Fosforilazione ossidativa

Fosforilazione ossidativa: una visione d'insieme

Punti chiave:

- 1) Trasporto di elettroni;
- 2) Riduzione O₂
- 3) Gradiente protonico
- 4) Potenziale elettrochimico
- 5) ATP sintasi

I mitocondri: la centrale energetica della cellula

Punto di partenza: NADH e FADH₂ o FMNH₂

Molecola ridotta

Molecola ossidata

Gli elettroni vengono "stoccati" su

NAD⁺ + 2e⁻ + 2H⁺ => NADH + H⁺

(Nicotinammide adenin dinucleotide)

$FAD(FMN) + 2e^{-} + 2H^{+} => FADH_{2}(FMNH_{2})$

(Flavin adenin dinucleotide e Flavin mononucleotide)

Questi trasportatori di elettroni li cederanno alla catena di trasporto degli elettroni localizzata sulla membrana interna mitocondriale.

Da notare che non vi è libero passaggio di questi due trasportatori di elettroni tra citoplasma e matrice mitocondriale => strategie alternative => riduzione di molecole nel citoplasma, trasporto in mitocondrio e ossidazione

FAD e FMN sono legati saldamente alle loro deidrogenasi e il loro potenziale di ossidoriduzione dipende da questo stesso legame.

Trasportatori di elettroni nella catena respiratoria (I) Ubichinone o cofattore Q

La coda idrofobica isoprenoide permette l'inserimento nella membrana interna mitocondriale e la sua diffusione nel piano della membrana, in questo modo può fungere da trasportatore.

Trasportatori di elettroni nella catena respiratoria (II) Citocromi (gruppo prostetico eme)

Gruppi eme differentemente sostituiti, legati covalentemente o meno alla porzione proteica. Proteine integrali di membrana (tranne il citocromo c che è legato tramite interazioni elettrostatiche alla porzione esterna della membrana mitocondriale interna e che è una proteina solubile.

Trasportatori di elettroni nella catena respiratoria (III) **Proteine FERRO-ZOLFO**

Ferro coordinato sia da atomi di zolfo inorganico che da zolfo presente nelle cisteine.

Il potenziale di riduzione degli atomi di ferro dipende dalla proteina.

Il ferro (Fe) nei citocromi e nelle proteine ferro-zolfo può trovarsi nella forma Fe²⁺ o Fe³⁺

Trasportatori di elettroni nella catena respiratoria Determinazione del percorso

1) Trasportatori in ordine crescente di potenziale di riduzione

2) Sistema del blocco e rilascio: si elimina l'ossigeno, tutti diventano ridotti (accumulo), poi si rilascia il sistema immettendo di nuovo ossigeno e si determina l'ordine temporale di ossidazione. Chi si ossida per primo è più vicino alla fine della catena di trasporto.

3) Metodo dell'utilizzo di inibitori. Inibendo un specifico passaggio si determina chi è ossidato (a valle - arancio) e chi è ridotto (a monte - azzurro). L'inibizione a livelli diversi permette di stabilire l'ordine.

Standard Reduction Potentials of Respiratory Chain and Related Electron Carriers		
Redox reaction (half-reaction)	<i>E</i> ′° (V)	
$2H^+ + 2e^- \longrightarrow H_2$	-0.414	
$NAD^{+} + H^{+} + 2e^{-} \longrightarrow NADH$	-0.320	START
$NADP^+ + H^+ + 2e^- \longrightarrow NADPH$	-0.324	
NADH dehydrogenase (FMN) + $2H^+$ + $2e^- \longrightarrow$ NADH dehydrogenase (FMNH ₂)	-0.30	
Ubiquinone + $2H^+$ + $2e^- \longrightarrow$ ubiquinol	0.045	
Cytochrome b (Fe ³⁺) + $e^- \longrightarrow$ cytochrome b (Fe ²⁺)	0.077	
Cytochrome c_1 (Fe ³⁺) + $e^- \longrightarrow$ cytochrome c_1 (Fe ²⁺)	0.22	
Cytochrome c (Fe ³⁺) + $e^- \longrightarrow$ cytochrome c (Fe ²⁺)	0.254	
Cytochrome a (Fe ³⁺) + $e^- \longrightarrow$ cytochrome a (Fe ²⁺)	0.29	
Cytochrome a_3 (Fe ³⁺) + $e^- \longrightarrow$ cytochrome a_3 (Fe ²⁺)	0.55	
$\frac{1}{2}O_2 + 2H^+ + 2e^- \longrightarrow H_2O$	0.816	END

NB1: effetto del contesto molecolare su potenziale di ossidoriduzione! NB2: stiamo parlando di E'°...il reale potenziale di ossiduriduzione dipende dalla concentrazione dei substrati e dei prodotti!

Schema generale trasporto elettroni mitocondriale

COMPLESSO I NADH + H⁺ + Q=> NAD⁺ + QH₂ 4 H⁺ (matrice, N) => 4 H⁺ (spazio intermembrana, P)

- 1) Riduzione Q
- 2) Cambiamento conformazionale di tipo allosterico
- 3) Pompaggio protoni esterno

QH₂ diffonde verso complesso III

Composizione 45 proteine tra cui Una flavoproteina (FMN) 8 centri Fe-S Forma L Pompa Protonica (controgradiente) Reazione vettoriale (H+ spostati da matrice a spazio intermembrana) Accoppiamento trasferimento econ cambiamento conformazionale e relativo pompaggio H+ all'esterno.

COMPLESSO I - Accoppiamento riduzione Q - trasporto H⁺

RIDUZIONE COFATTORE Q E SUO RILASCIO => CAMBIAMENTO CONFORMAZIONE CHE SI "DIFFONDE TRASVERSALMENTE" ALLE 4 PORZIONI COINVOLTE NEL TRASPORTO DI H⁺ CHE SONO COSTITUITE DA SEMICANALI.

COMPLESSO II (Succinato deidrogenasi)

Spazio intermembrana (lato P)

Passaggio di elettroni non è accoppiato a pompaggio H⁺

Eme b non coinvolto nel trasporto di elettroni: svolge ruolo di protezione nei confronti della produzione di ROS (reactive ossigen species)

Rientra nel ciclo dell'acido citrico (passaggio succinato => fumarato Questo implica la possibilità di coordinare fosforilazione ossidativa con ciclo dell'acido citrico (disponibilità di Q ossidato è limitante per il funzionamento di questo complesso e quindi anche per l'ossidazione del succinato).

Composizione

4 Subunità proteiche

C e D - proteine integrali di membrana.

Sono presenti un gruppo eme b, tre centri Fe-S e un FAD legato covalentemente

....complesso I e II => elettroni a Q!

COMPLESSO III (complesso del citocromo bc₁ QH₂ + 2 Cit c _(ox) + 2 H⁺_N => Q + 2 Cit c _(rid) + 4 H⁺_P

Elettroni da QH₂ a citocromo c

Passaggio di elettroni è accoppiato al pompaggio di H⁺

Sistema per accoppiare trasportatori di 2 elettroni (coenzima Q) con trasportatori di un elettrone (citocromo c)

Composizione:

2 monomeri da 11 subunità cad. Proteine chiave:

Citocromo b (2 gruppi eme b_H e b_L)

Citocromo c₁

Proteina Fe-S di Rieske

COMPLESSO III (ciclo Q) (4 H⁺ all'esterno)

Equazione netta: $QH_2 + 2 \operatorname{cit} c \text{ (ossidato)} + 2H_N^+ \longrightarrow Q + 2 \operatorname{cit} c \text{ (ridotto)} + 4H_P^+$

Strategia passaggio trasportatore 2 e⁻ a trasportatore 1 e⁻

