UNIVERSITÀ DEGLI STUDI DI TRIESTE

Corso di Laurea in Scienze e Tecnologie Biologiche – 011SM Fisica A.A. 2021/2022 Sessione Autunnale – I Prova Scritta – 11.09.2023 Tempo a disposizione: 2 h e 30'

	remp	•
	ioni: I problemi vanno dapprii ssivamente, per ciascuna domanda, s (ove possibile) la grandezza grandezze date, e	Nome
1)	attrito ed inclinato di $\theta = 30^{\circ}$ rispet Il sistema si trova in equilibrio nel p	nizialmente appoggiato contro una molla su un piano privo di to all'orizzontale. La molla ha costante elastica $k = 1800 \text{ N/m}$. Sunto indicato con O in figura. Successivamente, la massa viene da comprimerla di una lunghezza $\Delta x = 7.5 \text{ cm}$, e poi lasciata
		\mathbf{v}^0
	Si calcoli la distanza D (rispetto ad di fermarsi.	O) che verrà percorsa dal blocco lungo il piano inclinato prima
	i) <i>D</i> =	ii) <i>D</i> =
2)	cgs e la conversione in unità SI è da	ove P sta per Poise, unità di misura della viscosità nel sistema ata da 1 P = 0.1 Pa·s). Tale liquido scorre con flusso laminare e ale clindrico, di lunghezza $l = 50$ cm e di raggio $R = 7.0$ mm, l /s. Determinare:
	a) La portata Q del flusso del liqui	ido viscoso.
	u) zu persuu g uer masse uer ma	

i) $\Delta p =$ ______ ii) $\Delta p =$ _____

3)	$m_g = 200$ g di ghiaccio a $T_g = 0$ ° C vengono posti in $m_a = 200$ g di acqua a $T_a = 20$ ° C. Si ricorda che il calore latente di fusione del ghiaccio vale $K_f = 80$ cal/g e che (per definizione di caloria) il calore specifico dell'acqua vale $c = 1$ cal/g/° C, con 1 cal = 4.186 J.Tascurando la capacità termica del recipiente in cui l'acqua è contenuta e gli scambi termici con l'ambiente esterno, determinare:		
	a) La temperatura finale di equilibrio T_e del sistema.		
	i) $T_e = $	ii) $T_e = $	
	b) La massa m_f di ghiaccio fusa all'equilibrio.		
	i) <i>m_f</i> =	ii) <i>m_f</i> =	
	c) Se la massa d'acqua inizialmente fosse stata di $m'_a = 1000$ g, allora il ghiaccio si sarebbe fuso completamente. Quale sarebbe stata la temperatura di equilibrio T'_e in questo caso?		
	i) $T'_e = $	ii) $T'_e = $	
4)	Nel circuito in figura, i due condensatori hanno capacità $C_1 = 1.0 \ \mu \text{F}$ e $C_2 = 2.0 \ \mu \text{F}$, mentre i due resistori hanno resistenze $R_1 = 10 \ \Omega$ e $R_2 = 20 \ \Omega$. Il sistema di condensatori e quello di resistori sono entrambi connessi a una batteria in grado di erogare una differenza di potenziale $\Delta V = 30 \ \text{V}$.	C_1 C_2 ΔV R_1 R_2	
	Determinare:		
	a) la capacità equivalente C del sistema di conde	ensatori:	
	i) <i>C</i> =	ii) <i>C</i> =	
	b) la resistenza equivalente R del sistema di resis	stori	
	i) <i>R</i> =	ii) <i>R</i> =	
	c) la carica Q_I immagazzinata nel condensatore	C_I :	
	i) $Q_I = $	ii) <i>Q</i> _I =	
	d) la differenza di potenziale ΔV_1 e ΔV_2 ai capi ri	spettivamente del condensatore C_1 e C_2 :	
	i) $\Delta V_I =$	ii) <i>∆V</i> ₁ =	
	i) $\Delta V_2 =$	ii) <i>∆V</i> ₂ =	