Light-Powered Reversible Guest Release and Uptake from Zn₄L₄ Capsules

Amit Ghosh, Laura Slappendel, Bao-Nguyen T. Nguyen, Larissa K. S. von

Krbek, Tanya K. Ronson, Ana M. Castilla, Jonathan R. Nitschke*

Yusuf Hamied Department of Chemistry, University of Cambridge,

Cambridge CB2 1EW, UK.

jrn34@cam.ac.uk

Supporting Information

Table of Contents

S1	General Information3			
S2	Synthesis and Characterization of Subcomponent A4			
S3	Self-Assembly and Characterization of <i>trans</i> -16			
S4	Self-Assembly and Characterization of Tf_2N - \subset 2 13			
S5	Investigation of Photoswitching Properties of Subcomponent B17			
S6	Investigation of Photoswitching Properties of Tf₂N⁻⊂ <i>trans</i> -119			
S6.	1 Characterization of Disassembly and Assembly of Tf ₂ N-⊂ <i>trans</i> -1 Using ¹ H NMR			
S6.2	2 Characterization of Guest (Tf ₂ N ⁻) Release and Uptake Using ¹⁹ F NMR22			
S6.3	3 Characterization of Photo-switching of <i>trans</i> -1 Using UV/Vis Spectra25			
S7	Host-Guest Studies Using Tf₂N⁻⊂ <i>trans</i> - 1 26			
S7.	1 Encapsulation of PF ₆ ⁻ 27			
S7.2	2 Encapsulation of Guest TfO ⁻ 28			
S7.3	3 Encapsulation of Guest BF_4^-			
S7.4	S7.4 Comparison of ¹ H and ¹⁹ F NMR spectra of All of the Host-Guest complexes32			
S7.5 Competitive Binding Studies				
S7.0	6 Variable Temperature Studies			
S7.	7 Investigation with Neutral Guests			
S8 Inv	vestigation of Photoswitching Properties of <i>Trans</i> - 1 Encapsulating Different Guests			
S8.	1 Reversible photoswitching of cage PF ₆ -⊂trans- 1 40			

S8.	.2 Reversible photoswitching of cage TfO [−] ⊂ <i>trans</i> -1	41
S8.	.3 Reversible photoswitching of cage BF₄⁻⊂ <i>trans</i> - 1	42
S8.	.4 Reversible Photoswitching of Cage <i>Trans</i> - 1 ·[OTf] ₈	43
S8.	.5 Reversible Photoswitching of Cage <i>Trans</i> - 1 ·[BF ₄] ₈	44
S9	X-ray crystallography	45
S10	Volume Calculations	47
S11	MM3 Models and Calculated Energies	48
S12 Control Experiments4		
S13	References	52

S1 General Information

Unless otherwise specified, all reagents were purchased from commercial sources and used as received. Ligand **A** was prepared from commercially available cyanuric chloride and 5-Hydroxypicolinaldehyde. Compound **B** was synthesized according to reported procedures.¹ Self-assembly reactions were performed in CD_3CN .

NMR spectra were recorded using the following NMR spectrometers: Bruker 400 MHz Avance III HD smart probe (¹H, ¹³C, ¹⁹F, 2D NMR), Bruker Avance 500 MHz DCH cryoprobe (¹H, ¹⁹F), Bruker Avance 500 MHz TCI cryoprobe (¹H, ¹H-DOSY). Chemical shifts of the NMR spectra are reported relative to CDCl₃ (¹H NMR: δ = 7.26 ppm, ¹³C NMR: δ = 77.0 ppm), and CD₃CN (¹H NMR: δ = 1.94 ppm, ¹³C NMR: δ = 118.3 and 1.8 ppm). Data for ¹H NMR spectra were reported as follows: chemical shift (ppm), peak shape (s = singlet, d = doublet, dd = doublet of doublets, ddd= doublet of doublets of doublets, t = triplet, m = multiplet), coupling constant (Hz), and integration. Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (ppm).

Deconvolution of peak clusters with calculated Lorentzian peaks gave rise to the speciation profiles. Baseline corrections were performed using the MestReNova Bernstein polynomial algorithm prior to this analysis. All processing operations were manually checked to ensure that the processed spectra accurately represented the raw data.

High resolution electrospray ionisation mass spectra (ESI–HRMS) were recorded on a Waters Synapt G2-Si instrument.

The irradiations at 350 nm and 500 nm were performed in-situ placing the NMR tubes or the cuvettes inside a Rayonet photochemical chamber reactor (40 cm deep, 25 cm diameter, 16×14 W light sources, operating temperature 32 °C).

S2 Synthesis and Characterization of Subcomponent A

2,4,6-trichloro-1,3,5-triazine (316 mg, 1.71 mmol, 1.0 eq.) in acetone (100 mL) was added dropwise to 5-hydroxypicolinaldehyde (631 mg, 5.13 mmol, 3.0 eq.) and NaOH (205 mg, 5.13 mmol, 3.0 eq.) in water (100 mL). The solution was stirred at room temperature for 16 h. The acetone was removed *in vacuo* then the rest was extracted in CHCl₃-*i*PrOH (3 : 1), and wash with water. The organic layer was dried over Na₂SO₄, concentrated *in vacuo*. The residue was purified by column chromatography (SiO₂; Hexane : EtOAc, 2 : 1, R_f = 0.35) yielding a white solid (450 mg, 1.01 mmol, 59%).

¹**H NMR** (400 MHz, CDCl₃): δ 10.05 (d, J = 0.8 Hz, 3H, 12-H), 8.72 (dd, J = 2.6, 0.6 Hz, 3H, 11-H), 8.06 (dd, J = 8.4, 0.6 Hz, 3H, 10-H), 7.86 (ddd, J = 8.4, 2.6, 0.8 Hz, 3H, 9-H) ppm. ¹³**C NMR** (100 MHz, CD₃CN): δ 191.7, 173.2, 150.9, 150.8, 143.9, 130.0, 122.8 ppm. HR-ESI-MS [POS] [M+H]⁺: m/z = 445.0905 (calc. for C₂₁H₁₃N₆O₆: m/z 445.0897).

Figure S1. ¹H NMR spectrum of compound A (400 MHz, CDCl₃, 25 °C).

Figure S2. ¹³C NMR spectrum of compound A (100 MHz, CD₃CN, 25 °C).

S3 Self-Assembly and Characterization of trans-1

In a NMR tube, ligand **A** (8.80 mg, 19.8 μ mol, 4.0 equiv) in 500 μ L of CD₃CN was combined with ligand **B** (11.7 mg, 59.4 μ mol, 12.0 equiv). To this mixture, Zn(NTf₂)₂ (12.4 mg, 19.8 μ mol, 4.0 equiv) was added and subsequently the NMR was recorded. *Trans*-1 was the uniquely-observed product.

¹**H NMR** (400 MHz, CD₃CN): δ 8.77 (s, 12H, 1-H), 8.75 (dd, *J* = 8.4, 0.6 Hz, 12H, 10-H), 8.51 (dd, *J* = 8.4, 2.6 Hz, 12H, 9-H), 8.00 (dd, *J* = 2.6, 0.6 Hz, 12H, 11-H), 7.91 (ddd, *J* = 8.0, 2.4, 1.2 Hz, 12H, 4-H), 7.71 (dd, *J* = 8.0, 1.2 Hz, 24H, 6-H) 7.58-7.45 (m, 48H, 3-,7-,8-H), 6.62 (t, *J* = 2.4 Hz, 12H, 5-H), 6.50 (ddd, *J* = 8.0, 2.4, 1.2 Hz, 12H, 2-H) ppm. ¹³**C NMR** (100 MHz, CD₃CN): δ 173.4, 166.2, 154.2, 153.4, 149.0, 145.8, 144.4, 138.2, 133.4, 133.0, 132.5, 130.8, 126.5, 125.0, 124.4, 123.0, 114.7 ppm. ¹⁹**F NMR** (CD₃CN, 376 MHz, referenced to C₆F₆): δ -78.5 (s, *endo* Tf₂N⁻), -80.5 (s, *exo* Tf₂N⁻) ppm. **ESI-MS**: *m*/*z* = 791.5 [1-2(NTf₂)]⁶⁺, 1005.8 [1-3(NTf₂)]⁵⁺, 1327.2 [1-4(NTf₂)]⁴⁺, 1862.9 [1-5(NTf₂)]³⁺.

Figure S3. ¹H NMR spectrum of Tf₂N[−]⊂*trans*-1 (400 MHz, CD₃CN, 25 °C).

Figure S4. ¹³C NMR spectrum of Tf₂N⁻⊂*trans*-1 (100 MHz, CD₃CN, 25 °C).

Figure S5. ¹H-¹H COSY NMR spectrum of Tf₂N[−]⊂*trans*-1 (400 MHz, CD₃CN, 25 °C).

Figure S6. ¹H-¹H NOESY NMR spectrum of Tf₂N⁻⊂*trans*-1 (400 MHz, CD₃CN, 25 °C).

Figure S7. ¹H DOSY spectrum of Tf₂N⁻ \subset *trans*-**1** (400 MHz, CD₃CN, 25 °C). The diffusion coefficient in CD₃CN was measured to be 3.9×10⁻¹⁰ m²/s.

Figure S8. ¹⁹F NMR spectrum of Tf₂N⁻⊂*trans*-1 (376 MHz, CD₃CN, 25 °C).

Figure S9. Low-resolution ESI-mass spectrum of Tf₂N⁻⊂*trans*-1 in CH₃CN.

Figure S10. High-resolution ESI-MS spectra of Tf_2N - \subset *trans*-**1** in CH₃CN. Experimental (blue) and calculated (red) peaks for a) $[1-2(NTf_2)]^{6+}$: m/z = 791.4812 (calculated m/z = 791.4824), b) $[1-3(NTf_2)]^{5+}$: m/z = 1005.7605 (calculated m/z = 1005.7624), c) $[1-4(NTf_2)]^{4+}$: m/z = 1327.1812 (calculated m/z = 1327.1823), d) $[1-5(NTf_2)]^{3+}$: m/z = 1862.8807 (calculated m/z = 1862.8822).

In an NMR tube, **A** (0.80 mg, 1.98 μ mol, 4.0 equiv) in 500 μ L of CD₃CN was combined with **B** (1.17 mg, 5.94 μ mol, 12.0 equiv). To this mixture, Zn(OTf)₂ (0.72 mg, 1.98 μ mol, 4.0 equiv) was added and subsequently the NMR spectrum was recorded. *Trans*-**1**·[OTf]₈ was obtained shown in Figure S11.

-10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 δ/ ppm

Figure S12. ¹⁹F NMR spectrum of trans-1·[OTf]₈ (376 MHz, CD₃CN, 25 °C).

In an NMR tube, **A** (0.80 mg, 1.98 µmol, 4.0 equiv) in 500 µL of CD_3CN was combined with **B** (1.17 mg, 5.94 µmol, 12.0 equiv). To this mixture, $Zn(BF_4)_2$ (0.47 mg, 1.98 µmol, 4.0 equiv) was added and subsequently the NMR spectrum was recorded. *Trans*-**1**·[BF₄]₈ was obtained as major product.

Figure S13. ¹H NMR spectrum of *trans*-1·[BF₄]₈ (500 MHz, CD₃CN, 25 °C).

Figure S14. ¹⁹F NMR spectrum of trans-1·[BF₄]₈ (376 MHz, CD₃CN, 25 °C).

S4 Self-Assembly and Characterization of Tf₂N⁻⊂2

Subcomponent **A** (4.0 mg, 9.0 μ mol), *p*-toluidine, (2.9 mg, 27 μ mol), and iron(II) triflimide [Fe(NTf₂)₂] (5.5 mg, 9.0 μ mol) were loaded into a J-Young NMR tube and dissolved in CD₃CN (0.6 mL). The NMR tube was subjected to three evacuation/nitrogen fill cycles to remove oxygen, sealed and then heated for 24 h at 70 °C. The addition of diethyl ether to the resulting solution induced precipitation, the solid was isolated by centrifugation, dried under vacuum and redissolved in CD₃CN. ¹H NMR (400 MHz, CD₃CN): δ = 9.06 (s, 12H, 1-H Tf₂N-**2**), 8.86 (s, 12H, 1'-H 2), 8.69 (d, *J* = 9.0 Hz, 12H, 5-H Tf₂N-**2**), 8.65 – 8.50 (m, 36H, overlapping 6-H Tf₂N-**2** + 5'-H 2 + 6'-H 2), 7.52 (s, 12 H, 7-H Tf₂N-**2**), 7.38 (s, 12 H, 7'-H 2), 7.07 (d, *J* = 7.4 Hz, 48H, overlapping 2-H Tf₂N-**2** + 2'-H 2), 5.32 (d, *J* = 6.9 Hz, 48H, overlapping 3-H Tf₂N-**2** + 3'-H 2), 2.36 (s, 72H, overlapping 4-H Tf₂N-**2** + 4'-H 2) ppm. ¹⁹F NMR (376 MHz, CD₃CN): δ = -78.4 (s, *endo* Tf₂N-), - 80.0 (s, *exo* Tf₂N-) ppm. **ESI-MS**: *m/z* 478.6 [2-(NTf₂)]⁷⁺, 605.0 [2-2(NTf₂)]⁶⁺, 782.1 [2-3(NTf₂)]⁵⁺, 1047.7 [2-4(NTf₂)]⁴⁺, 1490.2 [2-5(NTf₂)]³⁺. Crystals of Tf₂N-**2** were grown from slow diffusion of diethyl ether into a solution of the reaction mixture.

Figure S15. ¹H NMR spectrum of Tf₂N⁻⊂**2** (400 MHz, CD₃CN, 25 °C).

Figure S16. ¹⁹F NMR spectrum of Tf₂N⁻⊂**2** (376 MHz, CD₃CN, 25 °C).

Figure S17. ¹H-¹H COSY NMR spectrum of $Tf_2N \subset 2$ (400 MHz, CD₃CN, 25 °C).

Figure S18. ¹H DOSY spectrum of Tf₂N[−]⊂**2** (400 MHz, CD₃CN, 25 °C).

Figure S19. Low-resolution ESI-mass spectrum of $Tf_2N \subset 2$ in CH_3CN .

S5 Investigation of Photoswitching Properties of Subcomponent B

Figure S20. Reversible photoswitching of azobenzene-containing subcomponent **B**. In an NMR tube, ligand *trans*-**B** (5.60 mg, 28.4 μ mol) was dissolved in 500 μ L of CD₃CN. An NMR spectrum was measured immediately after irradiation at 350 nm for 10 min. For reversible photoswitching, the same mixture was either irradiated at 500 nm (for 30 min) or heated at 75 °C (for 10 h).

Figure S21. The comparison of ¹H NMR spectra of **B** (c = 56.8 mM) following exposure to light at 350 nm (10 min) and then at 500 nm (30 min) (400 MHz, CD₃CN, 25 °C). The protons of *trans*-**B** and *cis*-**B** have been assigned and are indicated by red and blue labels, respectively.

Figure S22. Time-dependent ¹H NMR (CD₃CN, 400 MHz, 25 °C) spectrum monitoring interconversion between *cis*-**B** to *trans*-**B** by heating the solution at 75 °C.

Figure S23. Kinetics for the *cis* to *trans* isomerisation of ligand **B** at 75 °C, monitored by the relative integration of protons 1 and 1' in the ¹H NMR (Figure S17). The fitting following a 1st order kinetics (red line), revealing a half-life of $t_{1/2}$ = 46 min and rate constants of *k* = 2.5 x 10⁻⁴ s⁻¹.

Figure S24. The comparison of the UV-vis spectra of *trans*-**B** (7.2×10^{-6} M, CH₃CN, 25 °C) and then following exposure to light at 350 nm for 10 min.

S6 Investigation of Photoswitching Properties of Tf₂N⁻⊂*trans*-

Figure S25. Disassembly and assembly of cage Tf_2N - \subset *trans*-**1** and subsequent guest (NTf₂-) release and uptake. A cartoon representation of the mixture of cages can be found in Figure S21.

In an NMR tube, **A** (8.80 mg, 19.8 μ mol, 4.0 equiv) in 500 μ L of CD₃CN was combined with *trans*-**B** (11.7 mg, 59.4 μ mol, 12.0 equiv). To this mixture, Zn(NTf₂)₂ (12.4 mg, 19.8 μ mol, 4.0 equiv) was added and the NMR tube was then irradiated at 350 nm. After 10 min the ¹H NMR spectrum was recorded. For the reverse process, the same

solution was irradiated at 500 nm for 30 min or heated to 75 °C for 10 h and the NMR

spectrum was recorded subsequently.

Figure S26. ¹H NMR spectra (500 MHz, CD₃CN, 25 °C) of cage Tf₂N⁻ \subset *trans*-1 (*c* = 39.6 mM) after irradiation at 350 nm for 10 min. Only the signals for subcomponents **A** (brown) and *cis*-**B** (cyan) are marked.

Figure S27. Comparison of ¹H NMR spectra (400 MHz, CD₃CN, 25 °C) of (i) subcomponent **A**; (ii) subcomponent **B** after 350 nm irradiation; (iii) pure cage Tf₂N- \subset *trans*-**1** and (iv) cage Tf₂N- \subset *trans*-**1** after 350 nm irradiation. The signals of subcomponent **A**, *trans*-**B**, *cis*-**B** and Tf₂N- \subset *trans*-**1** have been assigned and are indicated by brown, red, cyan and black labels, respectively.

Figure S28. Reversible photoswitching of cage Tf_2N - \subset *trans*-**1** (*c* = **3**9.6 mM). ¹H NMR spectra (500 MHz, CD₃CN, 25 °C) of (i) cage Tf_2N - \subset *trans*-**1**; (ii) after 350 nm irradiation for 10 min and (iii) after irradiation at 500 nm for 30 min.

Figure S29. ¹H NMR spectra (400 MHz, CD₃CN, 25 °C) of cage Tf₂N⁻⊂*trans*-1 (c = 39.6 mM) after initial 350 nm irradiation, following the course of cage reassembly at 75 °C. Marked signals are assigned to protons using the following symbols: \circ , Tf₂N⁻ ⊂*trans*-1; \blacktriangle , *cis*-B; and *, subcomponent A.

S6.2 Characterization of Guest (Tf₂N⁻) Release and Uptake Using ¹⁹F NMR

Figure S30. ¹⁹F NMR spectra (376 MHz, CD₃CN, 25 °C) of Tf₂N- \subset *trans*-**1** (39.6 mM) at the indicated times during 75 °C heating after 350 nm UV irradiation. Deconvolution of peak clusters with calculated Lorentzian peaks are color coded. The peak at –78.47 (magenta), -78.51 (green), -78.54 (red), -78.57 (blue), and -78.58 (brown) represent Tf₂N- encapsulated within cages incorporating 0, 1, 2, 3, and 4 *cis* diazo moieties, respectively. The speciation profile in Figure 5 was extracted from this experiment.

Figure S31. ¹⁹F NMR spectra (376 MHz, CD₃CN, 25 °C) of cage Tf₂N- \subset *trans*-**1** (*c* = 39.6 mM) at various times recorded with heating at 75 °C after 350 nm UV irradiation. t = 0 min is after stopping irradiation (when the guest has been released). The integration of peaks at -78.47 to -78.58 ppm with respect to hexafluorobenzene shows gradual uptake of guest Tf₂N-by the cage *trans*-**1**. The first cycle of Figure 6c is plotted from this experiment.

Figure S32. Kinetics for the guest uptake process during reverse photoisomerization towards *trans*-1 at 75 °C, monitored by integration of encapsulated Tf_2N^- with respect to hexafluorobenzene (Figure S27). The fitting following a 1st order kinetics (red line), revealing a half-life of $t_{1/2}$ = 38 min and rate constants of k = 3.50 x 10⁻⁴ s⁻¹.

Figure S33. ¹⁹F NMR spectra (376 MHz, CD₃CN, 25 °C) of photoswitching of Tf₂N⁻ \subset *trans*-**1** (*c* = 39.6 mM) shows reversible release and uptake of Tf₂N⁻; integration of encapsulated Tf₂N⁻ is measured with respect to hexafluorobenzene as internal standard.

Figure S34. Population of *trans* (34.3%) and *cis* (8.7%) diazo moieties in the 43% of intact, triflimide-binding cages following UV irradiation. After UV irradiation, a total of six peaks appear in the ¹⁹F NMR, with five corresponding to bound Tf_2N^- (43%) and one corresponding to free Tf_2N^- (57% released from a cage, along with the unbound counter anions). This 43% / 57% split thus corresponds to the proportion of ligand bound up into cages, vs. free ligand corresponding to cages that have opened. From the 43% of ligand incorporated into cages, we can calculate the amount of isomerization (34.3% *trans* and 8.7% *cis*), but we were unable to quantify the degree of isomerization among the other 57%.

S6.3 Characterization of Photo-switching of trans-1 Using UV/Vis Spectra

S7 Host-Guest Studies Using Tf₂N⁻⊂*trans*-1

Figure S36. Encapsulation of other anionic guests (PF_6^- , TfO^- and BF_4^-) with subsequent release of Tf_2N^- .

The anions PF_6^- (TBAPF₆, where TBA is tetrabutylammonium), TfO⁻ (TBAOTf), and BF_4^- (TBABF₄) were investigated as potential guests for the **1**. Initially Tf₂N⁻⊂*trans*-**1** was prepared in a NMR tube as described above. Five equivalents of the TBA salt of the relevant anion were then added progressively, one equivalent at a time, as a solid. ¹H and ¹⁹F NMR spectra were recorded 30 minutes after each addition. It was found that all the guests were encapsulated by *trans*-**1**, showing a slow anion exchange on the ¹H NMR chemical shift time scale.

Anion	Volume (Å ³)
Tf ₂ N⁻	131
PF ₆ ⁻	90
TfO⁻	86
BF4-	50

Table S1. Reported anion volumes.^{2,3}

S7.1 Encapsulation of PF₆-

Figure S37. ¹H NMR (CD₃CN, 500 MHz, 25 °C) titration of PF_6^{-into} a solution of $Tf_2N^{-} \subset trans-1$ (9.9 mM).

Figure S38. a) ¹⁹F NMR (CD₃CN, 376 MHz, 25 °C) titrations of PF₆⁻ into a solution of Tf₂N⁻⊂*trans*-1 (*c* = 9.9 mM). The peak at -78.5 ppm shows gradual release of Tf₂N⁻ with increasing amount of PF₆⁻. b) Zoom of part of the ¹⁹F NMR spectrum shows fast exchange of PF₆⁻ on the ¹⁹F NMR time scale.

S7.2 Encapsulation of Guest TfO⁻

Figure S39. ¹H NMR (CD₃CN, 500 MHz, 25 °C) titration of TfO⁻into a solution of Tf₂N⁻ \subset *trans*-1 (9.9 mM).

Figure S40. a) ¹⁹F NMR (CD₃CN, 376 MHz, 25 °C) titrations of TfO⁻ into a solution of Tf₂N⁻⊂*trans*-1 (9.9 mM). The peak at -78.5 ppm shows gradual release of Tf₂N⁻ with increasing amount of TfO⁻. b) Zoom of part of the ¹⁹F NMR spectrum shows fast exchange of TfO⁻ on the ¹⁹F NMR time scale.

Figure S41. The comparison of ¹H NMR (500 MHz, CD₃CN, 25 °C) spectra of (i) *trans*- $1\cdot$ [OTf]₈ and (ii) TfO- \subset *trans*-1.

Figure S42. The comparison of ¹⁹F NMR (376 MHz, CD₃CN, 25 °C) spectra of (i) *trans*- $1 \cdot [OTf]_8$ and (ii) TfO⁻ \subset *trans*-1.

S7.3 Encapsulation of Guest BF₄⁻

Figure S43. ¹H NMR (CD₃CN, 500 MHz, 25 °C) titration of BF_4^- into a solution of $Tf_2N^- \subset trans-1$ (9.9 mM).

Figure S44. a) ¹⁹F NMR (CD₃CN, 376 MHz, 25 °C) titration of BF₄⁻ into a solution of Tf₂N⁻ \subset *trans*-1 (9.9 mM). The peak at -78.5 ppm shows gradual release of anion Tf₂N⁻ with increasing amount of BF₄⁻. b) Zoom of part of the ¹⁹F NMR shows fast exchange of BF₄⁻ on the ¹⁹F NMR time scale.

Figure S45. The comparison of ¹H NMR (500 MHz, CD₃CN, 25 °C) spectra of (i) *trans*- $1 \cdot [BF_4]_8$ and (ii) $BF_4^- \subset trans - 1$.

Figure S46. The comparison of ¹⁹F NMR (376 MHz, CD₃CN, 25 °C) spectra of (i) *trans*-1·[BF₄]₈ and (ii) BF₄–⊂*trans*-1.

S7.4 Comparison of ¹H and ¹⁹F NMR spectra of All of the Host-Guest complexes

Figure S47. a) ¹H NMR spectra (CD₃CN, 400 MHz, 25 °C) and b) ¹⁹F NMR spectra (CD₃CN, 376 MHz, 25 °C) of i) Tf₂N⁻⊂*trans*-1, ii) PF₆⁻⊂*trans*-1, iii) TfO⁻⊂*trans*-1, and iv) BF₄⁻⊂*trans*-1, respectively. PF₆⁻⊂*trans*-1, TfO⁻⊂*trans*-1 and BF₄⁻⊂*trans*-1 are obtained by adding five equivalents of TBAPF₆, TBAOTf, or TBABF₄, respectively, to a solution of Tf₂N⁻⊂*trans*-1. Green, blue, red and black solid triangles indicate the peaks of the *trans*-1 bound to Tf₂N⁻, PF₆⁻, TfO⁻ and BF₄⁻, respectively. The peaks of the free guests in (b) are marked with empty circles.

S7.5 Competitive Binding Studies⁴

A 9.9 mM solution of Tf_2N - \subset *trans*-1 was prepared and used directly for probing the relative binding strength of anions by ¹H NMR. Differing amounts of competing anions were added to the solution in order to obtain an accurate relative binding affinity. After each addition of the guest anion to the Tf_2N - bound cage, the mixture was kept at 298 K for at least 2 days prior to recording the spectra to ensure the system had reached equilibrium.

In solution, there is the following equilibrium:

$$[HG\mathbf{1}] + [G\mathbf{2}] \rightleftharpoons [HG\mathbf{2}] + [G\mathbf{1}]$$

The relative binding constant (K_{rel}) is calculated by the following equation:

$$K_{rel} = K_a^2 / K_a^1 = [HG2] / [HG1] \times [G1] / [G2]$$

Here K_{rel} is the relative binding constant; K_a^2 is the binding constant for guest 2 and K_a^1 is the binding constant for guest 1. $[G_1]_{total}$ is the total concentration of G_1 prior to the addition of a competitive anion G_2 . After the addition of G_2 , $[HG_1]$ and $[HG_2]$ could be determined by integration of the corresponding ¹H NMR cage peaks. Then $[G_1]$, the 32

concentration of the free G_1 , is equal to the difference between $[G_1]_{total}$ and $[HG_1]$. The concentration of the added G_2 , $[G_2]_{add}$, could also be determined by integration of the TBA⁺ resonances, and then $[G_2]$, the concentration of free G_2 , is equal to the difference between $[G_2]_{add}$ and $[HG_2]$. Hence based on the above four concentrations, the relative binding constant K_{rel} was determined by ¹H NMR spectroscopy.

Figure S48. Addition of PF_6^- to a solution of $Tf_2N^- \subset trans-1$ in CD_3CN monitored by ¹H NMR spectroscopy (500 MHz, 25 °C). The solution was left to equilibrate for 2 days following addition of $TBAPF_6$ prior to acquisition of the new spectrum. These results show that $K_{Tf2N^-} = 6.8K_{PF6-}$.

Figure S49. Addition of TfO⁻ to a solution of Tf₂N⁻⊂trans-**1** in CD₃CN monitored by ¹H NMR spectroscopy (500 MHz, 25 °C). The solution was left to equilibrate for 2 days following addition of TBAOTf prior to acquisition of the new spectrum. The results show K_{Tf2N} = 9.6 K_{TfO-} .

Figure S50. Addition of BF_4^- to a solution of $Tf_2N^- \subset trans-1$ in CD_3CN monitored by ¹H NMR spectroscopy (500 MHz, 25 °C). The solution was left to equilibrate for 2 days following addition of TBABF₄ prior to acquisition of the new spectrum. The results show K_{Tf2N} = 21.3 K_{BF4-} .

From Figure S48-Figure S50, a hierarchy of binding affinities, $Tf_2N^-> PF_6^-> TfO^- > BF_4^-$, was obtained. These results support the inference that larger anions bind more strongly within **1**.

Anion	Volume (Å ³)	K_{rel} (K_a^2/K_{Tf2N} -)
Tf₂N⁻	131	-
PF ₆ ⁻	90	0.15
TfO⁻	86	0.11
BF ₄ -	50	0.04

Table S2. Reported volumes^{2,3} and relative binding affinities of the anions.

S7.6 Variable Temperature Studies

Figure S51. ¹⁹F VT-NMR (CD₃CN, 376 MHz) of $PF_6 - ctrans - 1$. With lowering temperature the signals broadened and shifted, suggesting fast exchange of PF_6 within cage *trans*-1 on the NMR time scale.

Figure S52. ¹⁹F VT-NMR (CD₃CN, 376 MHz) of TfO⁻ \subset *trans*-1. With lowering temperature the signals broadened and shifted, suggesting fast exchange of TfO⁻ within cage *trans*-1 on the NMR time scale.

Figure S53. ¹⁹F VT-NMR (CD₃CN, 376 MHz) of BF₄– \subset *trans*-**1**. With lowering temperature the signals broadened and shifted, suggesting fast exchange of BF₄– within cage *trans*-**1** on the NMR time scale.

Figure S54. ¹⁹F VT-NMR (CD₃CN, 376 MHz) of *trans*- $1 \cdot [OTf]_8$. With lowering temperature the signals broadened and shifted, suggesting fast exchange of TfO⁻ within cage *trans*-1 on the NMR time scale.

Figure S55. ¹⁹F VT-NMR (CD₃CN, 376 MHz) of *trans*-1·[BF₄]₈. With lowering temperature the signals broadened and shifted, suggesting fast exchange of BF_4^- within cage *trans*-1 on the NMR time scale.

S7.7 Investigation with Neutral Guests

Figure S56. Neutral guests investigated.

A series of neutral molecules (Figure S56), cyclohexene, methylcyclohexane, cyclopentane, 1,4-dioxane, 1,4-dimethylcyclohexane, 1,3-dioxane, tetrahydropyran, 1,2-dimethylcyclohexane, 1-methylcyclopentene, trifluorotoluene, fluorobenzene, and 1-fluoroadamantane, were investigated as potential guests for *trans*-**1**. A solution of *trans*-**1** was prepared at a concentration of 3.3 mM in CD₃CN and all prospective guest molecules (10 equivalents of each guest relative to *trans*-**1**) were added directly to the NMR tube. ¹H NMR and ¹⁹F NMR spectra were recorded 2 hours after the addition. No evidence of guest encapsulation was observed by NMR.

Figure S57. ¹H NMR (500 MHz, CD₃CN, 25 °C) of (i) *trans*-**1** and (ii) *trans*-**1** with a mixture of cyclohexene, methylcyclohexane, cyclopentane, 1,4-dioxane, 1,4-dimethylcyclohexane, 1,3-dioxane, tetrahydropyran, 1,2-dimethylcyclohexane and 1-methylcyclopentene in excess.

Figure S58. ¹⁹F NMR (376 MHz, CD₃CN, 25 °C) of (i) *trans*-1 and (ii) *trans*-1 with a mixture trifluorotoluene, fluorobenzene, and 1-fluoroadamantane in excess. No displacement of Tf_2N - was observed by any of these prospective guests.

S8 Investigation of Photoswitching Properties of Trans-1

Encapsulating Different Guests

Figure S59. Disassembly and assembly of cage Guest \subset *trans*-**1** and subsequent guest (PF₆⁻/TfO⁻/ BF₄⁻) release and uptake.

In an NMR tube, **A** (2.20 mg, 4.95 μ mol, 4.0 equiv) in 500 μ L of CD₃CN was combined with **B** (2.92 mg, 14.8 μ mol, 12.0 equiv) and Zn(NTf₂)₂ (3.10 mg, 4.95 μ mol, 4.0 equiv). To this mixture, five equivalents of TBAPF₆ (or TBAOTf or TBABF₄) were added and the NMR tube was irradiated at 350 nm. After 10 minutes the ¹H NMR spectrum was recorded. For the reverse process, the same solution was irradiated at 500 nm for 30 min or heated to 75 °C for 10 h and subsequently the ¹H NMR spectrum was recorded.

S8.1 Reversible photoswitching of cage PF₆-⊂trans-1

Figure S60. ¹H NMR spectra (500 MHz, CD₃CN, 25 °C) of (i) $PF_6 ctrans-1$, (ii) the same sample after irradiation at 350 nm for 10 min (labeled peaks correspond to free subcomponent *cis*-**B**) and (iii) the same sample after irradiation at 500 nm for 30 min.

Figure S61. ¹⁹F NMR spectra (376 MHz, CD₃CN, 25 °C) of $PF_6 \neg \subset trans-1$ during photoisomerisation, as per Figure S32.

S8.2 Reversible photoswitching of cage TfO⁻⊂*trans*-1

Figure S62. ¹H NMR spectra (500 MHz, CD₃CN, 25 °C) of (i) TfO⁻ \subset *trans*-1, (ii) after irradiation at 350 nm for 10 min (labeled peaks correspond to free subcomponent *cis*-**B**), and (iii) after irradiation at 500 nm for 30 min.

Figure S63. ¹⁹F NMR spectra (376 MHz, CD₃CN, 25 °C) of photoswitching of TfO– \subset *trans*-**1**, as per Figure S34.

S8.3 Reversible photoswitching of cage BF₄⁻⊂*trans*-1

Figure S64. ¹H NMR spectra (500 MHz, CD₃CN, 25 °C) of (i) $BF_4^- \subset trans-1$, (ii) after UV irradiation at 350 nm for 10 min (labeled peaks correspond to free subcomponent *cis*-**B**), and (iii) after irradiation at 500 nm for 30 min.

Figure S65. ¹⁹F NMR spectra (376 MHz, CD₃CN, 25 °C) of photoswitching of $BF_4^ \subset$ *trans*-1.

S8.4 Reversible Photoswitching of Cage Trans-1.[OTf]8

Figure S66. Reversible photoswitching of cage *trans*- $1 \cdot [OTf]_{8}$. ¹H NMR spectra (500 MHz, CD₃CN, 25 °C) of (i) cage *trans*- $1 \cdot [OTf]_{8}$; (ii) after 350 nm irradiation for 10 min and (iii) after irradiation at 500 nm for 30 min.

Figure S67. Reversible photoswitching of cage *trans*-**1**·[OTf]₈. ¹⁹F NMR spectra (376 MHz, CD₃CN, 25 °C) of (i) cage *trans*-**1**·[OTf]₈; (ii) after 350 nm irradiation for 10 min and (iii) after irradiation at 500 nm for 30 min.

S8.5 Reversible Photoswitching of Cage Trans-1 · [BF₄]₈

Figure S68. Reversible photoswitching of cage *trans*- $1 \cdot [BF_4]_8$. ¹H NMR spectra (500 MHz, CD₃CN, 25 °C) of (i) cage *trans*- $1 \cdot [BF_4]_8$; (ii) after 350 nm irradiation for 10 min and (iii) after irradiation at 500 nm for 30 min.

Figure S69. Reversible photoswitching of cage *trans*- $1 \cdot [BF_4]_8$. ¹⁹F NMR spectra (376 MHz, CD₃CN, 25 °C) of (i) cage *trans*- $1 \cdot [BF_4]_8$; (ii) after 350 nm irradiation for 10 min and (iii) after irradiation at 500 nm for 30 min.

S9 X-ray crystallography

Crystals of cage **2** [[Fe₄L₄]·8NTf₂] were grown by diffusion of diethyl ether into a acetonitrile solution of the complex. Data were collected at Beamline I19 of Diamond Light Source employing silicon double crystal monochromated synchrotron radiation (0.6889 Å) with ω and ψ scans at 100(2) K.⁵ Data integration and reduction were undertaken with Rigaku CrystalClear.⁶ Subsequent computations were carried out using the WinGX-32 graphical user interface.⁷ A multi-scan empirical absorption correction was applied to the data using Rigaku CrystalClear.⁶ The structure was solved by charge flipping using Superflip⁸ then refined and extended with SHELXL.⁹ Carbon-bound hydrogen atoms were included in idealised positions and refined using a riding model. Disorder was modelled using standard crystallographic methods including constraints and restraints where necessary.

The crystals employed immediately lost solvent after removal from the mother liquor and rapid handling prior to flash cooling in the cryostream was required to collect data. Despite these measures and the use of synchrotron radiation few reflections at greater than 1.15 Å resolution were observed and the data were trimmed accordingly. Nevertheless, the quality of the data is far more than sufficient to establish the connectivity of the structure. The asymmetric unit was found to contain one complete Fe₄L₄ assembly as well as associated counterions and solvent molecules.

Due to the limited resolution of the data, bond length restraints were applied to some areas of the structure showing higher levels of thermal motion and some aromatic rings were modelled as rigid groups (AFIX 66). Thermal parameter restraints (SIMU, RIGU) were applied to all atoms except for iron.

The anions within the structure show evidence of disorder. The encapsulated triflimide was modelled as disordered over two locations and the fluorine atoms of another were also modelled over two locations. Two triflimides were modelled with partial occupancy and their occupancies allowed to freely refine. Several others show evidence of further disorder which could not be resolved due to the limited resolution of the data. Bond length and angle restraints were applied to all anions to achieve a reasonable

geometry. One complete anion and some additional minor occupancy positions of the anions could not be located in the electron density map and were not included in the model resulting in a discrepancy of ca. 1.9 counterions per Fe_4L_4 assembly.

Consequently the SQUEEZE¹⁰ function of PLATON¹¹ was employed to remove the contribution of the electron density associated with the remaining anions and further highly disordered solvent, which gave a potential solvent accessible void of 7761 Å³ per unit cell (a total of approximately 2055 electrons). Diffuse solvent molecules could not be assigned to acetonitrile or diethyl ether and were therefore not included in the formula. Consequently, the molecular weight and density given above are underestimated.

CheckCIF gives one A and two B level alerts, all resulting from the limited resolution of the data.

Crystallographic data have been deposited with the CCDC (2194876).

Formula C₁₉₂H₁₄₈F₄₈Fe₄N₄₆O₄₅S₁₆, *M* 5467.91, Monoclinic, space group P 21/n (#14), *a* 25.840(6), *b* 30.214(6), *c* 37.200(8) Å, *β* 93.828(3), *V* 28979(11) Å³, *D*_c 1.253 g cm⁻³, *Z* 4, crystal size 0.030 by 0.010 by 0.010 mm, colour purple, habit prism, temperature 100(2) Kelvin, *λ*(synchrotron) 0.6889 Å, *μ*(synchrotron) 0.372 mm⁻¹, *T*(CRYSTALCLEAR)_{min,max} 0.4858, 0.7448, 2 θ_{max} 34.86, *hkl* range -22 22, -26 26, -32 31, *N* 104228, *N*_{ind} 19951(*R*_{merge} 0.1244), *N*_{obs} 12517(I > 2 σ (I)), *N*_{var} 2963, residuals^{*} *R*1(*F*) 0.1041, *wR*2(*F*²) 0.3197, GoF(all) 1.039, Δ $\rho_{min,max}$ -0.631, 1.078 e⁻ A^{-3}

^{*} $R1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$ for $F_0 > 2\sigma(F_0)$; $wR2 = (\Sigma w(F_0^2 - F_c^2)^2/\Sigma (wF_c^2)^2)^{1/2}$ all reflections

w=1/[
$$\sigma^2(F_0^2)$$
+(0.1170P)²+460.7421P] where P=(F_0^2 +2 F_c^2)/3

S10 Volume Calculations

In order to determine the available void spaces within the structure of cage **2**, Molovol¹² calculations based on the crystal structures obtained in this study were performed with anions, disorder and solvent molecules removed. A probe with a radius of 2.4 Å was employed in all cases. The standard parameters are tabulated below, and the results are shown in Figure S70.

Probe mode: one probe

Probe radius: 2.4 Å

Grid resolution: 0.1 Å

Optimization depth: 4

Figure S70. MoloVol-calculated void space (red mesh) within the crystal structures of cage **2**.

S11 MM3 Models and Calculated Energies

Structures and energies were calculated using SCIGRESS,¹³ running MM3 force field.

Figure S71. MM3-optimized molecular model of *trans*-**1**, and cages with 1, 2, 3, 4 and 5 *cis*-diazo moleties. The switching up to 4 *cis* isomers in each step increases the energy by about 25–35 kcal mol⁻¹ but switching from 4 *cis* to 5 *cis* increases the energy by about 88 kcal mol⁻¹. These results thus support the inference that only 4 *cis* isomers can be tolerated by the cage before decomposition.

S12 Control Experiments

Figure S72. A control experiment with model cage **2** subjected to UV light at 350 nm for 10 min.

In an NMR tube, ligand **A** (4.0 mg, 9.0 μ mol), *p*-toluidine, (2.9 mg, 27 μ mol), and iron(II) triflimide [Fe(NTf₂)₂] (5.5 mg, 9.0 μ mol) were dissolved in 500 μ L of CD₃CN. An NMR spectrum was measured immediately after irradiation at 350 nm for 10 min.

Figure S73. ¹H NMR (500 MHz, CD₃CN, 25 °C) of a model cage (cage 2) before and after UV light irradiation for 10 min. No disassembly was observed, in contrast with cage *trans*-1.

Figure S74. ¹⁹F NMR spectra (376 MHz, CD₃CN, 25 °C) of a model cage (cage 2) before and after UV light irradiation. No Tf₂N⁻ guest release was observed, in contrast with cage *trans*-**1**.

Figure S75. A control experiment with a model cage having the framework of cage **2** but with Zn^{II} instead of Fe^{II} subjected to UV light at 350 nm for 10 min.

In an NMR tube, ligand **A** (4.0 mg, 9.0 μ mol), *p*-toluidine, (2.9 mg, 27 μ mol), and iron(II) triflimide [Zn(NTf₂)₂] (5.6 mg, 9.0 μ mol) were dissolved in 500 μ L of CD₃CN. NMR spectra were measured immediately after irradiation at 350 nm for 10 min.

Figure S76. ¹H NMR (500 MHz, CD_3CN , 25 °C) of a model cage (cage **2** with Zn^{II} instead of Fe^{II}) before and after UV light irradiation. No disassembly was observed, in contrast with cage *trans*-**1**.

Figure S77. ¹⁹F NMR spectra (376 MHz, CD₃CN, 25 °C) of a model cage (cage **2** with Zn(II) instead of Fe(II)) before and after UV light irradiation. No Tf_2N^- guest release was observed, in contrast with cage *trans*-**1**.

S13 References

1. Vapaavuori, J.; Goulet-Hanssens, A.; Heikkinen, I. T. S.; Barrett, C. J.; Priimagi, A. Are Two Azo Groups Better than One? Investigating the Photoresponse of Polymer-Bisazobenzene Complexes. *Chem. Mater.* **2014**, *26*, 5089–5096.

2. Gayton, J. N.; Autry, S.; Fortenberry, R. C.; Hammer, N. I.; Delcamp, J. H. Counter Anion Effect on the Photophysical Properties of Emissive Indolizine-Cyanine Dyes in Solution and Solid State. *Molecules* **2018**, *23*, 3051.

3. Lewis, J. E.M.; Crowley, J. D. Exo- and Endo-Hedral Interactions of Counteranions with Tetracationic Pd₂L₄ Metallosupramolecular Architectures. *Supramolecular Chemistry*, **2014**, *26*, 173–181.

4. Zhang, D.; Ronson, T. K.; Mosquera, J.; Martinez, A.; Nitschke, J. R. Selective Anion Extraction and Recovery Using a Fe^{II}₄L₄ Cage. *Angew. Chem., Int. Ed.* **2018**, *57*, 3717–3721.

 Allan, D.; Nowell, H.; Barnett, S.; Warren, M.; Wilcox, A.; Christensen, J.; Saunders, L.; Peach, A.; Hooper, M.; Zaja, L.; Patel, S.; Cahill, L.; Marshall, R.; Trimnell, S.; Foster, A.; Bates, T.; Lay, S.; Williams, M.; Hathaway, P.; Winter, G.; Gerstel, M.; Wooley, R., A Novel Dual Air-Bearing Fixed-x Diffractometer for Small-Molecule Single-Crystal X-ray Diffraction on Beamline I19 at Diamond Light Source. *Crystals* **2017**, *7*, 336.

6. Rigaku CrystalClear, 2.0; Rigaku Americas and Rigaku Corporation.: 9009 TX, USA 1997-2009.

7. Farrugia, L., WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.

8. Palatinus, L.; Chapuis, G., SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. *J. Appl. Crystallogr.* **2007**, *40*, 786-790.

9. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta. Cryst. 2015, C71, 3-8.

10. van der Sluis, P.; Spek, A. L., BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. *Acta Cryst.* **1990**, *A46*, 194-201.

11. Spek, A. L., *PLATON: A Multipurpose Crystallographic Tool*. Utrecht University: Utrecht, The Netherlands, 2008.

12. Maglic, J. B.; Lavendomme, R., An Easy-to-Use Program to Calculate Various Volumes and Surface Areas of Chemical Structures and Identify Cavities. *J. Appl. Cryst.* **2022**, *55*, 1033-1044.

13. SCIGRESS software version FJ 2.6 (EU 3.1.9) Build 5996.8255.20141202, Fujitsu Limited, Tokyo, Japan, 2013.