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Members of the GroEL/HSP60 protein family have been studied for many

years because of their critical roles as ATP-dependent molecular chaperones,

so it might come as a surprise that some have important functions in ATP-

poor conditions, for example, when secreted outside the cell. At least some

members of each of the HSP10, HSP70, HSP90, HSP100 and HSP110 heat

shock protein families are also ‘moonlighting proteins’. Moonlighting

proteins exhibit more than one physiologically relevant biochemical or

biophysical function within one polypeptide chain. In this class of multi-

functional proteins, the multiple functions are not due to gene fusions or

multiple proteolytic fragments. Several hundred moonlighting proteins

have been identified, and they include a diverse set of proteins with a

large variety of functions. Some participate in multiple biochemical pro-

cesses by using an active site pocket for catalysis and a different part of

the protein’s surface to interact with other proteins. Moonlighting proteins

play a central role in many diseases, and the development of novel treat-

ments would be aided by more information addressing current questions,

for example, how some are targeted to multiple cellular locations and

how a single function can be targeted by therapeutics without targeting a

function not involved in disease.

This article is part of the theme issue ‘Heat shock proteins as modulators

and therapeutic targets of chronic disease: an integrated perspective’.
1. Introduction
HSP60/GroEL heat shock proteins (HSPs) have been studied for many years

because of their critical role as ATP-dependent molecular chaperones, but

some have important functions in ATP-poor conditions, when secreted outside

the cell. In fact, members of each of the HSP60/HSP10, HSP70, HSP90, HSP100

and HSP110 HSP/chaperone protein families have been found to be ‘moon-

lighting proteins’. Moonlighting proteins comprise a subset of multifunctional

proteins in which one polypeptide chain exhibits more than one physiologically

relevant biochemical or biophysical function [1]. In this class of multifunctional

proteins, the multiple functions are not due to gene fusions or multiple proteo-

lytic fragments. Several hundred moonlighting proteins have been identified,

and they include a diverse set of proteins with a large variety of functions [2].

Among the first proteins to be recognized as performing two very different

functions in the same organism were the taxon-specific crystallins. Crystallins

make up a large part of the lens of the eye, and about a dozen are identical

to catalytically active ubiquitious enzymes. For example, the epsilon crystalline

found in birds (mallard duck, swans, geese and ostriches) and reptiles (croco-

diles) [3–5] is the same protein as lactate dehydrogenase, which catalyses the

interconversion of pyruvate and lactate and is found in many cell types in

almost all species (figure 1). In other species, different enzymes were co-

opted to serve as crystallins—quinone oxidoreductase is the zeta crystalline

in camels, llamas, guinea pigs and frogs [6–8], and aldehyde dehydrogenase

is the eta crystalline in elephant shrews [9].

Other soluble enzymes have evolved to serve a second function as transcrip-

tional or translational regulators that bind DNA or RNA, respectively, in some
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crystalline
lactate
dehydrogenase

Figure 1. A moonlighting protein can have two very different functions in
the same species. For example, in ducks, the epsilon crystalline found in
the lens of the eye is the same protein as the ubiquitous enzyme lactate
dehydrogenase, which catalyses the interconversion of pyruvate and lactate.
(Online version in colour.)

Figure 2. Several dozen moonlighting proteins have different functions inside
and outside the cell. Many housekeeping proteins, including enzymes that
convert a substrate (star) to a product (hexagon) or chaperones that assist
in protein folding, have a second function when secreted or when attached
to the cell surface. In most cases, how the intracellular/surface or intracellu-
lar/secreted moonlighting proteins are secreted and how some become
attached to the cell surface are unknown. (Online version in colour.)
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cases as a feedback mechanism to regulate the level of

expression of enzymes in the same biochemical pathway.

Aconitase catalyses the isomerization of citrate to isocitrate

in the citric acid cycle. When cellular iron concentrations

decrease, the iron–sulfur cluster in the active site pocket is

lost and the protein changes conformation. The new protein

conformation binds RNA to regulate the expression of

genes encoding proteins involved in iron uptake [10–12].

Moonlighting proteins are found throughout the evol-

utionary tree—bacteria, archaea, mammals, reptiles, birds,

fish, worms, insects, plants, fungi, protozoans and even

viruses. They include enzymes that serve as receptors,

secreted cytokines, transcription factors, DNA stabilizers,

components of the cytoskeleton or proteasome subunits.

Other combinations of functions include a receptor and tran-

scription factor, chaperone and cytokine, DNA-binding

protein and component of the extracellular matrix, transmem-

brane channel and regulator of other channels, and

components of the ribosome that are transcription factors.
2. Intracellular/extracellular moonlighting
proteins

One of the largest subgroups of moonlighting proteins ident-

ified to date are intracellular chaperones and enzymes that

play a different role outside the cell (figure 2). These are

often ‘housekeeping proteins’ that are widespread in evol-

ution and function in glycolysis, the citric acid cycle, the

pentose phosphate pathway, and protein and DNA metab-

olism. The first to be identified was a glyceraldehyde

3-phosphate dehydrogenase (GAPDH) on the surface of

pathogenic streptococci [13]. Many other intracellular/

cell surface enzymes were later found, including other

GAPDHs [14–28], phosphoglycerate kinase [29,30] and eno-

lase [31–54]. Other intracellular/cell surface proteins

(ICSPs) include chaperones (HSP60/GroEL, HSP70/DnaK)

[54–58], a protein synthesis elongation factor (Ef-Tu)

[59–61] and a histone (H1) [62].

Some of these proteins function as cell surface receptors

in humans and other mammals. GAPDH catalyses the

conversion of D-glyceraldehyde 3-phosphate to 3-phospho-

D-glyceroyl phosphate in glycolysis inside the cell in most

cell types but in mammals also serves as a cell surface trans-

ferrin receptor to aid in iron uptake [63,64]. The HSP60 HSP

is a chaperone assisting mitochondrial protein import in the

cell, and is a cell surface receptor for high-density lipopro-

teins through its affinity for apolipoprotein apoA-II [65].
In humans, pyruvate kinase 3 (PK3) isoform 2, glutathione

S-transferase Mu 3, triosephosphate isomerase and fructose-

bisphosphate aldolase A play a second role on the sperm

head membrane, where they are involved in interactions

with zona pellucida proteins of egg [66–68].

This phenomenon of intracellular/surface moonlighting

proteins has been observed widely in bacteria. Bacteria (and

other pathogens) commonly use moonlighting cytosolic pro-

teins on the cell surface for forming and maintaining

interactions with the host species. Some of these proteins

play important roles in infection, invasion, virulence and for-

mation of biofilms. Colonization requires adhesion to the

host, and many surface proteins bind to proteins in the extra-

cellular matrix, including fibronectin, laminin, and/or

collagen, or to mucin, a component of the mucosal epithelial

lining. Other surface moonlighting proteins bind directly to

proteins on host cell surfaces. These interactions enable a

physical attachment to the host. Listeria makes use of alcohol

acetaldehyde dehydrogenase/Listeria adhesion protein

(LAP) to bind to intestinal epithelial cells [55]. Enolase in

glycolysis has been found on the cell surface in many species

of bacteria (Streptococcus, Mycoplasma and Plasmodium
falciparum) where it plays a role in binding plasminogen,

fibronectin, and other proteins and is important in infection

of human, canine and avian hosts [69–72]. Translation

Ef-Tu from Streptococcus gordonii binds to host mucin [73].

Streptococcus pneumoniae makes use of endopeptidase O to

bind host plasminogen and fibronectin [74]. The GAPDH of

Haemonchus contortus (barber pole worm), a nematode species

that infects sheep and goat gastrointestinal tracts, binds the

alternative complement pathway protein C3, inhibits the

complement cascade, and helps the pathogen evade host

immunity [75]. The HSP70/DnaK chaperone also serves as

a cell surface receptor for plasminogen in many species—

Neisseria [76], Mycobacterium tuberculosis [77], Bifidiobacterium
lactis [78], etc.

Streptococcus pneumoniae and the many other pathogenic

bacteria that use enolase GAPDH or other enzymes to bind

plasminogen help the zymogen get converted to the active

protease plasmin by using an endogenous protease or

making use of the host’s tissue-type plasminogen (tPA) acti-

vators and urokinase-type plasminogen activators [79,80].
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The now active plasmin attached to the surface of the invad-

ing organism can be used as a general protease to digest

host extracellular matrix and basement membrane, thereby

assisting migration through tissues.

These interactions between cytoplasmic/cell surface

moonlighting proteins with host tissue are not always the

result of disease or infection. The commensual ‘probiotic’ bac-

terium Lactobacillus acidophilus uses GAPDH on its surface to

help colonize the gut. In this case, the bacterial GAPDH binds

to host mucin [81].

Moonlighting cytosolic proteins are also often used as

secreted signalling molecules to regulate other cell types

within an organism, or to modulate host responses in the

case of a pathogen. Inside the cell, members of the HSP60/

HSP10, HSP70, HSP90, HSP100 and HSP110 protein families

are protein chaperones that prevent client proteins from mis-

folding and promote correct refolding and assembly of

protein complexes, and members of each protein family

have been identified that have additional functions outside

the cell. The extracellular roles of mammalian members of

these protein families are discussed further in other papers

in this collection, so in this review the focus is on other

examples of cytoplasmic proteins that perform other func-

tions when secreted. Thymidine phosphorylase, an enzyme

in pyrimidine metabolism, is the same protein as the secreted

platelet-derived endothelial cell growth factor (PDGF) [82].

Lysyl-tRNA synthetase, which attaches lysine to tRNA for

use in protein synthesis, acts extracellularly on macrophages

and peripheral blood mononuclear cells to increase TNF-a

production and target cell migration [83]. Thymosin b-4 is

an intrinsically disordered protein involved in sequestering

G-actin (monomeric actin) to prevent its polymerization to

F-actin in polymorphonuclear leucocytes. Thymosin b-4 sulf-

oxide is generated in monocytes by the oxidation of a

methionine (Met6) in the presence of glucocorticoids and is

secreted to inhibit the anti-inflammatory response [84–87].

Phosphoglucose isomerase (PGI, also known as glucose-6-

phosphate isomerase, autocrine motility factor, neuroleukin,

differentiation and maturation mediator) catalyses the

interconversion of glucose-6-phosphate and fructose-6-

phosphate in glycolysis and gluconeogenesis, and is an

extracellular cytokine/growth factor that binds to target

cells and causes pre-B cells to mature into antibody secreting

cells, supports the survival of embryonal neurons, and causes

differentiation of several leukemia cell lines [88–94]. In the

black footed ferret (Mustela nigripes), PGI was also found to

be necessary for embryo implantation [95]. The growth

factor effect of PGI can also play a role in disease. Extracellu-

lar PGI causes an increase in cell migration during breast

cancer metastasis. Another cytoplasmic protein that also

has roles in cancer development, threonyl aminoacyl-tRNA

synthetase (TARS), is secreted from endothelial cells in

response to TNF-a and VEGF and promotes vascular devel-

opment. An association has been observed between TARS

expression and advancing stage of ovarian cancer [96]. A

mutation that prevents TARS synthetase activity is still

active in promoting vascular development.

Some bacterial cytosolic enzymes are secreted to interfere

with host defenses. GAPDH from A. vaginae is secreted to

interfere with human C5a anaphylatoxin [97]. Leishmania
donovani secretes another glycolytic enzyme, fructose-

bisphosphate aldolase, as well as translation elongation

factor EF-1 to cause activation of host macrophage protein
tyrosine phosphatase-1 (SHP-1) and decreased activity of

infected macrophages [98,99]. The GroEL/60 kDa chaperonin

produced by Enterobacter aerogenes, the bacterial endosymbiont

of an insect, antlions, is secreted and used as toxin to paralyze

cockroaches [100]. Enolase from the nematode Steinernema
glaseri, when on its cuticle surface or secreted in to the host

hemolymph, suppresses its insect host’s immune system [101].

Further examples of intracellular/surface/secreted moon-

lighting proteins are included in our list of moonlighting

proteins in the MoonProt Database [2]. Most of the known

ICSPs are from bacteria, although examples are found

throughout the evolutionary tree. The bacterial species rep-

resented include typical Gram-positive and Gram-negative

species, as well as mycobacteria, spirochetes and myco-

plasma. In addition, many more cytoplasmic proteins have

been found to be secreted or bound to the cell surface

through proteomics studies. For most of the proteins found

through proteomics studies, further experiments are needed

to determine if the protein has a second function outside

the cell, if it performs the same function as when inside the

cell, or perhaps was found in the extracellular location due

to experimental artefacts of the proteomics methods that

were used.
3. Structural basis for intracellular/extracellular
functions

One question that arises when a protein is found to be a

moonlighting protein pertains to how one polypeptide

chain can perform two different functions, because protein

function is tied to protein structure and it might be presumed

that it would be necessary to alter a protein structure a lot to

gain a new function, which could result in loss of the original

function. Some moonlighting proteins have been found to

solve this problem of switching between functions by under-

going large conformational changes or transitions between

intrinsically unfolded domains and multiple distinct folded

structures so that different conformations of the protein struc-

ture can perform different functions. By contrast, for many of

the intracellular/extracellular moonlighting proteins, large

diversions from the structure or conformation performing a

catalytic or chaperone function within the cell are not

needed for performing the extracellular function. In many

of the cases discussed above, the extracellular function

involves binding to another molecule, often another protein.

In addition to an active site pocket where catalysis occurs

when the protein is inside the cell, the three-dimensional

structure of an enzyme or chaperone includes a large

amount of solvent exposed surface area. Through millions

of years of evolution some portion of this surface can gain

a pattern of amino acids needed for interacting with another

molecule, whether a small molecule, a cell surface receptor, or

another protein, without affecting the active site pocket [102].

This new binding site does not need to very large or complex.

Ehinger and co-workers found that in the case of Streptococcus
enolase, a small motif consisting of only nine amino acids

(248FYDKERKVY256) containing lysines and negatively

charged residues was sufficient for binding to plasminogen.

The evolution of this binding site did not affect the ability

of enolase to catalyse the reaction, and the overall subunit

fold of the protein is identical to that of enolase proteins

that are not known to bind plasminogen [103].
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4. Regulation of multiple activities
Having the ability to perform multiple functions is often only

part of the story for moonlighting proteins. The correct level

of each of the multiple protein activities in the correct place

and the correct time can also be important for maintaining

health and homeostasis. Changes in the expression, level of

activity and/or location of moonlighting proteins play a cen-

tral role in many diseases. Mutations that result in altered

activity of a moonlighting protein can lead to disease—

whether it is a decrease in activity, or, in some cases, an

increase in activity, for example, by disrupting the careful

checks and balances of the immune system. In addition,

mutations that change the amino acid sequence of a protein

can on rare occasions result in an increase in function or a

different function, sometimes referred to as ‘neomorphic

moonlighting function’ if it adds a new catalytic function or

results in aggregate formation [104]. The location and

timing of each protein activity is also important. Sufficient

amounts of protein need to be expressed by the appropriate

cell types. The expression needs to occur at the correct time

in development, and/or appropriately in response to signals

in the environment. It is a common observation in libraries of

gene knockouts that some gene knockouts result in death of

the embryo even though the gene is expected to function

only in the adult organism. It is likely that some of these

genes encode moonlighting proteins that have additional

functions during embryogenesis.

Once the correct level of protein is attained, each of the

functions of a moonlighting protein needs to be performed

at the appropriate level. A moonlighting protein might per-

form multiple functions simultaneously, each might be

independently regulated, or it might alternately perform

one or the other function and have a means of switching

between them. A change in protein conformation as in aconi-

tase, mentioned above, is one method of switching between

functions. Post-translational modifications (PTMs) are com-

monly used to regulate protein function in general, and

they can be used to prompt a moonlighting protein to

switch to a different function. For example, several protein

components of the ribosome become phosphorylated and

leave the ribosome to enter the nucleus where they partici-

pate in other activities. Ribosomal protein S3 (rpS3) has

additional functions in the nucleus in DNA damage repair

and as a transcription factor [105,106]. L10a (rpL10a) can

interfere with gemnivirus reproduction in plants [107,108].

L13a (rpL13a) joins a multiprotein transcription factor [109].

By contrast, the oestrogen receptor leaves the nucleus when

it undergoes palmytoylation so that it can interact with a sig-

nalling pathway at the plasma membrane [110]. Whether

because of PTMs or other means of targeting, many other

moonlighting proteins also perform their different functions

in different cellular locations, whether in the cytoplasm, in

the nucleus, in or attached to another organelle, at the cell

membrane, or outside the cell.

5. Secretion of intracellular/surface moonlighting
proteins

While signals for switching between functions are known for

some moonlighting proteins, less is known about how a por-

tion of the cytosolic pool of an intracellular/surface

moonlighting protein becomes targeted for secretion. There
are several lines of evidence that the ICSPs are indeed

secreted and do not get out of the cell due to cell leakage

or cell death (reviewed in [111]). When secretion of intracellu-

lar/surface moonlighting proteins is observed, many other

cytoplasmic proteins are not found in the supernatant, and

the proteins found in the supernatant or on the cell surface

do not correlate with the most abundant proteins in the

cell. In Staphylococcus aureus, the highest level of secretion

of enolase and aldolase is during exponential growth, when

cell breakage is at a minimum [112]. In addition, for

Escherichia coli enolase, single amino acid substitutions at

K341 resulted in a loss of its secretion, even of a mutant

protein that is still catalytically active [113]. Similarly, in

Bacillus subtilis enolase, deletion of an internal a-helix also

prevented secretion [114]. These results support the idea

that there is likely to be a secretion system(s) for at least

some intracellular/surface moonlighting proteins.

The system or mechanism by which the majority of cyto-

plasmic proteins with a second function outside the cell are

secreted is not known (figure 2). The intracellular/surface

moonlighting proteins do not contain an N-terminal signal

sequence required for secretion by the canonical Sec secretion

system. They also do not contain other sequence motifs, such

as a twin arginine leader motif required for secretion by the

bacterial TAT system. There are several additional non-

canonical secretion systems, but the other secretion systems

are generally used for transport of only a few specific pro-

teins, for example, the type 1 secretion system (T1SS) in

Gram-negative bacteria. In particular, a secretion system

in which a large portion of the pool of each protein type

remains inside the cell but some of the pool of the protein

partitioned to the cell surface has not been identified. This

may involve a novel version of a known secretion system or

it may involve an as-yet-unknown secretion system. In mam-

mals, some of the secreted moonlighting proteins are found

in secretory lysozomes or exosomes, but how they are tar-

geted there is not clear. How these intracellular/surface/

secreted moonlighting proteins are selected for secretion,

and why only a portion of the cytoplasmic pool of the protein

is secreted are current questions in the field.

The mechanism(s) by which some moonlighting proteins

become attached to the cell surface is also unknown. The

mechanism of cell surface attachment could potentially be a

part of a secretion mechanism, although some recombinantly

expressed and purified intracellular/surface moonlighting

proteins are capable of reattaching to the cell surface. With

a few exceptions [115] most of the ICSPs do not contain

known amino acid sequence or structural motifs for attaching

to the cell surface. Cell surface attachment could involve a

new version of a known mechanism or it may involve an

as-yet-unknown mechanism.

6. New targets for therapeutics
The development of novel treatments of diseases involving

HSPs or other moonlighting proteins would be aided by

more information about their targeting and their functions.

For many of the human intracellular/extracellular moonlight-

ing proteins, there is still much to learn about their roles in

disease, but many have been implicated in autoimmune dis-

ease, heart disease, obesity, diabetes and cancer. The current

knowledge of the roles of HSPs in immunology and cancer is

discussed in other articles in this collection. In general, for a
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moonlighting protein, it is important to identify and under-

stand both functions as well as their regulation and

targeting. It is necessary to clarify which of the functions of

a moonlighting protein is involved in disease development

so that the correct protein function can be targeted for the

development of novel therapeutics without causing side

effects due to targeting a function not involved in disease.

This also extends to the roles of paralogs, and also splice var-

iants in humans, because they can share all, some, one, or

none of the functions of a moonlighting protein. Clarification

of when and where each function is performed by each ver-

sion of the protein is also important if the protein is to be

used as a biomarker.

Elucidating how intracellular/cell surface/secreted

moonlighting proteins are secreted might identify processes

and proteins that are involved in the novel secretion systems

(or additional versions of known secretion systems) or surface

attachment mechanisms that could serve as novel targets

for developing new strategies for controlling infection.

Understanding how intracellular/cell surface moonlighting

proteins are targeted to the surface of a pathogen might

lead to a method to decrease the ability of bacteria to bind

to host tissues and could provide new targets for developing
therapeutics to treat infections. With the increasing problem

of antibiotic resistance, new targets for inhibiting bacterial

infection and virulence are needed.
7. Conclusion
Hundreds of proteins have been found to have multiple,

apparently unrelated functions. A large portion of these,

including many HSPs, are cytosolic proteins that have been

found to have additional functions when targeted to the

cell surface or secreted, and the results of cell surface proteo-

mics studies suggest many more might join that group. There

is still much to be learned about their roles in health and dis-

ease, especially the sometimes complex signalling functions

of many secreted mammalian proteins. In the case of bacterial

and other pathogens, elucidating the proteins needed for

their secretion and membrane attachment could lead to

novel treatments for infections.
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