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The recognition that Earth history has been punctuated by supercontinents, the assembly and breakup of
which have profoundly influenced the evolution of the geosphere, hydrosphere, atmosphere and biosphere,
is arguably the most important development in Earth Science since the advent of plate tectonics. But whereas
the widespread recognition of the importance of supercontinents is quite recent, the concept of a supercon-
tinent cycle is not new and advocacy of episodicity in tectonic processes predates plate tectonics. In order to
give current deliberations on the supercontinent cycle some historical perspective, we trace the development
of ideas concerning long-term episodicity in tectonic processes from early views on episodic orogeny and
continental crust formation, such as those embodied in the chelogenic cycle, through the first realization
that such episodicity was the manifestation of the cyclic assembly and breakup of supercontinents, to the
surge in interest in supercontinent reconstructions. We then chronicle some of the key contributions that
led to the cycle's widespread recognition and the rapidly expanding developments of the past ten years.

© 2013 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Over the past two decades, data from a wide variety of sources have
led to the general realization that Wegener's Pangea, rather than being
the Earth's only supercontinent (Fig. 1), is simply the most recent in a
series of supercontinents that have punctuated Earth history for bil-
lions of years (e.g., Rogers and Santosh, 2002, 2003, 2004; Murphy
and Nance, 2003, 2012; Santosh and Zhao, 2009; Condie, 2011;
Yoshida and Santosh, 2011a; Huston et al., 2012; Mitchell et al.,
2012). This history of episodic supercontinent assembly and breakup,
which constitutes the supercontinent cycle, is now recognized as hav-
ing profoundly influenced the course of the Earth's geologic, climatic,
and biological evolution (e.g., Hoffman et al., 1998; Hoffman and
Schrag, 2002; Lindsay and Brasier, 2002; Dewey, 2007; Condie et al.,
2009, 2011; Goldfarb et al., 2010; Hawkesworth et al., 2010; Santosh,
2010a, 2010b, 2010c; Bradley, 2011; Hannisdal and Peters, 2011;
Strand, 2012; Young, 2012, 2013a, 2013b; Melezhik et al., 2013). Its ex-
istence documents a fundamental aspect of the Earth's dynamic system
(e.g., Condie, 2003, 2011; Evans, 2003; Zhong et al., 2007; Santosh
et al., 2009a; Zhang et al., 2009) and its recognition is arguably the
most important development in Earth Science since the introduction
of plate tectonics over 40 years ago.

Sometimes overlooked in the pursuit of this exciting realization is the
long history that led to its development. Although the widespread recog-
nition of the importance of supercontinents in Earth history is quite re-
cent, the concept of a supercontinent cycle is not new and the notion of
episodicity in tectonic processes predates plate tectonics. In this paper,
we attempt to give the rapidly expanding recognition of the episodic re-
currence of supercontinents some historical perspective. We do so by
tracing the history of the supercontinent cycle from its controversial in-
troduction in the early 1980s, through its increasing application in the
1990s, to itswidespread acceptance in thefirst decade of the 21st century.

2. Early ideas

2.1. Tectonic episodicity

Advocacy of long-term episodicity in tectonic processes is by no
means new and was being expressed long before plate tectonics and an

understanding of mantle dynamics provided the potential for its expla-
nation. One of the most prescient of these early advocates was
Umbgrove (1940, 1947) who argued for the existence of a ~250 m.y.
“pulse” in Phanerozoic orogeny, magmatism, sea level and climate
(Fig. 2). The notion of episodic orogenic activity was subsequently advo-
cated in several early treatments of Precambrian fold belts (e.g., Holmes,
1951; Wilson et al., 1960; Burwash, 1969), and the idea that continental
crust formation was likewise episodic was proposed by Holmes (1954)
and further developed by Gastil (1960), who argued on the basis of age
data that the geologic record of granite production was intermittent
rather than continuous. Episodicity in tectonic processes is also inherent
in the cratonic sequences documented by Sloss (1963), it was recognized
in early radiometric age compilations (e.g., Voitkevich, 1958; Vinogradov
and Tugarinov, 1962; Runcorn, 1962, 1965; Dearnly, 1966; Fig. 3), and it
lay at the center of Sutton's (1963) argument for the existence of
“chelogenic cycles”, or global-scale shield-forming events. It was also
inherent in Wilson's (1966) case for the repeated opening and closure
of ocean basins now known as “Wilson cycles”. However, unlike the
well-known Wilson cycle, which pertains to individual oceans, Sutton's
now-largely forgotten chelogenic cycle called for the episodic clustering
of continents through changes in the pattern of subcontinental mantle
convection. Rather than producing a supercontinent, however, the
chelogenic cycle resulted in the periodic recurrence of twoantipodal con-
tinental clusters, the assembly and disruption of which were responsible
for the record of orogenic episodicity. The cycle was thought to occur
because small subcontinental convection cells first resulted in continen-
tal clustering and orogeny in continental interiors, but then coalesced
into larger cells that fostered continental breakup, orogenic quiescence,
and the later regrouping of the disrupted continental masses into two
new antipodal clusters. According to Sutton, the chelogenic cycle had a
periodicity of 750–1250 m.y. and had been repeated at least four times
during the geologic history of the Earth.

Following the introduction of plate tectonics, recognition of the
process of ocean closure by subduction provided an explanation for
orogenesis and crustal growth (e.g., Dewey, 1969), the episodic natures
of which were confirmed by increasingly precise radiometric ages (e.g.,
Condie, 1976, 1982; Fig. 4) (see also Fig. 3), the pattern of Phanerozoic
sedimentary cycling (Mackenzie and Pigott, 1981), and the distribution
of ore-forming processes through time (Meyer, 1981, 1988). The concept

Terra

Pangea (~260 Ma)

Fig. 1. The Late Paleozoic supercontinent Pangea at ca. 260 Ma, showing its two main components, Gondwana (south) and Laurasia (north), separated by the PaleoTethys ocean and
surrounded by the Panthalassa. NCB=North China Block, SCB=South China Block, and AI=Armorica, Avalonia and Iberia. Modified from Meert (2012).
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of tectonic cycles was specifically advocated by Valentine and Moores
(1970) and Hallam (1974) with regard to evolutionary biogenesis, and
by Fischer (1981, 1984), who revived Umgove's (1947) model in a plate
tectonic context by arguing for two ~300 m.y. supercycles in the Phaner-
ozoic record of climate, sea level and granitoid magmatism (Fig. 5).

2.2. The supercontinent cycle

That this long-recognized history of episodicity in tectonic pro-
cesses was the manifestation of a long-term cycle of supercontinent
assembly and breakup was first proposed by Worsley et al. (1982,
1984). Since the assembly of supercontinents requires continents
to collide, whereas supercontinent breakup requires them to rift,
Worsley et al. (1982, 1984) argued that the existence of a superconti-
nent cycle would be manifest in the geologic record by episodic peaks
in collisional orogenesis and rift-related mafic dike swarms. Using the
available (largely Rb/Sr and K/Ar; see Fig. 4) geochonological data
base, as summarized by Condie (1976, 1982), Windley (1977, 1984)
and others, they suggested that such peaks could be recognized and
that global episodes of orogenic activity lagged slightly by mafic
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from Meert (2012).
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dike swarms had punctuated Earth history at quasi-periodic intervals
of ~500 m.y. for at least the past 2.0 billion years (Fig. 6). Based on
these data, they predicted the existence of four, and later five
(Worsley et al., 1985; see Fig. 8), pre-Pangean supercontinents at ca.
0.6, 1.1, 1.8–1.6, 2.0 and 2.6 Ga, four of which are now recognized
as corresponding to the amalgamation of Pannotia (Gondwana),
Rodinia, Columbia (or Nuna) and Kenorland (Superia and Sclavia).

For the Phanerozoic, Worsley et al. (1984) modeled the effect of
such a supercontinent cycle on global sea level (Fig. 7) by assuming

modern spreading rates and by applying Parsons and Sclater's
(1971) age-versus-depth relation for oceanic lithosphere (modified
to an ice-free world) to Berger and Winterer's (1974) calculations
for the average age of the world's ocean floor as a function of the
breakup of Pangea. They were able to broadly quantify the changes
in global sea level (as defined by the average water depth at the
world shelf break) that would be caused by the cycle's effect on
ocean basin volume and continental area. Their calculations (like
those of Heller and Angevine, 1985) suggested that the crustal
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extension and the creation of young ocean basins associated with su-
percontinent breakup would first cause sea level to rise rapidly, only
to fall as the new oceans aged. During supercontinent assembly, on
the other hand, subduction of old ocean floor combined with orogenic
crustal shortening would cause sea level to rise again.

Drawing on the observation of Anderson (1982) that continental
lithosphere, because of its thickness and radioisotope-enriched
crust, should act as a thermal insulator to mantle heat flow, Worsley
et al. (1984) further argued that supercontinents would become epei-
rogenically uplifted as heat accumulated beneath them, particularly if
their size and peripheral subduction systems rendered them largely
stationary. They suggested a minimum figure of 400 m for this ther-
mal uplift based on available data (e.g., Hay and Southam, 1977;
Harrison et al., 1981) for the present day ice-free shelf-break
elevation of near-stationary Africa (200 m above sea level) relative
to the global average (200 m below sea level). Modern estimates
(e.g., Zhang et al., 2011) broadly support this figure.

Combining the independent effects of sea floor elevation on
ocean basin volume and epeirogenic uplift on continental platform

elevation, Worsley et al. (1982, 1984) showed that predicted water
depths at the shelf break closely matched first-order Phanerozoic
sea level change (Vail et al., 1977) to define a Phanerozoic supercon-
tinent cycle of ~440 m.y. duration (Fig. 8). Subsequent changes to the
geological time scale would reduce this figure by some 20 m.y. Later
treatments (Hallam, 1992) and more sophisticated calculations
using contemporary data (Cogné and Humler, 2008) broadly confirm
these observations, a further implication of which is the assembly of a
future supercontinent in about 150 m.y.

Worsley et al. (1985, 1986) and Nance et al. (1986, 1988) subse-
quently explored the supercontinent cycle's potential influence on the
Earth's tectonic, biogeochemical and paleoceanographic record (Fig. 9).
Subdividing the cycle into four phases – supercontinental stasis, frag-
mentation,maximumdispersal, and assembly – they suggested a variety
of trends in tectonic activity, platform sedimentation, climate, life, and
the stable isotope record that would be expected to accompany each
phase.

Among these they argued that, during the lifespan of a supercon-
tinent, tectonic activity would be dominated by epeirogenic uplift as
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trapped mantle heat accumulated beneath the largely stationary su-
percontinent, ultimately manifesting as hotspot activity contributory
to fragmentation. Accretionary orogeny and the opening of back-arc
basins might be expected along the margins of the Panthalassic (or
“exterior”; Murphy and Nance, 2003) ocean, now at its largest size,
and, with sea level at its lowest elevation, the production and preser-
vation of terrestrial deposits should be enhanced while that of marine
sediments is diminished. As a result, the sequestering of isotopically
light carbon in non-marine and organic-rich sediments, and heavy
sulfur in evaporites, could be expected to produce a record of low
δ13C and δ34S in the reciprocal marine platform reservoir like that al-
ready documented for Pangea (e.g., Veizer et al., 1980; MacKenzie
and Pigott, 1981). In addition, massive extinctions would be expected
to accompany the loss of shallow marine habitat, and cold climates
should develop (potentially leading to continental glaciation) as CO2

is removed from the atmosphere by the weathering of large areas of
subaerially exposed continental crust.

During supercontinent fragmentation, Worsley et al. (1985, 1986)
and Nance et al. (1986) argued that younging of the world ocean floor
through rifting and the opening of new (“interior”; Murphy and
Nance, 2003) ocean basins, coupled with subsidence of the dispersing
continental fragments, should raise sea level to a maximum elevation.
At the same time, the incidence of collisional orogeny would be
minimal (although accretionary orogeny might be expected on the
exterior ocean margins), rapid biotic diversification and enhanced
preservation of platform sediments with increasingly high values of
δ13C and δ34S should accompany massive marine transgression, and
warm, equable climates should develop as continental drowning al-
lows atmospheric CO2 levels to build.

According to their model, the world ocean floor is oldest at
maximum continental dispersal (today's world), at which time they
contend that sea level would be low once again and emergent polar
continents could be glaciated. Finally, during supercontinent assem-
bly, they argued that collisional orogenesis should increase to a max-
imum, global sea level should first rise and then fall as subduction
consumes first the old and then the young floor of the interior oceans
(opening and then closing back-basins along their margins), active
margin sedimentation would increase, and atmospheric CO2 levels
should decline and cause global climates to deteriorate. Although
data in support of these proposed influences were limited at the
time, many have since been borne out by subsequent analyses of
the contemporary database on secular trends in the geologic record
(e.g., Veizer and MacKenzie, 2003; Condie, 2005; Bradley, 2011;
Young, 2012, 2013a, 2013b; Eriksson et al., 2013).

With regard to a driving force for the supercontinent cycle, Worsley
et al. (1984) suggested that onemight be provided by the counteracting
influences of the thermal insulating effect of continental lithosphere on
terrestrial heat flow (Jordan, 1975; Anderson, 1982) and the cooling ef-
fect of age on the buoyancy of oceanic lithosphere (e.g., Hynes, 1982).
They argued that, whereas the former might be expected to lead to the
eventual breakup of supercontinents because of their size and likelihood
of being near-stationary, the lattermight be expected to result in the for-
mation of supercontinents since it ensured that the new oceans created
by supercontinent breakupwould eventually close. Thismechanismwas
subsequently modeled for supercontinent breakup and assembly by
Gurnis (1988). However, in thismodel (andmost subsequent numerical
and kinematic treatments: e.g., Zhong and Gurnis, 1993; Duncan and
Turcotte, 1994; Trubitsyn and Rykov, 1995), it is the Panthalassa-like
exterior ocean that closes to reassemble a supercontinent, rather than
the interior oceans postulated by Worsley et al. (1984).

This discrepancy highlights a fundamental uncertainty in our un-
derstanding of the process of supercontinent amalgamation that has
yet to be resolved. Murphy and Nance (2003) subsequently intro-
duced the terms “extroversion” (closure of the exterior ocean) and
“introversion” (closure of the interior oceans) to refer to the two
end-member paths by which supercontinents might assemble, and
suggested that both may have been involved in the assembly of past
supercontinents. To these, Mitchell et al. (2012) recently added a
modified form of introversion they termed “orthoversion,” in which
a supercontinent forms at ninety degrees to its predecessor on the
great circle of the precursor's encircling subduction system. However,
as pointed out by Murphy and Nance (2008), a paradox exists be-
tween the outcome of geodynamic modeling, most of which results
in extroversion, and the well-documented assembly of Pangea,
which was the result of introversion and the closure of the interior
Iapetus and Rheic oceans. Worsley et al. (1984) had based their argu-
ment on the history of Pangea.

2.3. Indications of pre-Pangean supercontinents

Worsley et al. (1982, 1984) were not the first to suggest that su-
percontinents had formed prior to Pangea. For example, the existence
of a single supercontinent during much of the Proterozoic had been
proposed on the basis of paleomagnetic data (Piper, 1974, 1982;
Piper et al., 1976), although the evidence was disputed (McGlynn et
al., 1975; Van der Voo and Meert, 1991), and a case had been made
for the breakup of a Neoproterozoic supercontinent, also proposed
on the basis of paleomagnetic data (Morel and Irving, 1978;
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McWilliams, 1981), passive margin development (Bond et al., 1984)
and the glacial record (Young, 1985), at the end of the Precambrian
(e.g., Valentine and Moores, 1970; Sawkins, 1976; Lindsay et al.,
1987). LePichon and Huchon (1984) had even paved the way for a su-
percontinent cycle based on the geoid, the present configuration of
which shows little correlation to modern plate boundaries
(suggesting it reflects lower mantle convection), but closely corre-
sponds to the former position of Pangea (Anderson, 1982; Chase
and Sprowl, 1983). LePichon and Huchon (1984) took this to imply
separate but weakly coupled systems of lower and upper mantle

convection, the effect of which led to hemispheric supercontinent
configurations in which the best coupling is insured. Once assembled,
however, they argued that the excessive heating of the upper mantle
brought about by the insulating effect of the supercontinent would
ultimately lead to continental dispersal and the process would repeat.
Like Worsley et al. (1984), they estimated the duration of a complete
cycle, from one supercontinent to the next, to be ~400–500 m.y.

But the proposition that supercontinent assembly and breakup had
occurred episodically throughout the Proterozoic with profound conse-
quences to the course of Earth history was a radical one and, while it
found support in some quarters (e.g., Goodwin, 1985; Trurnit, 1988),
it was generally given little credibility (e.g., Condie, 1989) and did not
receive wide attention at the time of its publication.

3. Subsequent developments

By the end of the 1980s, the role of past supercontinents in
Earth history was beginning to receive increased attention, and
this interest would only heighten in the decade to follow. The concept
of supercontinental episodicity was prominently re-introduced by
Hoffman (1988, 1989) and Williams et al. (1991) in their reviews of
the Precambrian evolution of Laurentia. At the same time, Cooper
(1990) recognized tectonic cycles in southern Africa manifested in
major episodes of continental volcanism, granitoid plutonism, orogeny,
reciprocal terrestrial and marine sequences, platform carbonate sedi-
mentation, glaciation and first-order eustasy, the recurrence of which
suggested a periodicity of 320±25 m.y. for at least the past 3.2 Ga.

In addition, the role of the supercontinent cycle was recognized in
the geologic record of global climate change (Veevers, 1990), conti-
nental glaciation (Young, 1988, 1991), tectonic geomorphology
(Summerfield, 1989) and metal deposits (Barley and Groves, 1992),
and in the sedimentary record of rift–drift transition (Ilyin, 1990)
and biological activity (McMenamin and McMenamin, 1990). The cli-
matic effect of supercontinents was also explored byWorsley and Kidder
(1991)who showed this to be dependent upon their configuration. Using
end-member supercontinents with tropical (“ringworld”) and meridio-
nal (“sliceworld”) configurations, aswell as aworldwith polar continents
(“capword”), they showed that, of these, ringworlds would be coldest
and capwords warmest because of their varying effect on atmospheric
CO2 levels.

3.1. Rodinia

Although the seeds had already been sown, interest in superconti-
nents was to surge with refinements of the proposal by Bell and
Jefferson (1987) that the Pacificmargin of North Americawas conjugate
to that of Australia–Antarctica (Dalziel, 1991; Moores, 1991) prior
to the breakout of Laurentia and the amalgamation of Gondwana
(Pannotia) in the late Precambrian and early Paleozoic (Hartnady,
1991; Hoffman, 1991). The resulting debate focused attention on
supercontinents before Pangea and, specifically, on the existence of a
“Grenvillian” (ca. 1 Ga) supercontinent, previously named Rodinia
(McMenamin andMcMenamin, 1990; inset Fig. 11), and the configura-
tion of a Late Neoproterozoic supercontinent, later named Pannotia
(Stump, 1992; Powell, 1995), that may have briefly assembled
(Dalziel, 1991, 1992) following the dispersal of Rodinia at 725 Ma
(Powell et al., 1993; Fig. 10).

The Grenville belt of eastern North America, long recognized as a
collisional orogen (Dewey and Burke, 1973), and its age-correlatives
in the Amazon (Sunsas belt), Congo (Irumide and Kibaran belts) and
Kalahari (Namaqua–Natal belt) cratons, were interpreted to reflect
the amalgamation of Rodinia, whereas the Neoproterozoic passive
margin sequences that surrounded Laurentia reflected its breakup and
dispersal (Hoffman, 1991). The proposed southwestern U.S.–eastern
Antarctica connection (or SWEAT hypothesis; Dalziel, 1991; Moores,
1991) launched a decade-long debate over the configuration of Rodinia,
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with other proposed configurations suggesting linkages between
Australia and the western U.S. (or AUSWUS; Brookfield, 1993;
Karlstrom et al., 1999; Burrett and Berry, 2000), Australia and Mexico
(or AUSMEX; Pisarevsky et al., 2002; Wingate et al., 2002), and South
China and the western U.S. (or the “missing link” hypothesis; Li et al.,
1995, 1999). The debate ultimately led to a “consensus” configuration
for Rodinia (Li et al., 2008; Fig. 11), although it is clear that several
major aspects of the reconstruction remain to be resolved (e.g. Meert
and Torsvik, 2003; Torsvik, 2003; Evans, 2009; Murphy et al., 2013).

3.2. Pannotia (Gondwana)

The existence of a late Neoproterozoic supercontinent has proven
more controversial. But while it had long been known that orogenic
events assigned to the global “Pan-African” episode had culminated
in the formation of Gondwana (Clifford, 1968; Kröner, 1981, 2001;
Cahen et al., 1984; Unrug, 1992; Meert and van der Voo, 1997), it
was suggested that Gondwana may have been briefly united with
Laurentia (Dalziel, 1991, 1992) to form the supercontinent Pannotia
(Stump, 1992; Powell, 1995) prior to the opening of the Iapetus
Ocean in the Late Neoproterozoic–Early Cambrian (Cawood et al.,
2001). Recent syntheses suggesting West Gondwana (i.e. the cratons
of South America and Africa) was amalgamated between 650 and
600 Ma (e.g. Pankhurst et al., 2008), and that East Gondwana was as-
sembled in at least two stages, between 750 and 620 Ma (East African
Orogen) and at 570–500 Ma (Kuunga orogen) (Meert, 2001; Collins

and Pisarevsky, 2005), are equivocal on the existence of Pannotia.
However, recent dating of granulites in the extension of the East
African Orogen into Central Dronning Maud Land (Pant et al., 2013)
places the suturing of East and West Gondwana at 640 Ma, which
would allow Pannotia to have existed for 70 m.y. (cf., Cawood et al.,
2001). Similarly, in reviewing contemporary data on the role of Ant-
arctica in Neoproterozoic supercontinent reconstructions, Dalziel
(2013) concludes that the evidence favors the existence of a short-
lived end-Neoproterozoic supercontinent. Li et al. (2008) provide a
sequence of reconstructions showing how the breakup of Rodinia
may have led to the assembly of Gondwana and Pannotia (Fig. 12).
Although parts of these reconstructions are controversial, they show
in a general sense that Pannotia formed by preferential subduction
of the oceanic lithosphere that surrounded Rodinia (the exterior
ocean of Murphy and Nance, 2003).

As might be expected, the various continental collisions associat-
ed with the assembly of Gondwana/Pannotia produced Pan-African
orogenic belts that came to occupy positions in the interior of the su-
percontinent once it had assembled (Murphy and Nance, 1991,
2003). However, over the same time interval, the Neoproterozoic
Avalonian–Cadomian belt, located along the Amazonian–West
African margin of Gondwana, was seen to be dominated by
subduction-related orogenic activity that terminated in the develop-
ment of a San Andreas-style transform system rather than in
continent–continent collision (Murphy and Nance, 1989). As a re-
sult, the belt continued to face an open ocean into the Cambrian
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a) 900 Ma

b) 760 Ma

c) 630 Ma

d) 600 Ma

(Laurentia at
high-latitude
option)

Laurentia at the
low-latitude option

Fig. 12. Sequence of reconstructions from Li et al. (2008) showing how the breakup of Rodinia may have led to the assembly of Gondwana and Pannotia. (a) Rodinia at 900 Ma,
(b) breakup of Rodinia at 760 Ma coincides with onset of widespread subduction in the peri-Rodinian (Mirovoi) ocean, (c) assembly of continents to form Pannotia
(Gondwana+Laurentia) at 630 Ma, and (d) onset of subduction along margins of Gondwana at 600 Ma following amalgamation of Pannotia.
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(e.g. McKerrow and Scotese, 1990). This contrast in the style of
Pan-African orogenesis led to the recognition that two fundamental-
ly distinct types of orogen (cf., collisional and accretionary: Dewey,
1977; Windley, 1992) could be related to the supercontinent cycle:
“interior” orogens that are formed by continental collision and be-
come stranded in the interior of supercontinents, and “peripheral”
orogens that are formed along the periphery of supercontinents
and are dominated by accretionary tectonics (Murphy and Nance,
1991). The subsequent recognition of the accretionary Terra
Australis orogen (see Fig. 1), extending from the eastern margin of
Amazonia to eastern Australia (Cawood and Buchan, 2007),
suggested that much of Gondwana/Pannotia was surrounded by
peripheral orogens in the late Neoproterozoic (e.g., Murphy et al.,
2009).

A wealth of later studies, which showed the amalgamation of
Gondwana/Pannotia to have been accompanied by rapid continental
growth, metazoan diversification, an explosion in biological activity,
and dramatic climate swings (e.g., Hoffman et al., 1998; Knoll et al.,

2004; Meert and Lieberman, 2008; Maloof et al., 2010), highlight
the importance of an earth systems approach to the study of super-
continent cycles.

3.3. Pre-Rodinian supercontinents

Whereas the general configurations of Pannotia and Rodinia have
been broadly constrained (e.g., Li et al., 2008; Meert and Lieberman,
2008), the reconstruction of older supercontinents is challenged by
the fragmentary and incomplete nature of the Archean to
Mesoproterozoic geologic record and the possibility that a different
form of tectonics may have operated earlier in Earth history
(e.g. Condie and Pease, 2008). Hence, the development of the con-
cept of the supercontinent cycle prior to Rodinia has become
intertwined with theoretical and geodynamic modeling.

There is now broad consensus that the large number and wide-
spread distribution of continental collisions documented between 2.1
and 1.8 Ga record the amalgamation of yet another supercontinent.

“Nena” (after Rogers, 1966)

“Nuna” (after Hoffman, 1977)

Fig. 13. Configuration of Nuna (Hoffman, 1997) and its precusor Nena (Rogers, 1997). Modified from Meert (2012).
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First referred to as Nuna (Hoffman, 1988), this supercontinent is more
widely known as Columbia (Rogers and Santosh, 2002; Sears and Price,
2002; Zhao et al., 2002), which, in its current usage, describes a larger
continental configuration of which Nuna (previously Nena; Rogers,
1996) was part (Meert, 2012; Figs. 13 and 14). Many of the
Paleoproterozoic orogenic belts along which the proposed superconti-
nent was sutured, such as the Wopmay and Trans-Hudson orogen of
Laurentia (e.g. Hoffman, 1980; St-Onge et al., 2000, 2001; Corrigan et
al., 2009) the Aravalli and Satpura orogens of India (Vijaya Rao and
Reddy, 2002) and the Capricorn orogen of Western Australia
(Occhipinti et al., 2004; Sheppard et al., 2004) were considered to re-
semble modern collisional orogens, with accretionary stages followed
by collisional events taken to record supercontinent amalgamation.
Likewise, contemporary sedimentary basins in South America were
interpreted to chart a history of supercontinent assembly and amal-
gamation (Brito Neves, 2002).

More controversial are the proposals for even earlier superconti-
nents. It has been suggested that a supercontinent named Kenorland
(or Superia and Sclavia; Bleeker, 2003) formed at ca. 2.7 Ga and broke

up at 2.5 Ga (Williams et al., 1991; Heaman, 1997; Aspler and
Chiarenzelli, 1998), and that another, named Vaalbara (from the
Kaapvaal and Pilbara cratons), formed from proto-continents at 3.1 Ga
and broke up at 2.8 Ga (Cheney, 1996; Zegers et al., 1998). In addition,
Rogers (1996) gave the name Ur to a proposed continental assembly,
comprising the Western Dharwar, Singhbhum, Kaapvaal and Pilbara
cratons, that was argued to be the world's first at ~3 Ga. The implication
of these hypotheses is that some form of plate tectonics existed in the
Archean (e.g., Gerya, 2013), and a plethora of geochemical studies (e.g.
Kerrich and Wyman, 1994; Kerrich and Polat, 2006; Polat et al., 2008)
have yielded signatures interpreted to reflect subduction zone settings.
Such models, however, are hotly disputed (e.g. Stern, 2008a, 2008b;
Hamilton, 2011) since many of the features characteristic of modern
plate tectonics, such as ophiolites, blueschists, lawsonite-bearing
eclogites, ultrahigh pressure metamorphic rocks, paired metamorphic
belts and passive margin development, are rare or absent in the
Paleoproterozoic and Archean (Moores, 2002; Brown, 2006, 2008;
Hynes, 2008). Indeed, according to some calculations, mantle tempera-
tures in the early Archean were at least 200 °C hotter than today

Fig. 14. Reconstructions of Columbia, (a) after Rogers and Santosh (2002, 2009) showing configurations of components Ur, Artica and Atlantica, (b) after Zhao et al. (2004), and
(c) after Meert (2002).
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(e.g. Hynes, 2008). To some authors this implies an evolution from
an Archean tectonic regime with either no (e.g. Hamilton, 2011)
plate tectonics, or some modified form (e.g. Ernst, 2007) driven by
asthenospheric convection (“proto-plate tectonics”), to modern
plate tectonics driven by subduction, the latter only becoming dom-
inant in the Neoproterozoic. However, Gerya (2013) suggests that
whereas widespread development of modern-style collision may
only have started during the Neoproterozoic (600–800 Ma), the
widespread development of modern-style subduction began in the
Mesoarchean–Neoarchean (3.2–2.5 Ga).

Despite these uncertainties, the case for the repeated assembly
and breakup of supercontinents over a significant portion of Earth
history was, by the turn of the century, gaining increasingmomentum
with applications to large igneous provinces (Yale and Carpenter,
1998; Dalziel et al., 2000), the evolution of the western margin of
Australia (Wilde, 1999), massif-type anorthosites (Mukherjee and
Das, 2002), and ophiolite emplacement (Vaughan and Scarrow,
2003). In addition, the period saw the first of what would become a
series of special publications on supercontinent assembly and break-
up (Rast and Rogers, 1997) and supercontinents in Earth history
(Rogers and Santosh, 2002, 2003; Yoshida et al., 2002), which
would set the stage for the developments seen in the past decade.

4. Modern views

The first decade of the 21st century witnessed a surge of interest in
studies related to the origin, evolution and dispersal of supercontinents
through Earth history. Advancements in analytical techniques and con-
cepts in a number of fields including detrital zircon geochronology and
Hf-isotopes, new data and refinements in paleomagnetism, and new
approaches in geophysical techniques such as mantle tomography and
numericalmodeling, paved theway for innovative proposals and global
models on supercontinents. The decade also saw new lines of thinking
with regard to the relationship between supercontinent history and
solid Earth tectonics, metallogeny, surface environment and life.

4.1. The Earth's earliest supercontinents

Of the hundreds of papers published on the supercontinent cycle in
the past decade, several have focused on the Earth's earliest superconti-
nents. From a global synthesis of information on the formation of cratons
and orogenic belts, Rogers and Santosh (2002, 2003, 2004) traced the
history of various supercontinents starting with the oldest assemblies
of Ur (ca. 3.0 Ga cratons of Southern Africa and Western Australia),
‘Arctica’ (ca. 2.5 Ga cratons of Greenland, Fennoscandia, Laurentia and
Siberia) and ‘Atlantica’ (ca. 2.0 Ga cratons of Western Africa and South
America), which they suggested remained coherent until the breakup
of Pangea (Fig. 14a). They also introduced the concept of ‘maximum
close packing’, and concluded that nearly all of the Earth's continental
blocks had assembled into single closely packed assemblies at least
three times during the Proterozoic. Piper (2010a) subsequently used
the paleomagnetic record from the oldest (2.9–2.0 Ga) cratonic assem-
blies to proposed a mid-Archean supercontinent, ‘Protopangaea’, the
outer domains of which were composed of the core elements of Ur and
Arctica. The hemispherical crescent-shaped form of the supercontinent,
which resembles that of Pangea and a postulated Meso-Neoproterozoic
(ca. 1.3–0.6 Ga) supercontinent, “Paleopangaea” (Piper, 2000, 2007,
2010b), was interpreted to have resulted fromwhole mantle convection
systems driving the continental crust towards regions ofminimum grav-
itational potential (Fig. 15).

Prior to their global synthesis, Rogers and Santosh (2002) defined
what may have been the Earth's first coherent supercontinent, which
they termed “Columbia” (see Fig. 14a). Possibly containing nearly all
of the Earth's continental blocks at some time between 1.9 Ga and
1.5 Ga, Columbia was proposed to have formed when eastern India,
Australia and attached parts of Antarctica were sutured to western

North America — the eastern margin of North America, the southern
margin of Baltica/North China, and the westernmargin of the Amazon
shield forming a continuous zone of continental outbuilding. Frag-
mentation of Columbia began at ca. 1.6 Ga and continued until

Fig. 15. Equal area projections of (a) Pangea (Neopangea), (b) Palaeopangea, and
(c) Protopangea illustrating their comparable symmetrical and hemispheric form.
From Piper (2010b).
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about 1.4 Ga, with the component blocks re-uniting in the
Neoproterozoic supercontinent Rodinia. In a parallel proposal, Zhao
et al. (2002) reviewed the lithostratigraphic, tectonothermal, geo-
chronological and paleomagnetic data from 2.1 to 1.8 Ga collisional
orogens and related cratonic blocks around the world and likewise
identified a Paleo-Mesoproterozoic supercontinent. The Archean to
Paleoproterozoic cratonic blocks in Columbia were welded by
2.1–1.8 Ga collisional belts, whereas its final breakup witnessed the
widespread emplacement of 1.6–1.2 Ga anorogenic anorthosite–
mangerite–charnockite–granite (AMCG) suites, 1.4–1.2 Ga mafic
dike swarms, and the intrusion of kimberlite–lamproite–carbonatite
suites. Zhao et al. (2004, 2006) later reviewed the history of Columbia,
arguing that the supercontinent underwent long-lived (1.8–1.3 Ga),
subduction-related accretionary growth at key continental margins
following its final assembly. Similarly, Mertanen and Pesonen
(2012) argued that Columbia (“Nuna” according to these authors)
started to form at about 1.8 Ga, but did not fully assemble until
ca. 1.53 Ga and only began to break up during several rifting epi-
sodes after 1.2 Ga.

The assembly and breakup of Columbia were further evaluated by
Hou et al. (2008) based on the geometry of giant radiating dike
swarms and orogenic belts. They proposed a revised configuration
for the supercontinent, in which North China, India and Laurentia
were united prior to breakup. Based on data on magmatism, paleo-
magnetism and dike swarms, Hou et al. (2008) further proposed
that Laurentia, West Australia and East Antarctica were relatively sta-
ble from 1.85 Ga to 1.20 Ga, and that these continents constituted the
core of Columbia in the late Paleoproterozoic. Goldberg (2010) also
used dike swarms as indicators of major extensional events in the
Columbia supercontinent. Six large fanning dike swarms identified
from aeromagnetic data were found to span two major periods in
the evolution of Columbia: (i) 1.9–1.7 Ga during and immediately
following maximum packing of Columbia; and (ii) 1.3–1.2 Ga during
the period of its final breakup. Goldberg (2010) linked the dike
swarms to the loci of hotspot magmatism and showed that some
were associated with failed or aborted rifts related to Columbia
breakup.

Support for the existence of Columbia has come from studies
of various continental blocks. Cordani et al. (2009), for example, exam-
ined the Proterozoic accretionary belts that formmost of the Amazonian
Craton, or are marginal to its southeastern border, and concluded that
Amazonia was part of the Columbia assembly together with Laurentia,
North China and Baltica, linked by Paleo- to Mesoproterozoic mobile
belts. From a synthesis of paleomagnetic data, they further suggested
that Laurentia and Amazonia, incorporated into the Rodinia configura-
tion, remained united until at least 600 Ma, and that their separation
marks thefinal breakup of Rodiniawith the opening of the Iapetus ocean.

From a synthesis of geologic and geophysical data for one of the
better-studied fragments of Columbia, the North China Craton,
Santosh (2010a) proposed a double-sided subduction history that
promoted rapid amalgamation of continental fragments within the
craton and their incorporation into Columbia. Eriksson et al. (2011a,
2011b) examined the antiquity of the supercontinental cycle based
on the history of one of the Earth's oldest cratons, Kaapvaal, where
rocks ranging in age from ca. 3.1 to 2.05 Ga are preserved. They
suggested that, in this region, definable supercontinent assembly
could be traced from the collision of Kaapvaal with the Zimbabwe
Craton at ca. 2.0 Ga.

Evans and Mitchell (2011) integrated tectonostratigraphic records
and paleomagnetic data from Siberia, Laurentia, and Baltica to propose
a quantitative reconstruction of the core of the Columbia (‘Nuna’
according to these authors) at 1.9–1.3 Ga. In their model, the present
southern and eastern margins of Siberia were juxtaposed against the
Arcticmargin of Laurentia and the Uralianmargin of Baltica, respective-
ly (Fig. 16). Consistent tectonostratigraphic records in Siberia, Laurentia
and Baltica collectively trace the history of assembly and breakup of the

supercontinent and its late Mesoproterozoic transition to Rodinia.
Based on a global synthesis and new paleomagnetic data from
North China, Zhang et al. (2012) concluded that Nuna likely existed
between ca. 1780 Ma and ca. 1400 Ma. Recently, Rogers (2012) posed
a speculative question as to whether the formation of Columbia was
related to the steady decline in the percentage of 235U in terrestrial
uranium that made natural fission impossible after about 1.8 Ga. The
oldest widespread orogenic systems, which are those that assembled
Columbia at ca. 2.0–1.8 Ga, may have been possible only after fission
stopped contributing to the Earth's heat flow.

Despite widespread support for its existence, controversy has
surrounded the definition of Columbia and what constitutes a super-
continent. Meert (2012) recently examined this question and, using
Pangea as a model, suggested that any supercontinent should include
~75% of the preserved continental crust relevant to the time of max-
imum packing. Rodinia, for example, reached maximum packing at
about 1.0 Ga and therefore should include 75% of all continental
crust older than 1.0 Ga. Meert (2012) also examined the history of
the terms Nuna and Columbia, and suggested that Columbia should
be used to refer to the Paleo-Mesoproterozoic supercontinent since
Nuna, as originally defined (Hoffman, 1997), is but one of several
core elements within the Columbia configuration.

4.2. Neoproterozoic supercontinents

The most studied supercontinent in recent years has been the
Neoproterozoic supercontinent Rodinia (Figs. 10a and 11), although
aspects of its assembly, evolution and breakup remain highly contro-
versial. The making and breaking of Rodinia came into focus with
Meert and Torsvik's (2003) argument that the timing of Rodinia
breakup as proposed in the 1990s were at odds with paleomagnetic
data. Based on an evaluation of the various models for the relation-
ships between the ‘external’ Rodinian cratons (e.g., Baltica, Siberia
and Amazonia) to Laurentia, the notion of true polar wander, the
lack of reliable paleomagnetic data, and the enigmatic interpretations
of the geologic data, they concluded that while the existence of
Rodinia was acknowledged, its exact disposition at any one time
remained vague. Li et al. (2004) reported new geochronological and
paleomagnetic data from mafic dikes in South China and suggested
that Rodinia probably extended from the equator to the polar region
at ca. 800 Ma, but underwent a rapid, ca. 90° rotation around a
pole near Greenland that brought the entire supercontinent to a
low-latitude position by ca. 750 Ma. They linked this episode of
true polar wander to the initiation of a mantle superplume at its
polar end.

In a detailed synthesis, Li et al. (2008) addressed the history of
Rodinia on the basis of paleomagnetic constraints and geological cor-
relations of basement provinces, orogenic histories, sedimentary
provenance, the development of continental rifts and passive mar-
gins, and the record of mantle plume events. They concluded that
the supercontinent assembled through worldwide orogenic events
between 1300 Ma and 900 Ma, and incorporated most of the conti-
nental blocks on the globe existing at that time (Fig. 11). As with its
assembly, the breakup of Rodinia occurred diachronously, starting
along the western margin of Laurentia at ca. 750 Ma. Rifting between
Amazonia and the southeastern margin of Laurentia also started at
the same time, but breakup occurred only at 600 Ma.

In a marked departure from the consensus model of Rodinia,
Evans (2009) re-evaluated its ‘long-lived and all-inclusive’ configu-
ration from a paleomagnetic perspective. The late Neoproterozoic
transition from Rodinia to Gondwana (Pannotia) involved rifting
events that are recorded on many cratons in the interval ca.
800–700 Ma and collisional events between ca. 650 and 500 Ma.
According to Evans (2009), the pattern of supercontinental
transition involved large-scale dextral motion of West Africa and
Amazonia, and sinistral motion plus rotation of Kalahari, Australia,
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India and South China, in a combination of introverted and extro-
verted styles of motion.

The late Neoproterozoic–Cambrian supercontinent Pannotia
(Gondwana) (see Figs. 10b and 12c, d) has also received wide attention
in the past few years with new information coming from petrological,
geochemical and geochronological studies leading to different tectonic
models— see Collins and Pisarevsky (2005) and the preface to a special
issue onWesternGondwana (Tohver et al., 2012) for details. From these
studies, it is clear that the birth of Gondwana involved the closure of a
series of oceans between the converging crustal blocks during the
mid- to late Neoproterozoic, with Pacific-type subduction along a num-
ber of convergent margins progressively yielding to collisional orogeny
accompanied by magmatic, metasomatic and metamorphic processes
characteristic of subduction–accretion–collision settings (e.g., Collins
and Pisarevsky, 2005; Pankhurst et al., 2008; Santosh et al., 2009b;
Casquet et al., 2011).

4.3. Mechanisms of assembly, dispersal and re-assembly of continental
fragments

Several studies over the past decade have been directed at the
mechanisms of supercontinent assembly and breakup. Cawood and
Buchan (2007), for example, evaluated the assembly processes of
Gondwana and Pangea and showed that the timing of collisional
orogenesis between the amalgamating continental fragments was
synchronous with subduction initiation and contractional orogenesis

within accretionary orogens located along the margins of these su-
percontinents. Temporal relations across supercontinents between
interior collisional and marginal accretionary orogenies supports
Murphy and Nance's (2003) conjecture of a linked history between
interior and exterior processes perhaps related to global plate kine-
matic adjustments (see also Collins, 2003).

Murphy and Nance (2008, 2012) and Murphy et al. (2009) subse-
quently presented new concepts for evaluating the assembly and break-
up history of supercontinents. From the geologic and isotopic record,
they elaborated on their earlier proposition that supercontinents form
by two end-member mechanisms — introversion (where the interior
ocean floor is preferentially subducted) and extroversion (in which ex-
terior ocean floor is preferentially subducted) — by suggesting that the
top-down geodynamics widely employed to account for the breakup
and dispersal of a supercontinent at ca. 600–540 Ma may have been
overpowered by bottom-up geodynamics during the amalgamation
of Pangea. It was also speculated that superplumes, driven by slab
avalanche events, occasionally overwhelm top-down geodynamics,
imposing a geoid high over a pre-existing geoid low causing dispersing
continents to reverse their directions to produce an introverted
supercontinent.

Santosh et al. (2009a) identified two major types of subduction
zones on the globe: the Circum-Pacific and the Tethyan, and proposed
that the process of formation of supercontinents is controlled by
super-downwelling that develops through double-sided subduction
as seen in the present day Western Pacific. They also suggested that
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the tectosphere (sub-continental mantle lithosphere), which func-
tions as the buoyant keel beneath ancient continents, plays a crucial
role in the supercontinental cycle, including continental fragmenta-
tion, dispersion and amalgamation.

4.4. Rate and mechanisms of crustal growth and destruction

One of the most widely pursued topics in recent research on super-
continents is the rate of production of continental crust throughmodel-
ing of mantle dynamics and statistical interpretation of isotopic age
data, mainly from zircon geochronology (e.g., Hawkesworth et al.,
2010). Condie (2004) correlated increased production rates of juvenile
crust with the formation of supercontinents and the occurrence of
superplume events. According to this view, catastrophic superplume
events triggered by slab avalanches from the 660 km discontinuity in
themantle are considered to be responsible for episodic crustal growth,
whereas superplume events caused by shielding of the mantle from
subduction by supercontinents, are considered to be responsible for
relatively mafic additions to the continents that may lead to supercon-
tinent breakup (Murphy and Nance, 2012 and references therein). The
Central Asian Orogenic Belt is a Phanerozoic example of large-scale
continental crustal growth, for which Hong et al. (2004) proposed a
temporal and spatial correlation of juvenile crustal growth with the
Pangea supercontinental cycle.

Global continental growth history was also addressed by Rino et
al. (2004, 2008) through U–Pb analyses of a large population of mag-
matic and detrital zircon grains collected from river sands at the
mouths of major rivers across most of the world's continents. The
continental growth curve produced by these data suggest continuous
growth of continental crust since the Archean with an abrupt increase
during the Late Archean and early Proterozoic, and major peaks at 2.7,
2.0–2.2, 1.7–1.9, 1.0–1.2 and 0.5–0.8 Ga. The data further suggest that
the Neoproterozoic Grenvillian and Pan African orogenies contributed
most significantly to the formation of the continental crust, from
which they concluded that the Neoproterozoic was one of the most
active periods of crust formation in Earth history.

In another study, Stern (2008a, 2008b) evaluated Neoproterozoic
crustal growth and concluded that the processes involved were simi-
lar to those of the modern Earth and took place mostly at convergent
margin settings, and that crustal growth and reworking took place
within the context of the supercontinent cycle from the breakup of
Rodinia, beginning at ca. 830 Ma, until the formation of Greater
Gondwana or Pannotia at ca. 600 Ma. Safonova et al. (2010) dated
detrital zircons from sands of major Russian rivers to evaluate major
episodes of granitic magmatism in the Eurasian continent. Their
results confirm: (i) the episodic nature of continent formation, (ii) a
global Neoarchean magmatic event possibly associated with the for-
mation of the supercontinent Kenorland, (iii) a global episode
of crust formation at 2.0–1.8 Ga associated with the formation of
the supercontinent Columbia, (iv) the breakup of Columbia at
1.3–1.2 Ga, and (v) a major period of Phanerozoic crustal growth in
Central Asia.

Condie et al. (2009), Condie and Aster (2010) and Condie et al.
(2011) addressed crustal growth from the global data-set of zircon
ages and isotopic characteristics of granitoid magmatism and juvenile
crust production, and identified several igneous spikes inmajor cratons
or continents, ranging in age from 3.3 to 1.1 Ga. They concluded that
single, short-lived mantle plume events at 2.7 and 1.9 Ga cannot fully
account for the prolonged and episodic granitoid magmatism of the
Precambrian. The age peaks of detrital zircons from modern river sedi-
ments across the globe extend vertically into both positive and negative
εHf(T) space and correlate well with supercontinent formation,
reflecting the preservation of both juvenile and reworked continental
crust during continental collisions. The data suggest that, while some
new continental growthmay occur during continental collisions, super-
continent assembly does not require an increase in production rate of

continental crust. However, five major age clusters are closely tied to
supercontinent formation at 2700, 1870, 1000, 600 and 300 Ma, and
minima in the age spectra at 2200–2100, 1300–1200, 750–650, and
≤200 Ma correspond to supercontinentality or breakup. The resulting
histogram of continental preservation rate shows that about one-third
of the extant continental crust formed during the Archean, a further
20% formed during the Paleoproterozoic, and only 14% formed during
the last 400 My. Major age clusters are thought to largely reflect preser-
vation of juvenile crust in orogens during supercontinent assembly.

Hawkesworth et al. (2010) also used zircon data (see Fig. 3) to
evaluate the generation and evolution of the continental crust and
concluded that peaks in crystallization ages, while marking the
times of supercontinent formation, may reflect an increased preserva-
tion potential for magmas formed at such times rather than enhanced
crust generation. They consequently conclude that the present
volume of continental crust was established 2–3 Ga ago. Similarly,
Cawood et al. (2013) concluded that the episodic continental record
is more likely to be a consequence of secondary processes, in which
plate tectonics resulted in a biased preservational record, than a pri-
mary feature that reflects processes of generation.

Lancaster et al. (2011) employed U–Pb, O and Hf isotope data in de-
trital zircons from the Scottish Highlands to evaluate crustal evolution
and likewise obtained zircon crystallization ages that are consistent
with preservation due to continental collision and supercontinent stabi-
lization. They identified a link between the distribution of U–Pb crystal-
lization ages and model Hf ages indicating typical residence times of ca.
600 Ma between the formation of new crust and its reworking in later
magmatic events. The continua defined by Hf model ages within each
crystallization event suggest that the generation of new continental
crust is a continuous process.

In a marked departure from all of these studies, Roberts (2012) used
the distribution of data within εHf(t)-time space of a global zircon data-
base to demonstrate increased continental loss during supercontinent
amalgamation (Fig. 17). Marked increases in continental loss at
1.0–0.9 Ga and 0.6–0.55 Ga correlate with the amalgamation of Rodinia
and Gondwana (Pannotia), respectively, whereas periods of increased
continental crust growth rate at 1.7–1.2 Ga, 0.85–0.75 Ga and
0.45–0.35 Ga respectively follow the formation of Columbia, Rodinia
andGondwana (Pannotia). Pangea assembly by introversion corresponds

Fig. 17. Compilation of global zircon Hf data plotted as U–Pb zircon age versus
εHf(initial), and histogram of zircon U–Pb ages. Periods of named supercontinent as-
sembly are shown by broad bars. Positive and negative excursions of the εHf(t) curve
reflect increased continental addition and continental loss, respectively. Overlap be-
tween U–Pb maxima, supercontinent formation and negative εHf excursions, indicate
a link between the supercontinent cycle and changes in continental crust growth
rate, whereby decreased growth rate occurs during supercontinent amalgamation,
along with a possible increase in preservation of crust during these periods. Modified
from Roberts (2012).
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to continental addition in exterior orogens concurrent with continental
loss in the interior orogens.

Support for increased continental loss during supercontinent
amalgamation comes from analysis of the destruction of continental
crust at convergent margins, which has emerged as a focal theme of
several recent studies (e.g., Scholl and von Huene, 2007, 2009). The
return or recycling of continental crust in subduction zones includes
the processes of sediment subduction, subduction erosion, and the
detachment and sinking of deeply underthrust sectors of continental
and intra-oceanic crust. Subduction erosion (cf. Keppie et al., 2009)
results from a combination of erosion and structural collapse of the
forearc wedge into the trench and abrasion and hydrofracturing
above the subduction channel (Stern, 2011). Most crust and
sediments subducted in this way are neither underplated below the
forearc wedge nor incorporated in arc magmas, but rather, are
transported deeper into the mantle. Stern (2011) estimates that the
total rate of return of continental crust into the deeper mantle is
currently equal to, or greater than, estimates of the rate at which it
is being replaced by arc and plume magmatic activity, such that cur-
rently the continental crust is probably slowly shrinking (Fig. 18).
Nevertheless, he concludes that the relative rates of crustal growth
and destruction are dictated by the supercontinent cycle, crustal de-
struction being higher during times of supercontinent amalgamation,
whereas crustal growth is likely to be more rapid during times of
supercontinent breakup.

4.5. Supercontinents, surface environment and life

Although the formation and disruption of supercontinents have
long been understood to have significantly impacted surface environ-
ments, biogeochemical cycles and life, several recent studies have re-
examined this relationship, spearheaded by the introduction of the
“Snowball Earth” hypothesis as an explanation for the climatic ex-
tremes of the Neoproterozoic (e.g., Kirschvinck, 1992; Hoffman et
al., 1998; Hoffman and Schrag, 2002), and its potential link to super-
continent breakup (e.g., Hoffman, 1999; Donnadieu et al., 2004) and
the emergence of complex metazoa (e.g., Lindsay and Brasier, 2002;
Narbonne and Gehling, 2003). According to the “Snowball Earth” hy-
pothesis, climatic deterioration initiated by a (preferably equatorial)
supercontinent, once positively reinforced by the increasing plane-
tary albedo of an ice- and snow-covered Earth, leads to runaway
cooling and an entirely ice-covered planet. These “deep freeze” condi-
tions prevail until rising volcanically sourced atmospheric CO2 levels
trigger a rapid switch to hot-house conditions, giving rise to the

warm-water “cap” carbonates (recording negative δ13C excursions)
that directly overlie many Proterozoic glacial deposits (e.g., Kaufman
et al., 1997; Hoffman et al., 1998).

Maruyama and Santosh (2008) presented a synopsis of events in the
late Proterozoic (from 1000 to 542 Ma), during which time the Earth ex-
perienced two “Snowball Earth” glaciations – the Sturtian (715–680 Ma)
and Marinoan (680–635 Ma) – following which large multi-cellular ani-
mals of the Ediacara fauna flourished as a prelude to the Phanerozoic
world. The evolution of modern life in the Cambrian is proposed to have
occurred once a geochemical bridge was in place in the form of elevated
oxygen and nutrient levels in lakes that developed within continental
rifts where hydrothermal systems in the granitic basement created the
chemical environment for the birth ofmodern animals.With cosmic radi-
ation exerting a significant control on mutation, Maruyama and Santosh
(2008) also presented arguments linking events in the Neoproterozoic
biosphere from the galactic to genome level. Stern (2008a, 2008b) like-
wise concluded that the intensity of Cryogenian and Ediacaran tectonic
and magmatic processes, and their broad coincidence with the develop-
ment of Neoproterozoic glaciations and metazoa, suggest that climate
change and increasing biological complexity was strongly affected by
the solid Earth system.

As reviewed by Santosh (2010b), the breakup of supercontinents
and the development of hydrothermal systems in rifts enriched in nu-
trients serve as the primary building blocks of the skeleton and bone
of early modern life forms. The assembly of supercontinents also
had significant impact on evolution, including the formation of vast
mountain belts such as those associated with the assembly of
Gondwana (Pannotia), which may have provided an effective source
of rich nutrients to equatorial waters, thus aiding in the rapid increase
in biodiversity at the end of the Neoproterozoic. There is also a likely
relationship between superplumes, supercontinent breakup and
mass extinction. Upwelling plumes that break supercontinents apart
generate large igneous provinces that may, in turn, affect climate by
producing large-scale volcanism and plume-induced “winters” with
catastrophic effects on the atmosphere and life.

The Paleoproterozoic era was also marked by profound changes in
the Earth's evolution, including major climatic shifts that have been
linked to “Snowball Earth” conditions (e.g., Kirschvink et al., 2000;
Kopp et al., 2005). Reddy and Evans (2009) suggest that these changes
may be linked to the formation of the first supercontinent cycle
from the amalgamation and dispersal of a possible Neoarchean super-
continent to the formation of Nuna (Columbia) at 1.9–1.8 Ga. Likewise,
Rogers and Santosh (2009) proposed that the assembly of Columbia at
about 1.85–1.90 Ga coincided with several events that affected the

Fig. 18. Global rates of crustal growth and destruction losses. Redrawn with slight modification from Stern (2011).
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surface environment and life on Earth, including a rapid increase in the
concentration of oxygen in the atmosphere and oceans and the
evolution of eukaryotes.

The stepwise increase in the concentration of oxygen in the
Earth's atmosphere has also been correlated with the amalgamation
of Earth's landmasses into supercontinents. Campbell and Allen
(2008), for example, argued that the continent–continent collisions
associated with the formation of supercontinents produce vast moun-
tain systems, the rapid erosion of which releases large amounts of nu-
trients such as iron and phosphorus into the oceans, leading to an
explosion of algae and cyanobacteria that abruptly raises the produc-
tion of O2 through enhanced photosynthesis. At the same time, the
increased sedimentation during these periods promotes the burial
of organic carbon and pyrite, thereby preventing their reaction with
free oxygen to produce sustained increases in atmospheric oxygen.
At the end of the Neoproterozoic, this intimate coupling between
nutrient surplus and oxidation paved the way for the rise of metazoan
life (Planavsky et al., 2010).

Eyles (2008) also evaluated the tectonic influences on long-term
climate change by reviewing the relationship between periods of
major glaciation over the past 3 Ga and phases of supercontinent
breakup and assembly. His analysis showed a preferred relationship
between glacial episodes and supercontinental rift systems that re-
flects either a causal link or an increased preservation potential.
Young's (2012, 2013a, 2013b) syntheses likewise confirm earlier
findings of a link between episodes of widespread glaciation in
Earth history and periods of supercontinentality, and reaffirms the
idea that such ice ages were likely initiated by increased weathering
of high-standing supercontinents, especially at low latitudes, and
the consequent global cooling caused by the resulting drawdown of
atmospheric CO2 (e.g., Goddéris et al., 2007).

Changes in Phanerozoic surface environments have long been
linked to continental tectonics (e.g., Valentine and Moores, 1970;
Fischer, 1981; 1984) and this linkage has only been confirmed by
more recent studies (e.g., Bradley, 2011). The assembly and breakup
of Pangea profoundly influenced Phanerozoic sea level and these
changes show marked correlation with phytoplankton evolution,
ocean chemistry, and the loci of carbonate, organic carbon, and
siliciclastic sediment burial (Miller et al., 2005). Likewise, the Phaner-
ozoic records of seawater chemistry and continental flooding with
respect to the diversity of marine animals indicate a covariation be-
tween sedimentation and fossil biodiversity that can be linked to
interacting Earth systems (Hannisdal and Peters, 2011). The link be-
tween biodiversity and environmental records reflects complex biotic
responses to changing ocean redox conditions and long-term
sea-level fluctuations driven by plate tectonics.

4.6. Supercontinents and metallogeny

Recent studies of the distribution of ore deposits through time
(e.g., Teixeira et al., 2007; Lund, 2008; Bradley, 2011; Hazen et al.,
2012; Huston et al., 2012; X.-F. Zhao et al., 2013) reaffirm their
close relationship to phases of the supercontinent cycle advocated
by Barley and Groves (1992), and to the evolution from plume-
dominated to modern-style plate tectonics in a cooling Earth
(Groves et al., 2005; Groves and Bierlein, 2007; see also Gerya,
2013). According to these authors, paleoplacer uranium, banded
iron formation (BIF) and BIF-associated manganese carbonates that
formed in the early Precambrian are notably absent in younger ba-
sins. This suggests a progressive oxidation of the atmosphere with
consequent long-term changes in the hydrosphere and biosphere,
the latter also influencing the temporal distribution and peak devel-
opment of deposits such as the Mississippi Valley type, hosted in bio-
genic sedimentary rocks. Tectonic processes and environmental
changes in an evolving Earth affect the temporal patterns of several
major ore deposits, including orogenic gold, porphyry and epithermal

deposits, volcanic hosted massive sulfides, paleoplacer gold, iron
oxide–copper–gold (IOCG) deposits, platinum group elements, dia-
mond and probably massive sulfide SEDEX deposits. The distinct tem-
poral pattern of ore deposits identified at a global scale demonstrates
the interplay between the evolving global tectonic regime, episodic
mantle plume events, overall changes in global heat flow, atmospher-
ic and oceanic redox states, and even singular impact and glaciation
events (Goldfarb et al., 2010).

Some workers consider large-scale strike-slip translation of major
cratons to be an effective reassembly mechanism in supercontinent
cycles, in addition to rifting, spreading and collision (e.g., Yakubchuk,
2008). These cycles govern changes from the dominantly extension-
to collision- and plume-related mineral deposit types in the internal
orogens of the continental hemisphere to the subduction- to collision-
related mineral deposit types that remain persistent through the
metallogenic cycles at the oceanic/continental hemisphere transition
zone, migrating oceanward in time.

4.7. Extreme metamorphism and fluid regimes

Specific cases of magmatic imprints associated with the superconti-
nent cycle, such as themid-Proterozoic rapakivi granites, have also been
described (Vigneresse, 2005). The age distribution of metamorphic
belts that record extreme (UHT, H/UHP) conditions of metamorphism
shows that such metamorphism occurs at times that correspond to
the amalgamation of continental lithosphere into supercratons or su-
percontinents (Brown, 2006, 2007). Examples of the formation of UHT
metamorphic rocks have been documented for the assembly of Colum-
bia (e.g., Santosh et al., 2012 and references therein) and Pannotia/
Gondwana (e.g., Collins et al., 2007). HP and UHT granulites typically
occurwithin paired elongate belts. The active periods of their formation
are punctuated by longer periods of stability, and each period culminat-
ed with the formation of a supercontinent, the amalgamation of which
coincided with low- to medium-pressure/(U)HT granulite metamor-
phism immediately before continental breakup (Touret and Huizenga,
2012). Large quantities of mantle-derived CO2 is presumed to have
been stored in the lower crust at the final stage of supercontinent amal-
gamation, and released into the hydrosphere and atmosphere during
breakup (Fig. 19). Hence, Touret and Huizenga (2012) consider
fluid-assisted granulite metamorphism to be an important mechanism
for transferring deep mantle fluids towards the Earth's surface, with
possible consequences for the sudden end ofNeoproterozoic glaciations
and the Cambrian explosion.

4.8. The generation and role of mantle plumes in the assembly and
breakup of supercontinents

The assembly of supercontinents involves subduction of large vol-
umes of oceanic lithosphere, which impacts mantle flow fields, gener-
ates lower mantle chemical heterogeneities (see Tackley, 2012),
creates upwelling plumes, and contributes to continental breakup and
voluminous volcanism. A large number of recent studies have followed
Condie's (1998, 1999, 2003, 2004) lead in addressing mantle dynamics
in relation to the assembly and breakup of supercontinents (e.g., Meert
and Tamrat, 2004; Maruyama et al., 2007; Phillips and Bunge, 2007;
Vaughan and Storey, 2007; Zhong et al., 2007; Coltice et al., 2009; Li
and Zhong, 2009; O'Neill et al., 2009; Senshu et al., 2009; Heron and
Lowman, 2011; Murphy and Nance, 2012).

Maruyama et al. (2007) integrated the geological history of the
Western Pacific region with mantle tomography and proposed a link
between subducted cold slab graveyards produced in the deep mantle
below supercontinents, and superplumes that drive supercontinent
breakup. They suggested that such slab graveyards transform with
time into large-scale upwellings as a result of heating from the core,
and that the present-day Pacific superplume is located at the center of
the Rodinian slab graveyard. The Western Pacific Triangular Zone
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(WPTZ), which is characterized by double-sided subduction zones and
resultant mantle refrigeration between the Pacific and Indo-Australian
plates, is consequently considered to be the frontier of a future super-
continent that is predicted to form in 250 million years.

Conversely, Phillips and Bunge (2007) provided evidence that
suggests that periodic supercontinent cycles are unlikely if thermal
instabilities originating at the core–mantle boundary are of sufficient
strength. Modeling based on multiple mobile continents with vigor-
ous mantle convection in a spherical geometry suggests that periodic
supercontinent cycles are unlikely to occur in realistic Earth models.
Zhong et al. (2007) and Li and Zhong (2009) modeled mobile-lid
mantle convection in a three-dimensional spherical shell and their
results suggest that the structure of the present-day mantle, with an-
tipodal Africa and Pacific superplumes, is a natural consequence of
very long-wavelength mantle convection interacting with the super-
continent Pangea. Their model explains the basic features of true
polar wander (TPW) events for Rodinia and Pangea, including their
equatorial locations and large variability of TPW inferred from
paleomagnetic studies. O'Neill et al. (2009) modeled the thermal
and dynamic impact of supercontinents on Earth-like mobile-lid
convecting systems. Their study confirms that insulating superconti-
nents (over 3000 km across) can impact mantle temperatures, and
that there is a robust association between rising plumes and super-
continent interiors.

On the other hand, Coltice et al. (2009) argued for mantle
warming beneath supercontinents in the absence of hot plumes,
and performed numerical simulations that showed that their mantle
global warming model could account for the widespread magmatism
that accompanied the formation of most supercontinents. However,
an investigation into the effect of continental insulation in 2D and
3D mantle convection models indicates that subduction patterns de-
termined by continental width play the dominant role in enabling
the formation of subcontinental mantle upwellings (Heron and
Lowman, 2011). Subcontinental plumes develop as a consequence
of subduction patterns rather than continental thermal insulation
properties.

The role of mantle plumes in the breakup of supercontinents has
also been investigated in recent studies (see Zheng-Xiang and
Zhong, 2009; Santosh, 2010c for reviews). Vaughan and Storey
(2007) presented a conceptual model in which supercontinents, by
focusing subduction on narrow areas of the 660 km mantle disconti-
nuity, trigger superplume events that initiate their own fragmenta-
tion. Based on evidence that includes flood magmatism, kimberlite
emplacement, plate reorganization, geomagnetic reversals, marine
anoxia, deposition of carbon-rich sediments, the carbon isotope re-
cord, major mass extinctions, and global sea levels, they report a
superplume between 227 and 183 Ma, coincident with the breakup
of Pangea. Based on the evidence from ongoing subduction of sedi-
ments and juvenile arcs in the western Pacific, Senshu et al. (2009)
emphasized the role of subducted tonalite–trondhjemite–granite
(TTG) crust, enriched in K, U and Th, in the deep mantle as a potential
driver in the initiation of plumes or superplumes. They propose that
this mechanism of generating superplumes may have played a dom-
inant role in supercontinent breakup.

Advancements in numerical modeling have led to many recent
studies attempting to simulate the formation and breakup of super-
continents. Zhang et al. (2009) investigated the stochastic models of
randomly moving continental blocks and 3-D spherical models of
mantle convection with continental blocks. While the time required
for all the blocks to assemble into a supercontinent was significantly
longer than that inferred for Rodinia and Pangea in their stochastic
models, in dynamic models with moderately strong lithosphere and
lower mantle (relative to the upper mantle), continental blocks as-
sembled into supercontinents in about 250 million years. However,
in this study, as in most numerical models, the continental
blocks are assumed to be rigid. But a more recent numerical study
by Yoshida (2010) allows the modeling of mobile, deformable conti-
nents, including oceanic plates, and successfully reproduces conti-
nental drift similar to the processes and timescales envisaged in the
Wilson Cycle. The process of supercontinent assembly induces a tem-
perature increase beneath the supercontinent due to thermal insula-
tion. This, in turn, leads to a planetary-scale reorganization of mantle

Fig. 19. Formation of HP and (U)HT granulites in a subduction–accretion–collision setting with ensuing release of CO2. (a) Post-collisional slab break-off and asthenospheric upwell-
ing. (b) Release of CO2 from the lower crust to higher crustal levels and atmosphere through megashear zones. Panel a is from Santosh et al. (2012). Panel b is redrawn from Touret
and Huizenga (2012).
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flow that results in degree-one convection, in which upwelling in one
hemisphere is balanced by downwelling in the other. The formation
of degree-one convection seems to be integral to the emergence of
periodic supercontinent cycles (Yoshida and Santosh, 2011a). The
rifting and breakup of supercontinental assemblies may be caused
by either tensional stress due to the thermal insulating effect, or
large-scale partial melting resulting from the flow reorganization
and consequent temperature increase beneath the supercontinent
(Fig. 20).

Numerical simulations of mantle convection have also been used
in some recent studies to predict the configuration of the future su-
percontinent Amasia speculated from geological correlations. Mantle
convention in the model of Yoshida and Santosh (2011b) is driven by
a density anomaly compiled from global seismic tomography. The
model simulates the temporal evolution of a highly viscous continent
with an initial present-day configuration for the next 250 million
years. The result suggests that Australia, Eurasia, North America and
Africa will gather in the northern hemisphere to form the next super-
continent. However, Antarctica and South America remain in their
present-day positions and do not form part of the future superconti-
nent configuration.

Rolf et al. (2012) investigated the feedbacks between continental
drift, oceanic plate tectonics and the thermal state of the Earth's mantle
using 3D spherical numerical simulationswith self-consistently generat-
ed plates and mobile continents in configurations ranging from a single

supercontinent to six small continents. Their findings suggest that,
whereas subcontinental mantle temperatures beneath dispersed conti-
nents can be lower than those of the suboceanicmantle, supercontinents
significantly increase oceanic heat flow (and, hence, decrease subocean-
ic mantle temperatures), and raise subcontinental mantle temperatures
sufficiently to promote partial melting and possible supercontinent
breakup. Hence, they argue that melting and magmatic activity below
continents are episodic processes, which could account for the
episodicity in the growth of continental crust. Numerical modeling by
Glĭsović et al. (2012), while not directed at supercontinents, suggests
that deeply rooted mantle plumes may be maintained over very long
geological time spans.

4.9. Secular trends

Several recent studies have examined the influence of the supercon-
tinent cycle on the Earth's long-term secular trends. According to
Eriksson et al. (2005, 2012), for example, global sedimentation patterns
in the Precambrian reflect three “superevents” at ca. 2.7, 2.2–1.8 and
0.8–0.6 Ga, each encompassing major changes in the Earth's evolution
related to the supercontinent cycle, mantle superplumes, peaks in crust-
al growth rates, and significant biochemical changes within the atmo-
sphere–hydrosphere system. Sea level associated with the first of these
“superevents” led to the formation of epeiric seas within which the
first giant carbonate platforms developed, while deposition of banded

Fig. 20. Time sequence of mantle convection with deformable, mobile continents. Purple and blue regions show areas of warm and cool mantle (250°C above and below the
horizontally averaged temperature at each depth), respectively, and orange areas indicate the position of continents. White spherical surface indicates core–mantle boundary. Su-
percontinent is composed of the four continental fragments (A–D) surrounded by weak continental margins (light orange), and is instantaneously imposed on well-developed
mantle convection with temperature-dependent rheology. The elapsed times are scaled by an Earth-like timescale. From Yoshida and Santosh (2011a). Details of the numerical
methodology and model parameters can be found in Yoshida (2010) and further explanation of the model in Yoshida and Santosh (2011a).
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iron formations peaked at ca. 2.5 Ga. Alternate episodes of intraglacial
CO2-related warming and synglacial decreases in weathering can be
traced to the first global glaciation at ca. 2.4–2.2 Ga. By ca.1.8 Ga, the ex-
istence of large landmasses and free oxygen in Earth's atmosphere
allowed for global red bed sedimentation and the full spectrum of Phan-
erozoic sedimentary environments. The third “superevent” essentially
recreated conditions of the secondwith accompanying global glaciation.
Eriksson et al. (2013) go on to identify major turning points in the secu-
lar evolution of sedimentary systems at ca. 2.7 Ga, concomitant with the
possible onset of the supercontinent cycle, and at ca. 2.4–2.3 Ga and ca.
580 Ma, associated with major oxidation events (see also Eriksson and
Condie, 2013).

The development of passive margins through Earth history
(Bradley, 2008) has also been shown to provide useful information
on the breakup timetable of supercontinents and the related histo-
ry of seawater 87Sr/86Sr. Precambrian passive margins had longer
lifespans than those of the Phanerozoic, consistent with the notion
that plate tectonics was slower (Korenaga, 2004), rather than
faster, in the Precambrian. Phanerozoic passive margins track the
assembly, tenure, and breakup of Pangea, but the passive-margin
record is not as obviously consistent with the breakup of Nuna
(Columbia), the assembly of Rodinia, or the breakup and assembly
of Pannotia. However, in a more recent extension of his attempt
to refine the timetable of supercontinent assembly, tenure and
breakup using a broader variety of secular trends, Bradley (2011)
showed that many, in particular the abundances of detrital zircon
ages, granulites, eclogites, carbonatites, volcanic massive sulfides
and greenstone belt deformational events, bear the imprint of su-
percontinent cyclicity.

5. Concluding remarks

The concept of the supercontinent cycle has evolved significantly
from the initial and inevitably simplistic ideas of the 1980s to
the more sophisticated analyses of the past decade. As a result of
improvements in zircon geochronology and isotope geochemistry,
the advent of mantle tomography, and ever-more sophisticated nu-
merical and dynamic modeling, significant advances have been
achieved in our understanding of mantle dynamics, the interaction
of the supercontinent cycle, and the history of the Earth's geosphere,
atmosphere, hydrosphere and biosphere. Although the cycle appears
to be less periodic than originally envisioned by Worsley et al.
(1982, 1984) on the basis of early radiometric age compilations (see
Fig. 4), it is becoming increasingly clear that Earth history has indeed
been punctuated by the episodic assembly and breakup of supercon-
tinents, at least from the Paleoproterozoic, just as they advocated.
Furthermore, while the configuration of these supercontinents is, in
many cases, poorly constrained, it is clear that their amalgamation
and dispersal have profoundly influenced solid earth processes, sur-
face environments and biogeochemical cycles. The assembly of super-
continents, promoted by double-sided subduction, may involve
introversion (closure of interior oceans formed by supercontinent
breakup), extroversion (closure of the exterior ocean), or some com-
bination of these processes, and produces widespread collisional
orogens and a high-standing landmass, the rapid erosion of which
can draw down atmospheric CO2, leading to global cooling and possi-
ble “Snowball Earth” conditions while releasing increased nutrients
into the oceans and raising O2 production through enhanced photo-
synthesis. This close coupling between climate, nutrient surplus and
oxidation is likely to have had a profound effect on the evolution of
life and, at the end of the Neoproterozoic, may have paved the way
for the rise of the metazoa.

There is also growing evidence for a strong coupling between the
supercontinent cycle and mantle dynamics. Dynamic models with
moderately strong lithosphere and lower mantle predict relatively
rapid assembly of continental blocks with consequent temperature

increases in the underlying mantle as a result of thermal insulation,
leading to degree-one mantle convection and supercontinent break-
up. In addition, supercontinent amalgamation may be indirectly
responsible for the formation of superplumes. The assembly of super-
continents involves the peripheral subduction of large volumes of
oceanic lithosphere and it is speculated that these may pond at the
660 km mantle discontinuity before avalanching to the core–mantle
boundary to form slab graveyards centered beneath the superconti-
nent. Collected in this fashion, the recycled oceanic lithosphere is
thought to provide fuel for generating superplumes, which rise be-
neath the supercontinent and contribute to its breakup. The associat-
ed development of large igneous provinces and the climatic effects of
their volcanic emissions may, in turn, lead to catastrophic changes in
the surface environment that could trigger mass extinction and oce-
anic anoxia. A link between supercontinent assembly and mantle dy-
namics would, in turn, suggest that the onset of the supercontinent
cycle was inevitable once continental blocks had collected in suffi-
cient numbers to raise the temperature of the underlying mantle to
a sufficient degree and/or create a superplume of sufficient size to en-
able the assembled continental blocks to be broken up. The rapidly
unfolding relationship between the supercontinent cycle and mantle
dynamics may therefore provide the key to our understanding of
the evolution of the continental crust, the history of major environ-
mental changes on the Earth's surface, and the evolution of life.
With mantle tomography producing images of increasing resolution
(e.g., D. Zhao et al., 2013) and quantitative methods yielding increas-
ingly realistic geophysical models, the nature of this relationship may
soon be realized.
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