to add the files to the project.



ModelSim Tutorial, v10.1a28

Projects
Create a New Project

e. Click Close to dismiss the Add items to the Project dialog.

You should now see two files listed in the Project window (Figure 4-4). Question-
mark icons in the Status column indicate that the file has not been compiled or that 
the source file has changed since the last successful compile. The other columns 
identify file type (e.g., Verilog or VHDL), compilation order, and modified date.

Figure 4-4. Newly Added Project Files Display a ’?’ for Status

Changing Compile Order (VHDL)
By default ModelSim performs default binding of VHDL designs when you load the design 
with vsim. However, you can elect to perform default binding at compile time. (For details, 
refer to the section Default Binding in the User’s Manual.) If you elect to do default binding at 
compile, then the compile order is important. Follow these steps to change compilation order 
within a project.

1. Change the compile order.

a. Select Compile > Compile Order.

This opens the Compile Order dialog box.

b. Click the Auto Generate button. 

ModelSim determines the compile order by making multiple passes over the files. It 
starts compiling from the top; if a file fails to compile due to dependencies, it moves 
that file to the bottom and then recompiles it after compiling the rest of the files. It 
continues in this manner until all files compile successfully or until a file(s) can’t be 
compiled for reasons other than dependency. 

Alternatively, you can select a file and use the Move Up and Move Down buttons to 
put the files in the correct order (Figure 4-5). 



Projects
Create a New Project

ModelSim Tutorial, v10.1a 29
 

Figure 4-5. Compile Order Dialog

c. Click OK to close the Compile Order dialog.

Compile the Design
1. Compile the files.

a. Right-click either counter.v or tcounter.v in the Project window and select Compile 
> Compile All from the pop-up menu.

ModelSim compiles both files and changes the symbol in the Status column to a 
green check mark. A check mark means the compile succeeded. If compile fails, the 
symbol will be a red ’X’, and you will see an error message in the Transcript 
window.

2. View the design units.

a. Click the Library tab (Figure 4-6).

b. Click the ’+’ icon next to the work library.

You should see two compiled design units, their types (modules in this case), and the 
path to the underlying source files.



ModelSim Tutorial, v10.1a30

Projects
Create a New Project

Figure 4-6. Library Window with Expanded Library

Load the Design
1. Load the test_counter design unit. 

a. Double-click the test_counter design unit.

The Structure (sim) window appears as part of the tab group with the Library and 
Project windows (Figure 4-7).

Figure 4-7. Structure(sim) window for a Loaded Design

At this point you would typically run the simulation and analyze or debug your 
design like you did in the previous lesson. For now, you’ll continue working with 



Projects
Organizing Projects with Folders

ModelSim Tutorial, v10.1a 31
 

the project. However, first you need to end the simulation that started when you 
loaded test_counter.

2. End the simulation.

a. Select Simulate > End Simulation.

b. Click Yes.

Organizing Projects with Folders
If you have a lot of files to add to a project, you may want to organize them in folders. You can 
create folders either before or after adding your files. If you create a folder before adding files, 
you can specify in which folder you want a file placed at the time you add the file (see Folder 
field in Figure 4-3). If you create a folder after adding files, you edit the file properties to move 
it to that folder. 

Add Folders
As shown previously in Figure 4-2, the Add items to the Project dialog has an option for adding 
folders. If you have already closed that dialog, you can use a menu command to add a folder.

1. Add a new folder.

a. Right-click in the Projects window and select Add to Project > Folder.

b. Type Design Files in the Folder Name field (Figure 4-8).

Figure 4-8. Adding New Folder to Project

c. Click OK.

The new Design Files folder is displayed in the Project window (Figure 4-9). 



ModelSim Tutorial, v10.1a32

Projects
Organizing Projects with Folders

Figure 4-9. A Folder Within a Project

2. Add a sub-folder.

a. Right-click anywhere in the Project window and select Add to Project > Folder.

b. Type HDL in the Folder Name field (Figure 4-10).

Figure 4-10. Creating Subfolder

c. Click the Folder Location drop-down arrow and select Design Files.

d. Click OK.

A ’+’ icon appears next to the Design Files folder in the Project window 
(Figure 4-11).

Figure 4-11. A folder with a Sub-folder



Projects
Simulation Configurations

ModelSim Tutorial, v10.1a 33
 

e. Click the ’+’ icon to see the HDL sub-folder.

Moving Files to Folders
If you don’t place files into a folder when you first add the files to the project, you can move 
them into a folder using the properties dialog.

1. Move tcounter.v and counter.v to the HDL folder.

a. Select both counter.v and tcounter.v in the Project window. 

b. Right-click either file and select Properties.

This opens the Project Compiler Settings dialog (Figure 4-12), which allows you to 
set a variety of options on your design files.

Figure 4-12. Changing File Location via the Project Compiler Settings Dialog

c. Click the Place In Folder drop-down arrow and select HDL.

d. Click OK.

The selected files are moved into the HDL folder. Click the ’+’ icon next to the HDL 
folder to see the files.

The files are now marked with a ’?’ in the Status column because you moved the 
files. The project no longer knows if the previous compilation is still valid.

Simulation Configurations
A Simulation Configuration associates a design unit(s) and its simulation options. For example, 
let’s say that every time you load tcounter.v you want to set the simulator resolution to 
picoseconds (ps) and enable event order hazard checking. Ordinarily, you would have to specify 
those options each time you load the design. With a Simulation Configuration, you specify 
options for a design and then save a “configuration” that associates the design and its options. 



ModelSim Tutorial, v10.1a34

Projects
Simulation Configurations

The configuration is then listed in the Project window and you can double-click it to load 
tcounter.v along with its options.

1. Create a new Simulation Configuration.

a. Right-click in the Project window and select Add to Project > Simulation 
Configuration from the popup menu.

This opens the Add Simulation Configuration dialog (Figure 4-13). The tabs in this 
dialog present several simulation options. You may want to explore the tabs to see 
what is available. You can consult the ModelSim User’s Manual to get a description 
of each option. 

Figure 4-13. Simulation Configuration Dialog

b. Type counter in the Simulation Configuration Name field.

c. Select HDL from the Place in Folder drop-down.

d. Click the ’+’ icon next to the work library and select test_counter.



Projects
Simulation Configurations

ModelSim Tutorial, v10.1a 35
 

e. Click the Resolution drop-down and select ps.

f. For Verilog, click the Verilog tab and check Enable hazard checking (-hazards).

g. Click Save.

The files tcounter.v and counter.v show question mark icons in the status column 
because they have changed location since they were last compiled and need to be 
recompiled.

h. Select one of the files, tcounter.v or counter.v. 

i. Select Compile > Compile All.

The Project window now shows a Simulation Configuration named counter in the 
HDL folder (Figure 4-14). 

Figure 4-14. A Simulation Configuration in the Project window

2. Load the Simulation Configuration.

a. Double-click the counter Simulation Configuration in the Project window.

In the Transcript window of the Main window, the vsim (the ModelSim simulator) 
invocation shows the -hazards and -t ps switches (Figure 4-15). These are the 
command-line equivalents of the options you specified in the Simulate dialog. 

Figure 4-15. Transcript Shows Options for Simulation Configurations



ModelSim Tutorial, v10.1a36

Projects
Simulation Configurations

Lesson Wrap-Up

This concludes this lesson. Before continuing you need to end the current simulation and close 
the current project.

1. Select Simulate > End Simulation. Click Yes.

2. In the Project window, right-click and select Close Project.

If you do not close the project, it will open automatically the next time you start 
ModelSim.



ModelSim Tutorial, v10.1a 37
 

Chapter 5
Working With Multiple Libraries

Introduction

In this lesson you will practice working with multiple libraries. You might have multiple 
libraries to organize your design, to access IP from a third-party source, or to share common 
parts between simulations. 

You will start the lesson by creating a resource library that contains the counter design unit. 
Next, you will create a project and compile the test bench into it. Finally, you will link to the 
library containing the counter and then run the simulation.

Design Files for this Lesson

The sample design for this lesson is a simple 8-bit, binary up-counter with an associated test 
bench. The pathnames are as follows:

Verilog – <install_dir>/examples/tutorials/verilog/libraries/counter.v and tcounter.v

VHDL – <install_dir>/examples/tutorials/vhdl/libraries/counter.vhd and tcounter.vhd

This lesson uses the Verilog files tcounter.v and counter.v in the examples. If you have a VHDL 
license, use tcounter.vhd and counter.vhd instead.

Related Reading

User’s Manual Chapter: Design Libraries. 

Creating the Resource Library
Before creating the resource library, make sure the modelsim.ini in your install directory is 
“Read Only.” This will prevent permanent mapping of resource libraries to the master 
modelsim.ini file. See Permanently Mapping VHDL Resource Libraries.

1. Create a directory for the resource library.

Create a new directory called resource_library. Copy counter.v from 
<install_dir>/examples/tutorials/verilog/libraries to the new directory.

2. Create a directory for the test bench.



ModelSim Tutorial, v10.1a38

Working With Multiple Libraries
Creating the Resource Library

Create a new directory called testbench that will hold the test bench and project files. 
Copy tcounter.v from <install_dir>/examples/tutorials/verilog/libraries to the new 
directory.

You are creating two directories in this lesson to mimic the situation where you receive 
a resource library from a third-party. As noted earlier, we will link to the resource 
library in the first directory later in the lesson.

3. Start ModelSim and change to the resource_library directory.

If you just finished the previous lesson, ModelSim should already be running. If not, 
start ModelSim.

a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

b. Select File > Change Directory and change to the resource_library directory you 
created in step 1. 

4. Create the resource library.

a. Select File > New > Library.

b. Type parts_lib in the Library Name field (Figure 5-1).

Figure 5-1. Creating New Resource Library

The Library Physical Name field is filled out automatically.

Once you click OK, ModelSim creates a directory for the library, lists it in the 
Library window, and modifies the modelsim.ini file to record this new library for the 
future. 

5. Compile the counter into the resource library.



Working With Multiple Libraries
Creating the Project

ModelSim Tutorial, v10.1a 39
 

a. Click the Compile icon on the Main window toolbar. 

b. Select the parts_lib library from the Library list (Figure 5-2).

Figure 5-2. Compiling into the Resource Library

c. Double-click counter.v to compile it.

d. Click Done.

You now have a resource library containing a compiled version of the counter 
design unit.

6. Change to the testbench directory.

a. Select File > Change Directory and change to the testbench directory you created 
in step 2. 

Creating the Project
Now you will create a project that contains tcounter.v, the counter’s test bench.

1. Create the project.

a. Select File > New > Project. 

b. Type counter in the Project Name field.

c. Do not change the Project Location field or the Default Library Name field. (The 
default library name is work.)



ModelSim Tutorial, v10.1a40

Working With Multiple Libraries
Linking to the Resource Library

d. Make sure “Copy Library Mappings” is selected. The default modelsim.ini file will 
be used.

e. Click OK.

2. Add the test bench to the project.

a. Click Add Existing File in the Add items to the Project dialog.

b. Click the Browse button and select tcounter.v in the “Select files to add to project” 
dialog.

c. Click Open.

d. Click OK.

e. Click Close to dismiss the “Add items to the Project” dialog.

The tcounter.v file is listed in the Project window.

3. Compile the test bench.

a. Right-click tcounter.v and select Compile > Compile Selected.

Linking to the Resource Library
To wrap up this part of the lesson, you will link to the parts_lib library you created earlier. But 
first, try loading the test bench without the link and see what happens. 

ModelSim responds differently for Verilog and VHDL in this situation. 

Verilog

Load the Verilog Test Bench

1. Load a Verilog design with a missing resource library.

a. In the Library window, click the ’+’ icon next to the work library and double-click 
test_counter.

The Transcript reports an error (Figure 5-3). When you see a message that contains 
text like "Error: (vsim-3033)", you can view more detail by using the verror 
command.



Working With Multiple Libraries
Linking to the Resource Library

ModelSim Tutorial, v10.1a 41
 

Figure 5-3. Verilog Simulation Error Reported in Transcript

b. Type verror 3033 at the ModelSim> prompt.

The expanded error message tells you that a design unit could not be found for 
instantiation. It also tells you that the original error message should list which 
libraries ModelSim searched. In this case, the original message says ModelSim 
searched only work.

c. Type quit -sim to quit the simulation.

The process for linking to a resource library differs between Verilog and VHDL. If you are 
using Verilog, follow the steps in Linking to a Resource Library. If you are using VHDL, follow 
the steps in Permanently Mapping VHDL Resource Libraries one page later.

VHDL

Load the VHDL Test Bench

1. Load the VHDL test bench with a missing resource library.

a. In the Library window, click the ’+’ icon next to the work library and double-click 
test_counter.

The Main window Transcript reports a warning (Figure 5-4). When you see a 
message that contains text like "Warning: (vsim-3473)", you can view more detail 
by using the verror command.



ModelSim Tutorial, v10.1a42

Working With Multiple Libraries
Linking to the Resource Library

Figure 5-4. VHDL Simulation Warning Reported in Main Window

b. Type verror 3473 at the VSIM> prompt.

The expanded error message tells you that a component (’dut’ in this case) has not 
been explicitly bound and no default binding can be found.

c. Type quit -sim to quit the simulation.

Linking to a Resource Library
Linking to a resource library requires that you specify a "search library" when you invoke the 
simulator.

1. Specify a search library during simulation.

a. Click the Simulate icon on the Main window toolbar. 

b. Click the ’+’ icon next to the work library and select test_counter.

c. Click the Libraries tab.

d. Click the Add button next to the Search Libraries field and browse to parts_lib in the 
resource_library directory you created earlier in the lesson.

e. Click OK.

The dialog should have parts_lib listed in the Search Libraries field (Figure 5-5).

f. Click OK.

The design loads without errors.



Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

ModelSim Tutorial, v10.1a 43
 

Figure 5-5. Specifying a Search Library in the Simulate Dialog

Permanently Mapping VHDL Resource Libraries
If you reference particular VHDL resource libraries in every VHDL project or simulation, you 
may want to permanently map the libraries. Doing this requires that you edit the master 
modelsim.ini file in the installation directory. Though you won’t actually practice it in this 
tutorial, here are the steps for editing the file:

1. Locate the modelsim.ini file in the ModelSim installation directory 
(<install_dir>/modeltech/modelsim.ini).

2. IMPORTANT - Make a backup copy of the file.

3. Change the file attributes of modelsim.ini so it is no longer "read-only."

4. Open the file and enter your library mappings in the [Library] section. For example:

parts_lib = C:/libraries/parts_lib

5. Save the file.

6. Change the file attributes so the file is "read-only" again. 



ModelSim Tutorial, v10.1a44

Working With Multiple Libraries
Permanently Mapping VHDL Resource Libraries

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation and close 
the project.

1. Select Simulate > End Simulation. Click Yes.

2. Select the Project window to make it active.

3. Select File > Close. Click OK.



ModelSim Tutorial, v10.1a 45
 

Chapter 6
Analyzing Waveforms

Introduction

The Wave window allows you to view the results of your simulation as HDL waveforms and 
their values. The Wave window is divided into a number of panes (Figure 6-1). You can resize 
the pathnames pane, the values pane, and the waveform pane by clicking and dragging the bar 
between any two panes.

Figure 6-1. Panes of the Wave Window

Related Reading

User’s Manual sections: Wave Window and Recording Simulation Results With Datasets



ModelSim Tutorial, v10.1a46

Analyzing Waveforms
Loading a Design

Loading a Design
For the examples in this lesson, we will use the design simulated in Basic Simulation.

1. If you just finished the previous lesson, ModelSim should already be running. If not, 
start ModelSim.

a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

2. Load the design.

a. Select File > Change Directory and open the directory you created in the “Basic 
Simulation” lesson.

The work library should already exist.

b. Click the ’+’ icon next to the work library and double-click test_counter.

ModelSim loads the design and opens a Structure (sim) window.

Add Objects to the Wave Window
ModelSim offers several methods for adding objects to the Wave window. In this exercise, you 
will try different methods.

1. Add objects from the Objects window.

a. Open an Objects window by selecting View > Objects.

b. Select an item in the Objects window, right-click, and then select Add > To Wave > 
Signals in Region.

ModelSim opens a Wave window and displays signals in the region.

c. Place the cursor over an object and click the middle mouse button to place an object 
in the Wave window.

d. Select a group of objects then click the middle mouse button while the cursor is 
placed over the group.

2. Undock the Wave window.

By default ModelSim opens the Wave window in the right side of the Main window. 
You can change the default via the Preferences dialog (Tools > Edit Preferences). 
Refer to the Simulator GUI Preferences section in the User’s Manual for more 
information.

a. Click the undock icon on the Wave window. 



Analyzing Waveforms
Zooming the Waveform Display

ModelSim Tutorial, v10.1a 47
 

The Wave window becomes a standalone, un-docked window. Resize the window as 
needed.

3. Add objects using drag-and-drop.

You can drag an object to the Wave window from many other windows (e.g., Structure, 
Objects, and Locals).

a. In the Wave window, select Edit > Select All and then Edit > Delete.

b. Drag an instance from the Structure (sim) window to the Wave window.

ModelSim adds the objects for that instance to the Wave window.

c. Drag a signal from the Objects window to the Wave window.

d. In the Wave window, select Edit > Select All and then Edit > Delete.

4. Add objects using the add wave command.

a. Type the following at the VSIM> prompt.

add wave *

ModelSim adds all objects from the current region.

b. Run the simulation for 500 ns so you can see waveforms.

Zooming the Waveform Display
There are numerous methods for zooming the Waveform display.

1. Zoom the display using various techniques.

a. Click the Zoom Mode icon on the Wave window toolbar.

b. In the waveform display, click and drag down and to the right. 

You should see blue vertical lines and numbers defining an area to zoom in 
(Figure 6-2).



ModelSim Tutorial, v10.1a48

Analyzing Waveforms
Using Cursors in the Wave Window

Figure 6-2. Zooming in with the Mouse Pointer

c. Select View > Zoom > Zoom Last.

The waveform display restores the previous display range.

d. Click the Zoom In icon a few times.

e. In the waveform display, click and drag up and to the right. 

You should see a blue line and numbers defining an area to zoom out.

f. Select View > Zoom > Zoom Full.

Using Cursors in the Wave Window
Cursors mark simulation time in the Wave window. When ModelSim first draws the Wave 
window, it places one cursor at time zero. Clicking anywhere in the waveform display brings 
that cursor to the mouse location.

You can also: 

• add additional cursors; 

• name, lock, and delete cursors; 

• use cursors to measure time intervals; and 

• use cursors to find transitions.

First, dock the Wave window in the Main window by clicking the dock icon. 

Working with a Single Cursor
1. Position the cursor by clicking and dragging.



Analyzing Waveforms
Using Cursors in the Wave Window

ModelSim Tutorial, v10.1a 49
 

a. Click the Select Mode icon on the Wave window toolbar.

b. Click anywhere in the waveform pane.

A cursor is inserted at the time where you clicked (Figure 6-3).

Figure 6-3. Working with a Single Cursor in the Wave Window

c. Drag the cursor and observe the value pane.

The signal values change as you move the cursor. This is perhaps the easiest way to 
examine the value of a signal at a particular time.

d. In the waveform pane, drag the cursor to the right of a transition with the mouse 
positioned over a waveform. 

The cursor "snaps" to the nearest transition to the left. Cursors "snap" to a waveform 
edge if you click or drag a cursor to within ten pixels of a waveform edge. You can 
set the snap distance in the Window Preferences dialog (select Tools > Window 
Preferences). 

e. In the cursor pane, drag the cursor to the right of a transition (Figure 6-3).

The cursor doesn’t snap to a transition if you drag in the cursor pane. 

2. Rename the cursor.

a. Right-click "Cursor 1" in the cursor pane, and select and delete the text.

b. Type A and press Enter.

The cursor name changes to "A" (Figure 6-4).



ModelSim Tutorial, v10.1a50

Analyzing Waveforms
Using Cursors in the Wave Window

Figure 6-4. Renaming a Cursor

3. Jump the cursor to the next or previous transition.

a. Click signal count in the pathname pane.

b. Click the Find Next Transition icon on the Wave window toolbar. 

The cursor jumps to the next transition on the selected signal.

c. Click the Find Previous Transition icon on the Wave window toolbar. 

The cursor jumps to the previous transition on the selected signal.

Working with Multiple Cursors
1. Add a second cursor.

a. Click the Insert Cursor icon on the Wave window toolbar. 

b. Right-click the name of the new cursor and delete the text.

c. Type B and press Enter.

d. Drag cursor B and watch the interval measurement change dynamically (Figure 6-5).

Figure 6-5. Interval Measurement Between Two Cursors



Analyzing Waveforms
Using Cursors in the Wave Window

ModelSim Tutorial, v10.1a 51
 

2. Lock cursor B.

a. Right-click the yellow box associated with cursor B (at 56 ns).

b. Select Lock B from the popup menu.

The cursor color changes to red and you can no longer drag the cursor (Figure 6-6).

Figure 6-6. A Locked Cursor in the Wave Window

3. Delete cursor B.

a. Right-click cursor B (the red box at 56 ns) and select Delete B.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Simulate > End Simulation. Click Yes.



ModelSim Tutorial, v10.1a52

Analyzing Waveforms
Using Cursors in the Wave Window



ModelSim Tutorial, v10.1a 53
 

Chapter 7
Viewing And Initializing Memories

Introduction

In this lesson you will learn how to view and initialize memories. ModelSim defines and lists 
any of the following as memories:

• reg, wire, and std_logic arrays

• Integer arrays

• Single dimensional arrays of VHDL enumerated types other than std_logic

Design Files for this Lesson

The installation comes with Verilog and VHDL versions of the example design located in the 
following directories:

Verilog – <install_dir>/examples/tutorials/verilog/memory

VHDL – <install_dir>/examples/tutorials/vhdl/memory

This lesson uses the Verilog version for the exercises. If you have a VHDL license, use the 
VHDL version instead.

Related Reading

User’s Manual Section: Memory List Window.

Reference Manual commands: mem display, mem load, mem save, and radix.

Compile and Load the Design

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working 
with these lessons). Create the directory and copy all files from 
<install_dir>/examples/tutorials/verilog/memory to the new directory.

If you have a VHDL license, copy the files in 
<install_dir>/examples/tutorials/vhdl/memory instead.

2. Start ModelSim and change to the exercise directory.



ModelSim Tutorial, v10.1a54

Viewing And Initializing Memories
View a Memory and its Contents

If you just finished the previous lesson, ModelSim should already be running. If not, 
start ModelSim.

a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

b. Select File > Change Directory and change to the directory you created in step 1. 

3. Create the working library and compile the design.

a. Type vlib work at the ModelSim> prompt.

b. Verilog: 
Type vlog *.v at the ModelSim> prompt to compile all verilog files in the design.

VHDL:
Type vcom -93 sp_syn_ram.vhd dp_syn_ram.vhd ram_tb.vhd at the ModelSim> 
prompt. 

4. Load the design.

a. On the Library tab of the Main window Workspace, click the "+" icon next to the 
work library.

b. Double-click the ram_tb design unit to load the design. 

View a Memory and its Contents
The Memory window lists all memory instances in the design, showing for each instance the 
range, depth, and width. Double-clicking an instance opens a window displaying the memory 
data.

1. Open the Memory window and view the data of a memory instance

a. If the Memory window is not already open, select View > Memory List.

A Memory window opens as shown in Figure 7-1.

Figure 7-1. The Memory List in the Memory window



Viewing And Initializing Memories
View a Memory and its Contents

ModelSim Tutorial, v10.1a 55
 

b. Double-click the /ram_tb/spram1/mem instance in the memory list to view its 
contents.

A Memory Data window opens displaying the contents of spram1. The first column 
(blue hex characters) lists the addresses, and the remaining columns show the data 
values.

If you are using the Verilog example design, the data is all X (Figure 7-2) because 
you have not yet simulated the design.

Figure 7-2. Verilog Memory Data Window

If you are using the VHDL example design, the data is all zeros (Figure 7-3).

Figure 7-3. VHDL Memory Data Window

c. Double-click the instance /ram_tb/spram2/mem in the Memory window. This opens 
a second Memory Data window that contains the addresses and data for the spram2 
instance. For each memory instance that you click in the Memory window, a new 
Memory Data window opens.

2. Simulate the design.

a. Click the run -all icon in the Main window.



ModelSim Tutorial, v10.1a56

Viewing And Initializing Memories
View a Memory and its Contents

A Source window opens showing the source code for the ram_tb file at the point 
where the simulation stopped.

VHDL: 
In the Transcript window, you will see NUMERIC_STD warnings that can be ignored 
and an assertion failure that is functioning to stop the simulation. The simulation itself 
has not failed.

a. Click the Memory ...spram1/mem tab to bring that Memory data window to the 
foreground. The Verilog data fields are shown in Figure 7-4.

Figure 7-4. Verilog Data After Running Simulation

The VHDL data fields are show in Figure 7-5.

Figure 7-5. VHDL Data After Running Simulation

3. Change the address radix and the number of words per line for instance 
/ram_tb/spram1/mem.

a. Right-click anywhere in the spram1 Memory Data window and select Properties. 

b. The Properties dialog box opens (Figure 7-6). 



Viewing And Initializing Memories
View a Memory and its Contents

ModelSim Tutorial, v10.1a 57
 

Figure 7-6. Changing the Address Radix

c. For the Address Radix, select Decimal. This changes the radix for the addresses 
only. 

d. Select Words per line and type 1 in the field.

e. Click OK.

You can see the Verilog results of the settings in Figure 7-7 and the VHDL results in 
Figure 7-8. If the figure doesn’t match what you have in your ModelSim session, check 
to make sure you set the Address Radix rather than the Data Radix. Data Radix should 
still be set to Symbolic, the default.

Figure 7-7. New Address Radix and Line Length (Verilog



ModelSim Tutorial, v10.1a58

Viewing And Initializing Memories
View a Memory and its Contents

Figure 7-8. New Address Radix and Line Length (VHDL)

Navigate Within the Memory
You can navigate to specific memory address locations, or to locations containing particular 
data patterns. First, you will go to a specific address.

1. Use Goto to find a specific address.

a. Right-click anywhere in address column and select Goto (Figure 7-9).

The Goto dialog box opens in the data pane.

Figure 7-9. Goto Dialog

b. Type 30 in the Goto Address field.

c. Click OK.

The requested address appears in the top line of the window. 

2. Edit the address location directly.

a. To quickly move to a particular address, do the following:

i. Double click address 38 in the address column.

ii. Enter address 100 (Figure 7-10).



Viewing And Initializing Memories
View a Memory and its Contents

ModelSim Tutorial, v10.1a 59
 

Figure 7-10. Editing the Address Directly

iii. Press the Enter or Return key on your keyboard.

The pane jumps to address 100.

3. Now, let’s find a particular data entry.

a. Right-click anywhere in the data column and select Find.

The Find in dialog box opens (Figure 7-11).

Figure 7-11. Searching for a Specific Data Value

b. Verilog: Type 11111010 in the Find data: field and click Find Next.

VHDL: Type 250 in the Find data: field and click Find Next.

The data scrolls to the first occurrence of that address. Click Find Next a few more 
times to search through the list.

c. Click Close to close the dialog box.



ModelSim Tutorial, v10.1a60

Viewing And Initializing Memories
Export Memory Data to a File

Export Memory Data to a File
You can save memory data to a file that can be loaded at some later point in simulation. 

1. Export a memory pattern from the /ram_tb/spram1/mem instance to a file.

a. Make sure /ram_tb/spram1/mem is open and selected.

b. Select File > Export > Memory Data to bring up the Export Memory dialog box 
(Figure 7-12).

Figure 7-12. Export Memory Dialog

c. For the Address Radix, select Decimal.

d. For the Data Radix, select Binary.



Viewing And Initializing Memories
Initialize a Memory

ModelSim Tutorial, v10.1a 61
 

e. For the Words per Line, set to 1.

f. Type data_mem.mem into the Filename field.

g. Click OK.

You can view the exported file in any editor.

Memory pattern files can be exported as relocatable files, simply by leaving out the 
address information. Relocatable memory files can be loaded anywhere in a memory 
because no addresses are specified.

2. Export a relocatable memory pattern file from the /ram_tb/spram2/mem instance.

a. Select the Memory Data window for the /ram_tb/spram2/mem instance.

b. Right-click on the memory contents to open a popup menu and select Properties.

c. In the Properties dialog, set the Address Radix to Decimal; the Data Radix to 
Binary; and the Line Wrap to 1 Words per Line. Click OK to accept the changes 
and close the dialog.

d. Select File > Export > Memory Data to bring up the Export Memory dialog box. 

e. For the Address Range, specify a Start address of 0 and End address of 250.

f. For the File Format, select MTI and No addresses to create a memory pattern that 
you can use to relocate somewhere else in the memory, or in another memory.

g. For Address Radix select Decimal, and for Data Radix select Binary.

h. For the Words per Line, set to 1.

i. Enter the file name as reloc.mem, then click OK to save the memory contents and 
close the dialog. You will use this file for initialization in the next section.

Initialize a Memory
In ModelSim, it is possible to initialize a memory using one of three methods: from an exported 
memory file, from a fill pattern, or from both.

First, let’s initialize a memory from a file only. You will use the one you exported previously, 
data_mem.mem. 

1. View instance /ram_tb/spram3/mem.

a. Double-click the /ram_tb/spram3/mem instance in the Memories tab.

This will open a new Memory Data window to display the contents of 
/ram_tb/spram3/mem. Familiarize yourself with the contents so you can identify 
changes once the initialization is complete.



ModelSim Tutorial, v10.1a62

Viewing And Initializing Memories
Initialize a Memory

b. Right-click and select Properties to bring up the Properties dialog. 

c. Change the Address Radix to Decimal, Data Radix to Binary, Words per Line to 1, 
and click OK.

2. Initialize spram3 from a file.

a. Right-click anywhere in the data column and select Import Data Patterns to bring 
up the Import Memory dialog box (Figure 7-13).

Figure 7-13. Import Memory Dialog

The default Load Type is File Only.

b. Type data_mem.mem in the Filename field.

c. Click OK.



Viewing And Initializing Memories
Initialize a Memory

ModelSim Tutorial, v10.1a 63
 

The addresses in instance /ram_tb/spram3/mem are updated with the data from 
data_mem.mem (Figure 7-14).

Figure 7-14. Initialized Memory from File and Fill Pattern

In this next step, you will experiment with importing from both a file and a fill pattern. 
You will initialize spram3 with the 250 addresses of data you exported previously into 
the relocatable file reloc.mem. You will also initialize 50 additional address entries with 
a fill pattern.

3. Import the /ram_tb/spram3/mem instance with a relocatable memory pattern 
(reloc.mem) and a fill pattern.

a. Right-click in the data column of spram3 and select Import Data Patterns to bring 
up the Import Memory dialog box.

b. For Load Type, select Both File and Data.

c. For Address Range, select Addresses and enter 0 as the Start address and 300 as the 
End address.

This means that you will be loading the file from 0 to 300. However, the reloc.mem 
file contains only 251 addresses of data. Addresses 251 to 300 will be loaded with 
the fill data you specify next.

d. For File Load, select the MTI File Format and enter reloc.mem in the Filename 
field.

e. For Data Load, select a Fill Type of Increment.

f. In the Fill Data field, set the seed value of 0 for the incrementing data.

g. Click OK.

h. View the data near address 250 by double-clicking on any address in the Address 
column and entering 250. 



ModelSim Tutorial, v10.1a64

Viewing And Initializing Memories
Interactive Debugging Commands

You can see the specified range of addresses overwritten with the new data. Also, you 
can see the incrementing data beginning at address 251 (Figure 7-15).

Figure 7-15. Data Increments Starting at Address 251

Now, before you leave this section, go ahead and clear the memory instances already 
being viewed. 

4. Right-click in one of the Memory Data windows and select Close All.

Interactive Debugging Commands
The Memory Data windows can also be used interactively for a variety of debugging purposes. 
The features described in this section are useful for this purpose. 

1. Open a memory instance and change its display characteristics.

a. Double-click instance /ram_tb/dpram1/mem in the Memories window.

b. Right-click in the dpram1 Memory Data window and select Properties. 

c. Change the Address and Data Radix to Hexadecimal.

d. Select Words per line and enter 2.

e. Click OK. The result should be as in Figure 7-16.



Viewing And Initializing Memories
Interactive Debugging Commands

ModelSim Tutorial, v10.1a 65
 

Figure 7-16. Original Memory Content

2. Initialize a range of memory addresses from a fill pattern.

a. Right-click in the data column of /ram_tb/dpram1/mem and select Change to open 
the Change Memory dialog (Figure 7-17).

Figure 7-17. Changing Memory Content for a Range of Addresses**OK

b. Select Addresses and enter the start address as 0x00000006 and the end address as 
0x00000009. The "0x" hex notation is optional.

c. Select Random as the Fill Type.

d. Enter 0 as the Fill Data, setting the seed for the Random pattern.

e. Click OK.

The data in the specified range are replaced with a generated random fill pattern 
(Figure 7-18). 



ModelSim Tutorial, v10.1a66

Viewing And Initializing Memories
Interactive Debugging Commands

Figure 7-18. Random Content Generated for a Range of Addresses

3. Change contents by highlighting.

You can also change data by highlighting them in the Address Data pane.

a. Highlight the data for the addresses 0x0000000c:0x0000000e, as shown in 
Figure 7-19.

Figure 7-19. Changing Memory Contents by Highlighting

b. Right-click the highlighted data and select Change.

This brings up the Change memory dialog box. Note that the Addresses field is 
already populated with the range you highlighted.

c. Select Value as the Fill Type. (Refer to Figure 7-20) 

d. Enter the data values into the Fill Data field as follows: 24 25 26. 



Viewing And Initializing Memories
Interactive Debugging Commands

ModelSim Tutorial, v10.1a 67
 

Figure 7-20. Entering Data to Change**OK

e. Click OK.

The data in the address locations change to the values you entered (Figure 7-21).

Figure 7-21. Changed Memory Contents for the Specified Addresses

4. Edit data in place.

To edit only one value at a time, do the following:

a. Double click any value in the Data column.

b. Enter the desired value and press the Enter or Return key on your keyboard. 

If you needed to cancel the edit function, press the Esc key on your keyboard.



ModelSim Tutorial, v10.1a68

Viewing And Initializing Memories
Interactive Debugging Commands

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select Simulate > End Simulation. Click Yes.



ModelSim Tutorial, v10.1a 69
 

Chapter 8
Automating Simulation

Introduction

Aside from executing a couple of pre-existing DO files, the previous lessons focused on using 
ModelSim in interactive mode: executing single commands, one after another, via the GUI 
menus or Main window command line. In situations where you have repetitive tasks to 
complete, you can increase your productivity with DO files. 

DO files are scripts that allow you to execute many commands at once. The scripts can be as 
simple as a series of ModelSim commands with associated arguments, or they can be full-blown 
Tcl programs with variables, conditional execution, and so forth. You can execute DO files 
from within the GUI or you can run them from the system command prompt without ever 
invoking the GUI.

Note
This lesson assumes that you have added the <install_dir>/<platform> directory to your 
PATH. If you did not, you will need to specify full paths to the tools (i.e., vlib, vmap, 
vlog, vcom, and vsim) that are used in the lesson.

Related Reading

User’s Manual Chapter: Tcl and Macros (DO Files).

Practical Programming in Tcl and Tk, Brent B. Welch, Copyright 1997

Creating a Simple DO File
Creating a DO file is as simple as typing a set of commands in a text file. In this exercise, you 
will create a DO file that loads a design, adds signals to the Wave window, provides stimulus to 
those signals, and then advances the simulation. You can also create a DO file from a saved 
transcript file. Refer to "Saving a Transcript File as a Macro (DO file)." 

1. Change to the directory you created in the "Basic Simulation" lesson.

2. Create a DO file that will add signals to the Wave window, force signals, and run the 
simulation.

a. Select File > New > Source > Do to create a new DO file.

b. Enter the following commands into the Source window:

vsim test_counter



ModelSim Tutorial, v10.1a70

Automating Simulation
Running in Command-Line Mode

add wave count
add wave clk
add wave reset
force -freeze clk 0 0, 1 {50 ns} -r 100
force reset 1
run 100
force reset 0
run 300
force reset 1
run 400
force reset 0
run 200

3. Save the file.

a. Select File > Save As.

b. Type sim.do in the File name: field and save it to the current directory. 

4. Execute the DO file.

a. Enter do sim.do at the VSIM> prompt.

ModelSim loads the design, executes the saved commands and draws the waves in 
the Wave window. (Figure 8-1)

Figure 8-1. Wave Window After Running the DO File

5. When you are done with this exercise, select File > Quit to quit ModelSim.

Running in Command-Line Mode
We use the term "command-line mode" to refer to simulations that are run from a DOS/ UNIX 
prompt without invoking the GUI. Several ModelSim commands (e.g., vsim, vlib, vlog, etc.) 
are actually stand-alone executables that can be invoked at the system command prompt. 
Additionally, you can create a DO file that contains other ModelSim commands and specify that 
file when you invoke the simulator.

1. Create a new directory and copy the tutorial files into it.



Automating Simulation
Running in Command-Line Mode

ModelSim Tutorial, v10.1a 71
 

Start by creating a new directory for this exercise. Create the directory and copy the 
following files into it:

• /<install_dir>/examples/tutorials/verilog/automation/counter.v

• /<install_dir>/examples/tutorials/verilog/automation/stim.do

This lesson uses the Verilog file counter.v. If you have a VHDL license, use the 
counter.vhd and stim.do files in the /<install_dir>/examples/tutorials/vhdl/automation 
directory instead.

2. Create a new design library and compile the source file.

Again, enter these commands at a DOS/ UNIX prompt in the new directory you created 
in step 1.

a. Type vlib work at the DOS/ UNIX prompt.

b. For Verilog, type vlog counter.v at the DOS/ UNIX prompt. For VHDL, type vcom 
counter.vhd.

3. Create a DO file.

a. Open a text editor.

b. Type the following lines into a new file:

# list all signals in decimal format
add list -decimal * 

# read in stimulus
do stim.do

# output results
write list counter.lst

# quit the simulation
quit -f

c. Save the file with the name sim.do and place it in the current directory.

4. Run the batch-mode simulation.

a. Enter the following command at the DOS/UNIX prompt:

vsim -c -do sim.do counter -wlf counter.wlf

The -c argument instructs ModelSim not to invoke the GUI. The -wlf argument 
saves the simulation results in a WLF file. This allows you to view the simulation 
results in the GUI for debugging purposes.

5. View the list output.

a. Open counter.lst and view the simulation results. Output produced by the Verilog 
version of the design should look like the following:



ModelSim Tutorial, v10.1a72

Automating Simulation
Running in Command-Line Mode

         ns       /counter/count          
          delta       /counter/clk        
                      /counter/reset      
          0  +0                x z * 
          3  +0                0 z * 
         50  +0                0 * * 
        100  +0                0 0 * 
        100  +1                0 0 0 
        150  +0                0 * 0 
        152  +0                1 * 0 
        200  +0                1 0 0 
        250  +0                1 * 0 
        .
        .
        .

The output may appear slightly different if you used the VHDL version.

6. View the results in the GUI.

Since you saved the simulation results in counter.wlf, you can view them in the GUI by 
invoking VSIM with the -view argument.

Note
Make sure your PATH environment variable is set with the current version of ModelSim 
at the front of the string.

a. Type vsim -view counter.wlf at the DOS/ UNIX prompt.

The GUI opens and a dataset tab named "counter" is displayed (Figure 8-2).

Figure 8-2. The counter.wlf Dataset in the Main Window Workspace

b. Right-click the counter instance and select Add > To Wave > All items in region.

The waveforms display in the Wave window.

7. When you finish viewing the results, select File > Quit to close ModelSim.



Automating Simulation
Using Tcl with the Simulator

ModelSim Tutorial, v10.1a 73
 

Using Tcl with the Simulator
The DO files used in previous exercises contained only ModelSim commands. However, DO 
files are really just Tcl scripts. This means you can include a whole variety of Tcl constructs 
such as procedures, conditional operators, math and trig functions, regular expressions, and so 
forth.

In this exercise, you create a simple Tcl script that tests for certain values on a signal and then 
adds bookmarks that zoom the Wave window when that value exists. Bookmarks allow you to 
save a particular zoom range and scroll position in the Wave window.

1. Create the script.

a. In a text editor, open a new file and enter the following lines:

proc add_wave_zoom {stime num} {
 echo "Bookmarking wave $num"
 bookmark add wave "bk$num"  "[expr $stime - 50] [expr $stime + 100]" 0
}

These commands do the following:

• Create a new procedure called "add_wave_zoom" that has two arguments, stime 
and num.

• Create a bookmark with a zoom range from the current simulation time minus 50 
time units to the current simulation time plus 100 time units.

b. Now add these lines to the bottom of the script:

add wave -r /*
when {clk'event and clk="1"} {
   echo "Count is [exa count]"
   if {[examine count]== "00100111"} {
      add_wave_zoom $now 1
   } elseif {[examine count]== "01000111"} {
      add_wave_zoom $now 2
   }
}

These commands do the following:

• Add all signals to the Wave window.

• Use a when statement to identify when clk transitions to 1.

• Examine the value of count at those transitions and add a bookmark if it is a 
certain value.

c. Save the script with the name "add_bkmrk.do" into the directory you created in the 
Basic Simulation lesson.

2. Load the test_counter design unit.

a. Start ModelSim.



ModelSim Tutorial, v10.1a74

Automating Simulation
Using Tcl with the Simulator

b. Select File > Change Directory and change to the directory you saved the DO file 
to in step 1c above.

c. Enter the following command at the QuestaSim> prompt:

vsim test_counter

3. Execute the DO file and run the design.

a. Type do add_bkmrk.do at the VSIM> prompt.

b. Type run 1500 ns at the VSIM> prompt.

The simulation runs and the DO file creates two bookmarks.

c. If the Wave window is docked in the Main window make it the active window (click 
anywhere in the Wave window), then select Wave > Bookmarks > bk1. If the 
window is undocked, select View > Bookmarks > bk1 in the Wave window.

Watch the Wave window zoom in and scroll to the time when count is 00100111. 
Try the bk2 bookmark as well.

Lesson Wrap-Up

This concludes this lesson.

1. Select File > Quit to close ModelSim.



75

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

ModelSim Tutorial, v10.1a
 

Index

— A —
add wave command, 47
al, 53

— B —
break icon, 20
breakpoints

setting, 20
stepping, 23

— C —
command-line mode, 70
Compile, 15
compile order, changing, 28
compiling your design, 10
cursors, Wave window, 48

— D —
design library

working type, 11

— E —
error messages, more information, 41
external libraries, linking to, 40

— F —
folders, in projects, 31

— L —
libraries

design library types, 11
linking to external libraries, 40
mapping to permanently, 43
resource libraries, 11
working libraries, 11
working, creating, 13

linking to external libraries, 40

— M —
mapping libraries permanently, 43
memories

changing values, 65
initializing, 61

memory contents, saving to a file, 60

— O —
options, simulation, 33

— P —
projects

adding items to, 26
creating, 25
flow overview, 10
organizing with folders, 31
simulation configurations, 33

— Q —
quit command, 41, 42

— R —
run -all, 20
run command, 19

— S —
saving simulation options, 33
simulation

basic flow overview, 9
restarting, 21
running, 19

simulation configurations, 33
stepping after a breakpoint, 23

— T —
Tcl, using in the simulator, 73
time, measuring in Wave window, 48

— V —
vcom command, 54
verror command, 41
vlib command, 54
vlog command, 54
vsim command, 14

Index



76 ModelSim Tutorial, v10.1a

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

— W —
Wave window

adding items to, 46
cursors, 48
measuring time with cursors, 48
zooming, 47

working library, creating, 10, 13

— Z —
zooming, Wave window, 47



End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively “Products”)
between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that issued the
corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity (“Mentor
Graphics”). Except for license agreements related to the subject matter of this license agreement which are physically
signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the applicable quotation
contain the parties' entire understanding relating to the subject matter and supersede all prior or contemporaneous
agreements. If Customer does not agree to these terms and conditions, promptly return or, in the case of Software
received electronically, certify destruction of Software and all accompanying items within five days after receipt of
Software and receive a full refund of any license fee paid. 

1. ORDERS, FEES AND PAYMENT. 

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of
this Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unless timely provided with a valid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of default.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics retains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for use in filing or perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics’ standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
a restricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of
receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product

 IMPORTANT INFORMATION 

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS.  CAREFULLY READ THIS LICENSE 
AGREEMENT BEFORE USING THE PRODUCTS.  USE OF SOFTWARE INDICATES CUSTOMER’S 

COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN 
THIS AGREEMENT.  ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS 

SHALL NOT APPLY.

http://www.mentor.com/eula


improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics’ sole discretion) will be the
exclusive property of Mentor Graphics.

3. ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics’ Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics’ real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

4. BETA CODE. 

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for a limited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of
this Agreement.

5. RESTRICTIONS ON USE. 

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, data files, rule files and
script files generated by or for the Software (collectively “Files”), including without limitation files containing Standard
Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF”) which are Mentor Graphics’ proprietary
syntaxes for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may
share Files with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Files is
protected by written agreement at least as well as Customer protects other information of a similar nature or importance,
but in any case with at least reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics
products. Under no circumstances shall Customer use Software or Files or allow their use for the purpose of developing,
enhancing or marketing any product that is in any way competitive with Software, or disclose to any third party the results
of, or information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written
consent and payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms
of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.



5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

6. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates
and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics’ then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

7. AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in use is licensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics’ outside attorneys or as may be required by a court of competent jurisdiction.

8. LIMITED WARRANTY. 

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or alternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITS LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

9. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

10. HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS”). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

11. INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS’ FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

12. INFRINGEMENT. 

12.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphics will pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance
to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

http://supportnet.mentor.com/about/legal/


12.2. If a claim is made under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonable attorney fees and other costs related to the action.

12.4. THIS SECTION 12 IS SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER’S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

13. TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Software in any form.

14. EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining all necessary approval from
appropriate local and United States government agencies.

15. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

16. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

17. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXlm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics’
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-compliance is revealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

18. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer is located in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia arising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International
Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not



restrict Mentor Graphics’ right to bring an action against Customer in the jurisdiction where Customer’s place of business is
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

19. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

20. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066


	Bookcase
	Table of Contents
	List of Figures
	Chapter 1 Introduction
	Assumptions
	Before you Begin
	Example Designs


	Chapter 2 Conceptual Overview
	Basic Simulation Flow
	Project Flow
	Multiple Library Flow
	Debugging Tools

	Chapter 3 Basic Simulation
	Create the Working Design Library
	Compile the Design Units
	Load the Design
	Run the Simulation
	Set Breakpoints and Step through the Source

	Chapter 4 Projects
	Create a New Project
	Add Objects to the Project
	Changing Compile Order (VHDL)
	Compile the Design
	Load the Design

	Organizing Projects with Folders
	Add Folders
	Moving Files to Folders

	Simulation Configurations

	Chapter 5 Working With Multiple Libraries
	Creating the Resource Library
	Creating the Project
	Linking to the Resource Library
	Verilog
	VHDL
	Linking to a Resource Library

	Permanently Mapping VHDL Resource Libraries

	Chapter 6 Analyzing Waveforms
	Loading a Design
	Add Objects to the Wave Window
	Zooming the Waveform Display
	Using Cursors in the Wave Window
	Working with a Single Cursor
	Working with Multiple Cursors


	Chapter 7 Viewing And Initializing Memories
	View a Memory and its Contents
	Navigate Within the Memory

	Export Memory Data to a File
	Initialize a Memory
	Interactive Debugging Commands

	Chapter 8 Automating Simulation
	Creating a Simple DO File
	Running in Command-Line Mode
	Using Tcl with the Simulator

	Index
	End-User License Agreement

