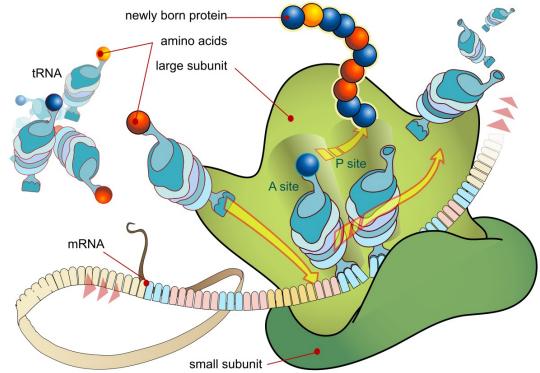
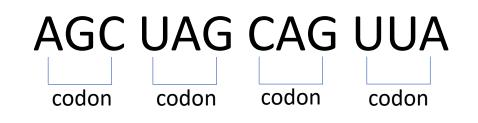
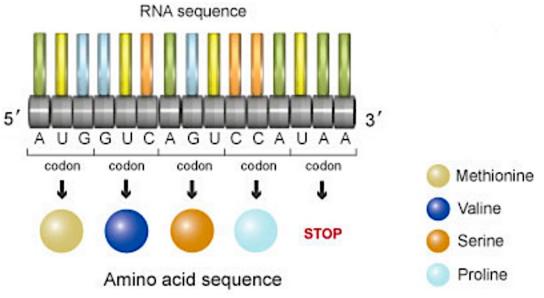

Prof. Sabrina Pricl


A.Y. 2023-2024

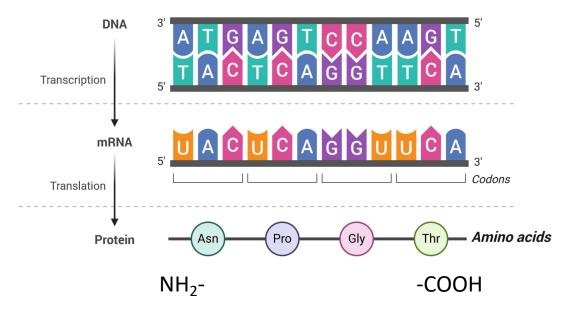
Lesson 12 RNA translation (protein synthesis)



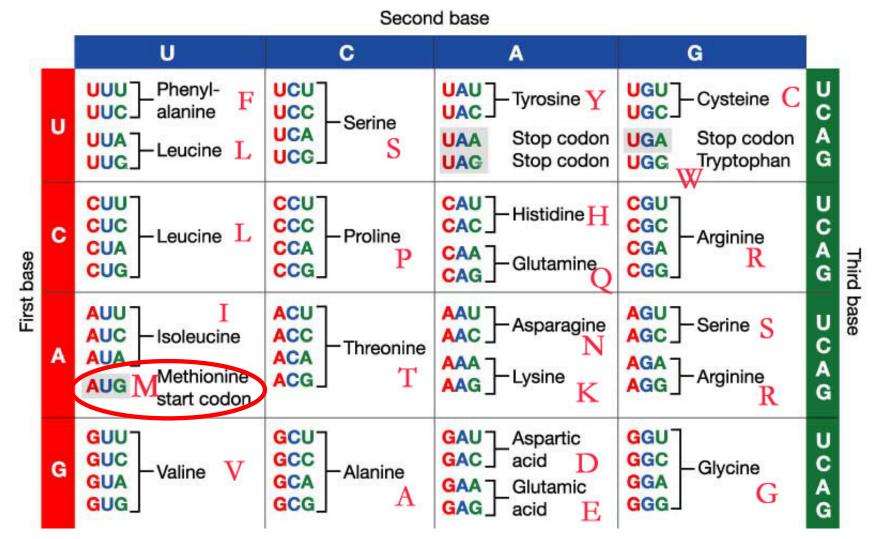
RNA translation

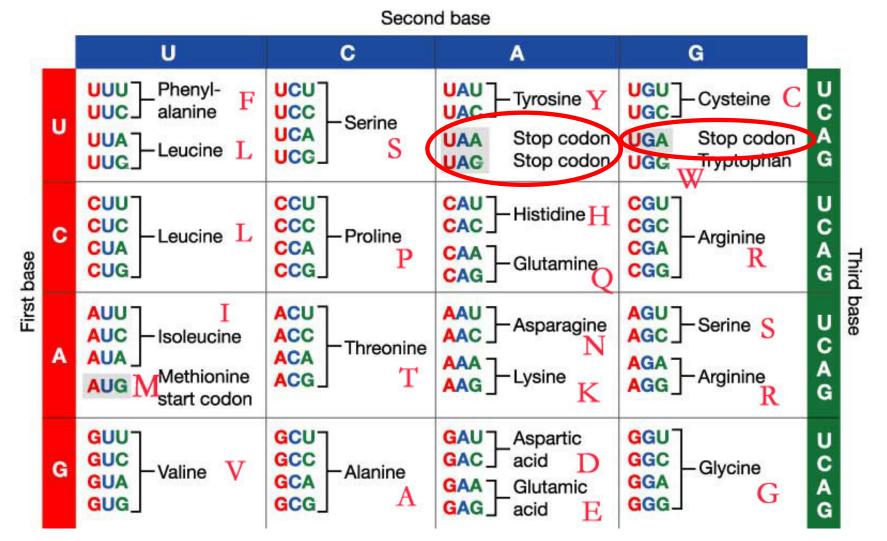

- RNA translation is a process that produces a protein from an mRNA template via the genetic code
- There is a change of language
 - From the language of nucleic acids (nucleotides) to the language of proteins (amino acids)
- The process takes place in the cytoplasm
- Requires another RNA, called tRNA
- Protein synthesis is operated by cell organelle called **ribosome**

• The genetic code = triplets of RNA bases (called codons)




- The genetic code = triplets of RNA bases (called codons)
- Each codon encodes 1 amino acid




- The genetic code = triplets of RNA bases (called codons)
- Each codon encodes 1 amino acid
- mRNA is read from 5' to 3'

- The genetic code = triplets of RNA bases (called codons)
- Each codon encodes 1 amino acid
- mRNA is read from 5' to 3'
- The protein is made from the -NH₂ end to the COOH end
 - Each new amino acid is added to the C end of the preceding one (discussed in Lesson 3)

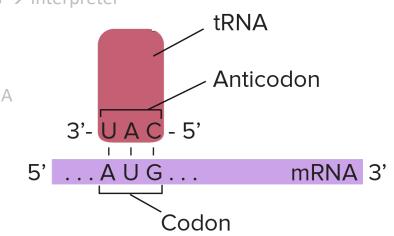
- In any case of unknown language change you need someone who understand both languages → interpreter
- In RNA translation you need an interpreter to translate CODONS into AMINOACIDS
- These interpreters are the tRNAs (small RNAs present throughout living cells)
- Each tRNA has a sequence called **ANTICODON** that base-pairs with a specific codon on a mRNA
- Each tRNA base-pairs with 1 mRNA codon a time

- In any case of unknown language change you need someone who understand both languages \rightarrow interpreter
- In RNA translation you need an interpreter to translate CODONS into AMINOACIDS
- These interpreters are the **tRNAs** (small RNAs present throughout living cells)
- Each tRNA has a sequence called ANTICODON that base-pairs with a specific codon on a mRNA
- Each tRNA base-pairs with 1 mRNA codon a time
- For example:

mRNA codon 5'AUG3' tRNA anticodon 3'UAC5'

- In any case of unknown language change you need someone who understand both languages \rightarrow interpreter
- In RNA translation you need an interpreter to translate CODONS into AMINOACIDS
- These interpreters are the tRNAs (small RNAs present throughout living cells)
- Each tRNA has a sequence called ANTICODON that base-pairs with a specific codon on a mRNA
- Each tRNA base-pairs with 1 mRNA codon a time
- For example:

mRNA codon 5'AUG3'

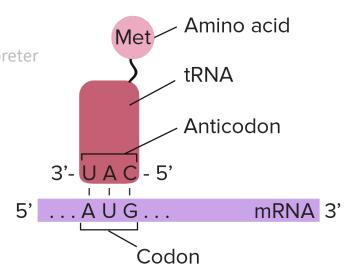

tRNA anticodon 3'UAC5'

 After codon-anticodon matching, the tRNAs covalently binds the correct amino acid and carries it to the ribosome for the protein synthesis

- In any case of unknown language change you need someone who understand both languages \rightarrow interpreter
- In RNA translation you need an interpreter to translate CODONS into AMINOACIDS
- These interpreters are the tRNAs (small RNAs present throughout living cells)
- Each tRNA has a sequence called ANTICODON that base-pairs with a specific codon on a mRNA
- Each tRNA base-pairs with 1 mRNA codon a time
- For example:

mRNA codon 5'AUG3'

tRNA anticodon 3'UAC5'


- After codon-anticodon matching, the tRNA covalently binds the correct amino acid and carries it to the ribosome for the protein synthesis
- For example: the mRNA codon 5'AUG3' encodes for the amino acid methionine, then:
 - 1. the particular tRNA that has the anticodon 3'UAC5' base-pairs with this codon

- In any case of unknown language change you need someone who understand both languages ightarrow interpreter
- In RNA translation you need an interpreter to translate CODONS into AMINOACIDS
- These interpreters are the tRNAs (small RNAs present throughout living cells)
- Each tRNA has a sequence called ANTICODON that base-pairs with a specific codon on a mRNA
- Each tRNA base-pairs with 1 mRNA codon a time
- For example:

mRNA codon 5'AUG3' tRNA anticodon 3'UAC5'

- For example: the mRNA codon 5'AUG3' encodes for the amino acid methionine, then:
 - 1. the particular tRNA that has the anticodon 3'UAC5' base-pairs with this codon
 - 2. It then covalently binds the amino acid Metionine (tRNA^{MET})
 - 3. It finally shuttles to the ribosome where the amino acid will be released and added to the growing protein

- In any case of language change you need someone who understand both languages \rightarrow interpreter
- In RNA translation you need an interpreter to translate CODONS into AMINOACIDS
- This interpreter is the tRNA (a small RNA present throughout living cells)
- A tRNA has a sequence called ANTICODON that base-pairs with a specific codon on a mRNA
- For example:

mRNA codon 5'AUG3'

tRNA anticodon 3'UAC5'

- Each tRNAs carries the correct amino acid at the right moment to the ribosome for the protein synthesis
- For example: the mRNA codon 5'AUG3' encodes for the amino acid methionine, then:
 - 1. the particular tRNA that has the anticodon 3'UAC5' base-pairs with this codon
 - 2. It then covalently binds the amino acid Metionine (tRNA^{MET})
 - 3. It finally shuttles to the ribosome where the amino acid will be released and added to the growing protein
- First codon = START codon
- Always 5'AUG3' codon = start codon for N-terminus Met

From mRNA to protein

- 1. Read mRNA sequence: 5'AUGAAAACU......3'
- 2. Identify codons: 5'AUG/AAA/ACU/.....3'
- 3. Match codons with amino acids
 - AUG \rightarrow Met (M)
 - AAA \rightarrow Lys (K)
 - ACU \rightarrow Thr (T)
 - •

4. Continue until you find the stop codon (UAA or UAG or UGA) Note: stop codons do not code for any amino acid; they just stop translation

Second letter												
		U	с	А	G							
First letter	υ	UUU UUC UUA UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA UGG Trp	U C A G						
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAG GIn	CGU CGC CGA CGG	U C A G	letter					
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG Lys	AGU }Ser AGC }Arg AGA }Arg	U C A G	Third letter					
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG Glu	GGU GGC GGA GGG	U C A G						

Second latter

The genetic code again

GUG

GCG

Second letter U G С Α UUU } Phe UCU . UGUl UAU UAC }Tyr UGC Cys U UUC J С Ser U UUA } Leu UCA UAA Stop UGA Stop A UCG UAG Stop UGG UUGJ Trp G CAU His CUU CCU CGU U CCC CAC CGC CUC С Pro Arg С Leu CGA CCA $_{CAG}^{CAA} \} G ln$ A CUA First letter G CUG CCG CGG AGU Ser U C A ACU AAU ASN ASN ASN ASN ASNAUU AGC ACC AUC } lle Thr Α AAA Lys AGA }Arg ACA AUA AAGJ G ACG AUG Met $GAU \\ GAC \\ Asp$ GGU GUU GCU U С GCC GGC GGA GUC Ala Gly G - Val GAA] Glu GUA GCA A

GAGJ

GGG

Third letter

G

The genetic code again

Second letter

		U	С	А	G		
First letter	υ	$ \begin{array}{c} UUU\\ UUC \end{array} \right\} Phe \\ \begin{array}{c} UUA\\ UUA\\ UUG \end{array} \right\} Leu \\ \end{array} $	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	UCAG	
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAA GIn	CGU CGC CGA CGG	UCAG	letter
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	UCAG	Third
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG Glu	GGU GGC GGA GGG	UCAG	

Elements of Chemical and Molecular Biology – Lesson 12

The genetic code again

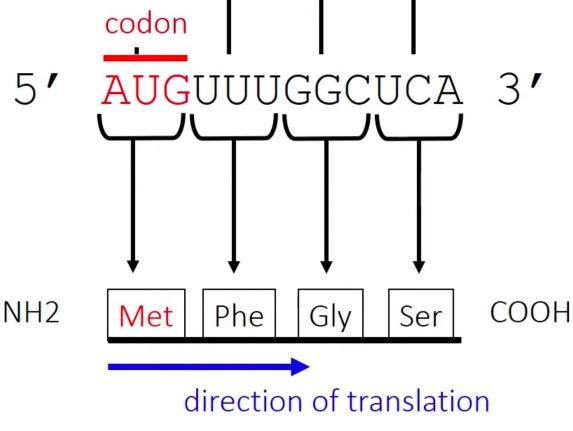
GUG

GCG

Second letter U G С Α UUU } Phe UCU . UGUl UAU UAC }Tyr UGC Cys U UUC J С Ser U UUA } Leu UCA UAA Stop UGA Stop A UCG UAG Stop UGG UUGJ Trp G CAU His CUU CCU CGU U CCC CAC CGC CUC С Pro Arg С Leu CGA CCA $_{CAG}^{CAA} \} G ln$ A CUA First letter G CUG CCG CGG AGU Ser U C A AAU ASN ASN ASN ASN ASNAUU ACU AUC ACC AGC J } lle Thr Α AAA Lys AGA }Arg ΔΙΙΔ ACA G AAGJ AUG Met ACG $GAU \\ GAC$ GGU GUU GCU' U С GCC GGC GGA GUC Ala Gly G - Val GAA] Glu GUA GCA A

GAGJ

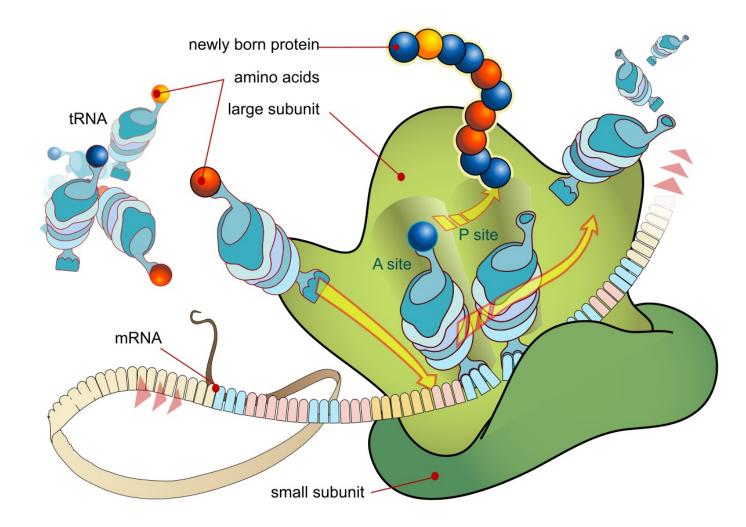
GGG


Third letter

G

"Cracking" the genetic code 31 TACAAACCGAGT 5' DNA template strand transcription codon 51 UGGCUCA mRNA

translation (via tRNA)


protein

Elements of Chemical and Molecular Biology – Lesson 12

tRNA - recap

- Each tRNA anticodon base-pairs with the corresponding mRNA codon
- Each tRNA binds the corresponding amino acid and delivers it to the ribosome
- The ribosome brings all amino acid together and join them covalently in the correct ordered sequence
- The tRNA is then released and can re-enter the translation loop when needed

