Traffic Flow

Matteo Zambon

Cyber Physical Systems Exam

1 Environment Description

The project consists of a representation of a possible real-life situation. The two
main objects are:

- A traffic light, ideally equipped with a camera that detects the presence
of pedestrians waiting to cross the street;

- An autonomous car also equipped with a camera able to discern whether
the traffic light is green, yellow or red.

1.1 Design of the CPSs

The traffic light has a discrete internal clock the is reset every time the light
change. Yellow and red have a fixed duration, 3 and 30 seconds, while the green
stands until the sensor detect a pedestrian, then it sends a new input to the
traffic light. The following is the Extended State Machine of the object

L count < 30/
: " count := count + 1

«

Pedestrian A count < 30 /

count > 30 / light =0 Green count := count + 1
count := 0 /
| -

count := count + 1

Pedestrian A count > 30 / light =1

Red count := 0

TP « RN
l count := count + 1

\ %30 / light = 1
counl >3 [light =2 Ye”OW count := 0

count := 0

»

. count 1= count + 1

The car follows a continuous external clock, and its action are determined
by the input, that is the output of the traffic light, and by the state of the
car, meaning position, velocity and acceleration. To add a non-deterministic
component, the acceleration has a small random noise to better represent a real-
life environment. Position and velocity are affected indirectly by this, but they
do not have a personal “noise” component. Now, the car knows (or detects with
the sensors) the speed limit on the street, so it stops accelerating after reaching
that value. Still, the noise on the acceleration might increase or decrease its
velocity. When the camera sees the red light, a signal is sent to the computer,
and the car should stop before reaching the traffic light.

v > vlim A check == 0 /

acc =0 light == 0 Av < vlim A check ==2 /
acc =04
check =0

. . 3 light == 2 A posCar < stop A check ==1/
int light r ="

acc = —0.5 - v/ (stop — posCar)
-

v = acc + noise check =2

light == 1 A (stop — posCar) < 10 A check ==0 /
acc = acc+ 0.1
check =1

light == 1 A (stop — posCar) > 10 A check == 0/
acc = —0.5 - v*/(stop — posCar)
check =1

One last internal condition is that, when the speed reach the value 0, the
derivative of the velocity is set to 0, regardless of the noise.
We can synthesize in a unique schema as an extended state machine

pRR int light
. O

bool Pedestrian P j
- :

TN I eYe
i

2 Coding and Running

The computation has a time horizon 7" = 240 seconds. The initial speed of the
car is equal to the speed limit, and the traffic light is initialized as red. The
car then begins to decelerate until it reaches the stop with zero velocity. After
the internal clock of the traffic light reaches 30, the light becomes green and the
count is reset, the car starts moving. The presence of pedestrians is determined
by a function that uses a random number to decide whether the variable is 0 or

Traffic Light
i = i

0 50 100 150 200
discrete time

The probability of pedestrians varies based on the interval of time at which
we are: the idea was to decrease the probability of Pedestrian = 1 in those
moments of the day where people are sleeping, while increasing it during peak
hours. Since the time horizon is small, we can’t see well enough the difference.
The duration of the green light is slightly higher sometimes. Increasing the time
horizon would produce higher peaks in the traffic light count.

Traffic Light Count
80 — =
70 — =

60 — —

il | | |

0 50 100 150 200
discrete time

count

In the velocity plot, we can see clearly the influence of the noise, making the
car often exceed the speed limit and possibly getting fined. This can be avoided
adjusting the acceleration in a way that it always tends to speed limit, whether
it the current speed is higher or lower.

There is an “interesting” behavior right before slowing down, and it is an
acceleration. When the light becomes yellow, the car has two choices: if it’s
far enough, it starts decelerating so that the car stops before the traffic light
(hopefully); if it’s close enough, it increases its acceleration to pass the traffic
light before it turns red. This explains the two peaks.

Car Velocity
T

AL 7\ A
. A N VAN / \
e
|

1 1 1 1 [
0 100 200 300 400 500 600
Position

3 Falsification and Verification

The process of Falsification and Verification has been done using S-Taliro tool
on MATLAB. The formulas considered where

01 = G(v <0 — posCar < stop)
P2 = G(v <42 A (light == 1 — acc < 0.4)) A G(F(light == 2))

The first formula is simpler, checks that when the car stops because of the
red light, it happens before the stop sign. The robustness computed with the
function fw_taliro() changes a lot between computations: the noise on the ac-
celeration makes the car stop after the traffic light sometimes, and in those
cases the robustness has always a negative value; in other cases the formula is
satisfied, like in this one, where the robustness value is 0.1257.

The second formula is longer and has 4 predicates. The first predicate in
particular is sometimes not satisfied because the speed exceed the limit (for
example it happens in the peak between 400 and 500). In this case the robustness
is negative and has value —0.4228. The violations are not that bad, it often
happens that the speed exceed the limit much more than this particular case,
leading the robustness to a value around —2.

