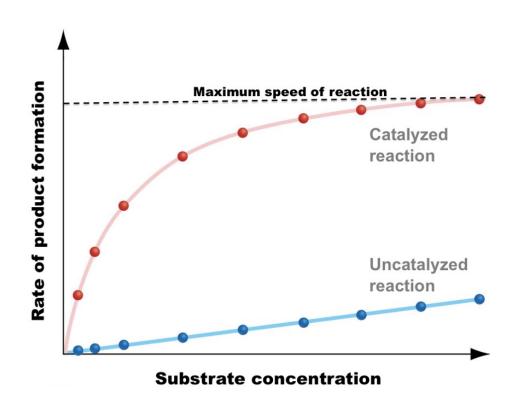

Prof. Sabrina Pricl A.Y. 2023-2024

Lesson 6 Enzyme kinetics

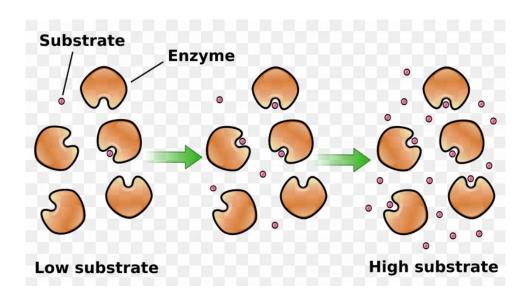
Generalities

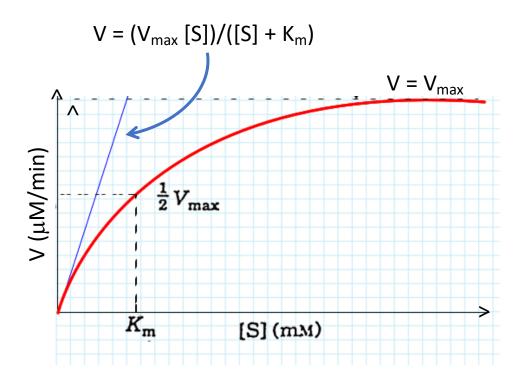
- Enzymes are biological catalysts
- Very specific, targeting only one defined reacting species (substrate)
- Enzymes are proteins
- Some have a nonprotein part called cofactor
- Cofactors can be
 - metal ions (Mg⁺⁺)
 - Organic molecules (coenzymes)
- Only one region of the enzyme is responsible for substrate interaction (active site)


Enzyme classification

- Enzymes names begin with EC followed by 4 numbers separated by dots
 - EC 2.7.4.4
- First number → which of the 6 major enzyme classes the molecules belongs to
- Other numbers → enzyme sub-classes
- Names are indicative of the action performed

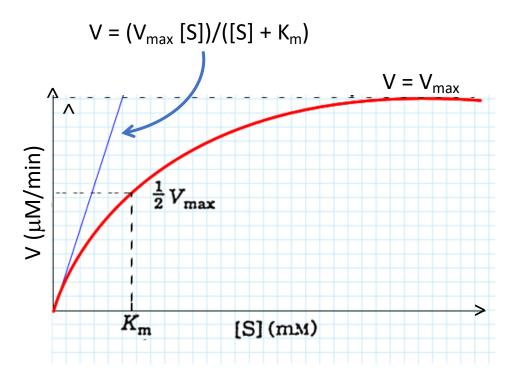
Number	Classification	Biochemical Properties	
1	Oxidoreduc- tases	Act on many chemical groupings to add or remove hydrogen atoms	
2	Transferases	Transfer functional groups between donor and acceptor molecules. Kinases are specialized transferases that regulate metabolism by transferring phosphate from ATP to other molecules	
3	Hydrolases	Add water across a bond, hydrolyzing it	
4	Lyases	Add water, ammonia, or carbon dioxide across double bonds, or remove these elements to produce double bonds	
5	Isomerases	Carry out many kinds of isomerization: L to D isomerizations, mutase reactions (shifts of chemical groups), and others	
6	Ligases	Catalyze reactions in which 2 chemical groups are joined (or ligated) with the use of energy from ATP	


Enzyme kinetics


- Enzyme assay → Experiment to determine the enzyme's catalytic activity
- Plot of reaction rate (V) vs. [substrate = S] in the absence (blue) and presence (red) of enzyme
- Note:
 - In both cases, at low [S] both curves are approximately linear
 - first-order kinetics
 - At equal, intermediate [S], V in enzyme-catalyzed is substantially higher that in uncatalyzed reaction
 - In uncatalyzed reactions V continue to increase with [S] while in enzyme-catalyzed reactions it reaches an asymptotic value V_{max}
 - V becomes independent of [S] → zero-order kinetics

Enzyme kinetics

 V_{max} corresponds to a specific condition called enzyme saturation

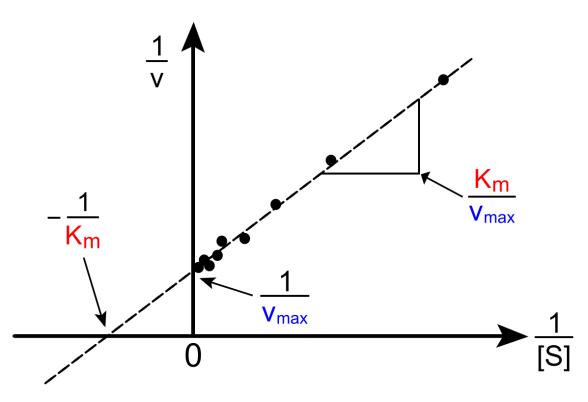


All enzyme molecules are part of a enzyme-substrate complex and no free enzyme molecules are available to accommodate additional substrate molecules

The Michaelis-Menten equation

- Three further important points on the graph in the first-order kinetics region
 - The point at which $V_0 = \frac{1}{2} V_0$
 - [S] at which $V_0 = \frac{1}{2} V \max = K_m [in mol/L or M]$
 - K_m = Michaelis-Menten constant → rough measure of the affinity of the enzyme for the substrate
 - K_m varies in a wide range for different enzymes
 - In this region, the behavior of V = f[S] is described by the so-called Michaelis-Menten equation

$$V = (V_{max}[S])/([S] + K_{m})$$


At low [S], [S]
$$<< K_m \rightarrow V = (V_{max} [S])/K_m$$

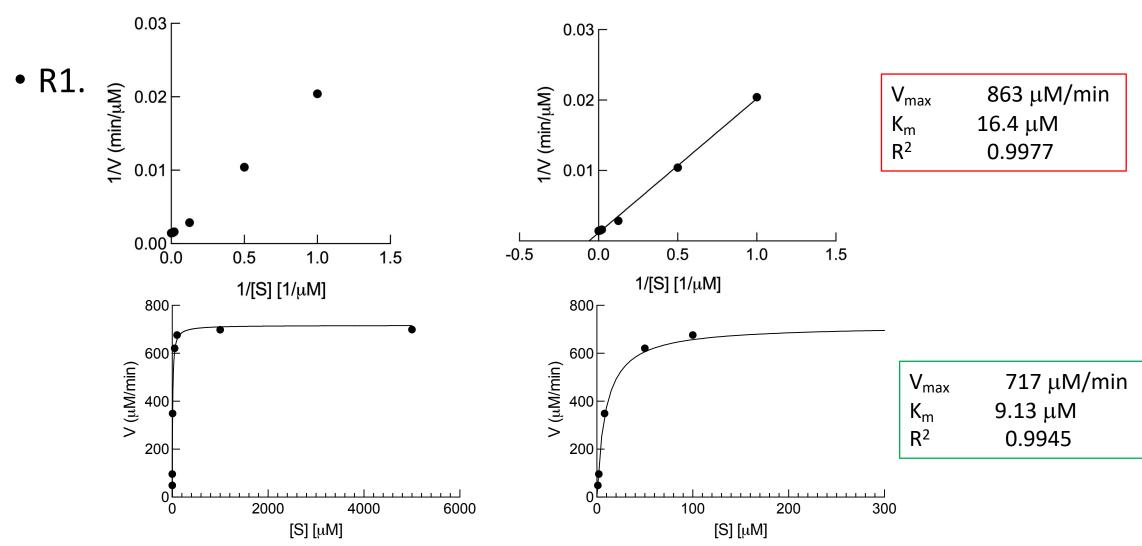
At high [S], [S] $>> K_m \rightarrow V = V_{max}$
At [S] = $K_m \rightarrow V = \frac{1}{2} V_{max}$

The Lineweaver-Burk plot

- K_m and V_{max} can be easily found by data fitting with a spreadsheet
 - Yet, a Lineaweaver-Burk (or doublereciprocal plot) is still exceedingly common

$$1/V = [(K_m/V_{max}) \times 1/[S]] + 1/V_{max}$$

- Main problem with LB plots
 - Overemphasizes low [S] velocities
 - Gives more an order of magnitude of K_m and V_{max} than an accurate estimate of values



Quiz time

- An enzymatic assay yielded the following data set:
- Q1. Determine V_{max} and K_m

[S] [μM]	V (μM/min)	
1	49	
2	96	
8	349	
50	621	
100	676	
1000	698	
5000	699	

Quiz time

(Some) Enzymes and the body

ENZYMES AND THE BODY

Break down foods by chewing

If those foods are raw or fermented, they contain a variety of food enzymes

SALIVARY GLANDS

Produce amylase (for carbohydrates - i.e.: sugars)

ESOPHAGUS

Delivers pre-digested food boluses to the stomach

STOMACH

Produces hydrochloric acid that breaks down food enzymes

Produces pepsinogen (for proteins) and lipase (for fats)

PANCREAS

Produces the majority of internal enzymes, such as amylase (for carbs), trypsin (for proteins), nuclease / nucleosidases (for nucleic acids) and lipase (for fats)

SMALL INTESTINE

Produces maltase (for carbs) and peptidases (for proteins)

Contains 90% of our immune systems

Absorbs and delivers food nutrients to the entire body

BOWELS

We all know what happens here...

BODY

Digestive enzymes are catalysts that run our digestion, allowing our bodies to break down foods into component nutrients.

Metabolic enzymes are catalysts that allow every system in the body to function, and without which it wouldn't: heptic, circulatory, renal, nervous, cardiac, endochrine, neurologic, lymphatic and reproductive. They also build and maintain skin, bones, and muscle tissue.

In short, enzymes run the body.

Enzyme	Secreted by	Function
Salivary Amylase (Ptyalin)	Salivary Glands	Converts starch to maltose
Renin	Stomach	Converts milk proteins to peptides
Pepsin	Stomach	Converts other proteins to peptides
Gastric Amylase	Stomach	Converts starch to maltose
Gastric Lipase	Stomach	Converts butter fat into fatty acids and glycerol
Trypsin	Pancreas	Converts proteins to peptides
Chymotrypsin	Pancreas	Converts proteins to peptides
Steapsin (Pancreatic Lipase)	Pancrease	Converts fats into fatty acids and glycerol
Carboxypolypeptidase	Pancreas	Converts peptides into amino acid.
Pancreatic Amylase	Pancreas	Converts starch to maltose
Entirokinase	Small Intestine	entirokinase activates trypsinogen to tryspsin.
Eripsin	Small Intestine	Converts polypeptides to amino acids.
Maltase	Small Intestine	Digests Maltose to glucose.
Sucrase	Small Intestine	Digests sucrose into glucose and fructose.
Lactase	Small Intestine	Digests lactose into glucose and galactose.

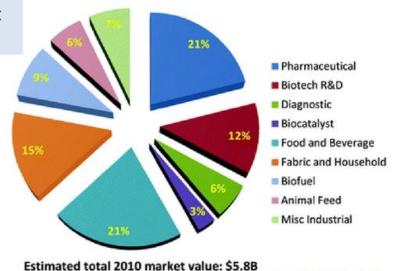
Where the money is: enzymes and industry

Common uses of enzymes in industry include:

Detergents contain proteases and lipases to help breakdown protein and fat stains

Enzymes are used to breakdown the starch in grains into **biofuels** that can be combusted

In the **textiles** industry enzymes help in the processing of fibres, e.g. polishing cloth to make it appear more shiny


In the **brewing** industry enzymes help a number of processes including the clarification of the beer

In **Medicine & Biotechnology** enzymes are widely used in everything from diagnostic tests tests to contact lens cleaners to cutting DNA in genetic engineering.

Enzymes are widely used in the **food** industry, e.g.

- fruit juice, pectin to increase the juice yield from fruit
- Fructose is used as a sweetener, it is converted from glucose by isomerase
- Rennin is used to help in cheese production

Paper production uses enzymes to helping in the pulping of wood

The global market for enzymes in industrial applications should grow from **\$6.4 billion** in 2021 to \$8.7 billion by 2026, at compound annual growth rate (CAGR) of 6.3% for the period of 2021-2026.