
CHAPTER 11The plume modeMantle plumes are buoyant mantle upwellings that are inferred toexist under some volcanic centres. In Chapter 8 I stated the basicidea that convection is driven by thermal boundary layers thatbecome unstable, detach from the boundary and thereby driveflow in the interior of a fluid layer. In Chapter 10 we looked atplates as a thermal boundary layer of the convecting mantle, driv-ing a distinctive form of convection in the mantle that I called theplate mode of mantle convection.Here we look at the evidence that there is a mode of mantleconvection driven by a lower, hot thermal boundary layer, at theexpected form of such a mode, and at the consistency of the evi-dence with that expectation. Since it will become clear that the formand dynamics of such upwellings, or plumes, are quite differentfrom the downwellings of lithosphere driving the plate mode, Iwill call the plumes and the flow they drive the plume mode ofmantle convection.11.1 Volcanic hotspots and hotspot swellsIn Chapter 3 I described Wilson's observation that there are, scat-tered about the earth's surface, about 40 isolated volcanic centresthat do not seem to be associated with plates and that seem toremain fixed relative to each other as plates move around (Figure11.1). Their fixity (or at least their slow motion relative to platevelocities) is inferred from the existence of 'hotspot tracks', that isof chains of volcanoes that are progressively older the further theyare from the active volcanic centre. Wilson was building on theinferences of Darwin and Dana that a number of the island chainsin the Pacific seem to age progressively along the chain.The classic example is the Hawaiian volcanic chain of islandsand seamounts, evident in the topography shown in Figure 11.2. 293



294 1 1 THE PLUME MODEFigure 11.1. Locations of volcanic hotspots (dots). Residual geoid contours(in m) are superimposed (from Crough and Jurdy [1] ). The residual geoidmay reflect mainly signal from the lower mantle. Hotspots correlate withresidual geoid highs but not with the present plate boundaries. FromDuncan and Richards [2]. Copyright by the American Geophysical Union.The south-eastern extremity of this chain, the island of Hawaii, isvolcanically active, and the islands and seamounts to the north-west are progressively older. Wilson [3] hypothesised that thesource of the eruptions was a 'mantle hotspot' located in a regionof the mantle where convective velocities are small, such as themiddle of a convection 'cell'. Morgan [4, 5] proposed instead thatthe source of the eruptions is a mantle plume, that is a column ofhot, buoyant mantle rising from the core-mantle boundary.EmperorSeamounts L •• Mid-Pacific MountainsFigure 11.2. Topography of the sea floor near the Hawaiian Islands,showing the volcanic chain of islands and seamounts and the broad swellsurrounding them. The contours are at depths of 3800 m and 5400 m.



11.1 VOLCANIC HOTSPOTS AND HOTSPOT SWELLS 295Wilson's hypothesis had the disadvantages that the existence ofthe mantle hotspot was ad hoc, with no obvious reason for beingthere, and that it was not clear how a finite volume of warmermantle could provide a steady supply of volcanism for tens ofmillions of years. Morgan's hypothesis at least implied a plausiblephysical source and the potential for longevity. Morgan's hypoth-esis immediately became the preferred one. Because of this, I pro-posed, in Chapter 3, dropping the concept of an internal mantlehotspot, and using the term 'volcanic hotspot' for the surfaceexpression of the mantle phenomenon.The number of volcanic hotspots has been variously estimatedbetween about 40 [1, 6] and over 100 [7], but it is debatable whethermany of the latter might be associated with individual mantleplumes. Figure 11.1 shows 40 hotspot locations selected byDuncan and Richards [2]. Contours of the hydrostatic geoid (i.e.relative to the shape of a rotating hydrostatic earth) are included.The suggestion is that hotspots correlate with highs in the geoid,which plausibly are due to structure in the lower mantle (Chapter10), and specifically to regions of the deep mantle that are warmerbecause there has been no subduction into them in the past 200 Maor so [8]. On the other hand, it is striking that hotspots show littlecorrelation with the present configuration of plate boundaries.As well as the narrow topography of the Hawaiian volcanicchain, there is evident in Figure 11.2a broad swell in the sea floorsurrounding the chain. This swell is up to about 1 km high andabout 1000 km wide. Such a swell might be due to thickened ocea-nic crust, to a local imbalance of isostasy maintained by thestrength of the lithosphere, or to buoyant material raising the litho-sphere. Seismic reflection profiles show that the oceanic crust is notsignificantly thicker than normal [9]. Nor can such a broad swell beheld up by the flexural strength of the lithosphere. The colder partsof the lithosphere behave elastically even on geological time scales,as long as their yield stress is not exceeded. For lithosphere of theage of that near Hawaii, about 90 Ma, the effective elastic thicknessof the lithosphere is about 30 km thick, and it has a flexural wave-length of about 500 km [10]. However the wavelength of the swell isabout 2000 km. If the swell were held out of isostatic balance by thelithosphere, the stresses would exceed the plausible yield stress ofthe lithosphere.The straightforward conclusion is that the Hawaiian swell isheld up by buoyant material under the lithosphere. In conjunctionwith the existence of the isolated volcanic centre, it is then astraightforward inference that there is a narrow column of hotmantle rising under Hawaii. Both the unusual volcanism and the



296 1 1 THE PLUME MODEsupply of buoyancy to the base of the lithosphere would beexplained if the column had a higher temperature than normalmantle. The volcanism occurs in a small, isolated locality farfrom plate boundaries, in contrast, for example, to the curvilinearvolcanic island arcs near subduction zones. The isolation impliesthat the buoyant material is in the form of a column rather than asheet. Since the active volcanism is confined to within an area of theorder of 100 km across, it is reasonable to infer that the columndiametre is of the same order. The fact that the Hawaiian hotspottrack extends, through the bend into the Emperor seamounts, toages of at least 90 Ma indicates that the mantle source is long-lived,and not due to an isolated heterogeneity within the mantle. Morgancalled such a hot, narrow column a mantle plume.11.2 Heat transported by plumesSwells like that in Figure 11.2 are evident around many of theidentified volcanic hotspots. Other conspicuous examples are atIceland, which straddles the Mid-Atlantic Ridge, and at CapeVerde, off the west coast of Africa (Figure 4.3). The latter is2 km high and even broader than the Hawaiian swell, presumablybecause the African plate is nearly stationary relative to the hotspot[2]. The swells can be used to estimate the rate of flow of buoyancyin the plumes. Buoyancy, as we saw in Chapter 8, is the gravita-tional force due to the density deficit of the buoyant material. If theplume is envisaged as a vertical cylinder with radius r and if theplume material flows upward with an average velocity u (as inFigure 7.7), then the buoyancy flow rate isb=gAp-nr2u (11.2.1)where Ap = (pp — pm) is the density difference between the plumeand the surrounding mantle.The way buoyancy flow rate can be inferred from hotspotswells is clearest in the case of Hawaii. The Hawaiian situation issketched in Figure 11.3, which shows a map view and two cross-sections. As the Pacific plate moves over the rising plume column itis lifted by the plume buoyancy. There will be a close isostaticbalance between the weight of the excess topography created bythis uplift and the buoyancy of the plume material under the plate,as we discussed in Section 8.8. Since the plate is moving over theplume, the parts of the plate that are already elevated are beingcarried away from the plume. In order for the swell to persist, new



11.2 HEAT TRANSPORTED BY PLUMES 297UpliftHotspot swellFigure 11.3. Sketch of a hotspot swell like that of Hawaii (Figure 11.2) inmap view (left) and two cross-sections, showing the relationship of the swellto the plume that is inferred to be below the lithosphere. The swell isinferred to be raised by the buoyancy of the plume material. This allows therate of flow of buoyancy and heat in the plume to be estimated.parts of the plate have to be continuously raised as they arrive nearthe plume. This requires the arrival of new buoyant plume materialunder the plate (cross-section AB). Thus the rate at which new swelltopography is generated will be a measure of the rate at whichbuoyant plume material arrives under the lithosphere.The addition to swell topography each year is equivalent toelevating by a height h = 1 km a strip of sea floor with a 'width'w = 1000 km (the width of the swell) and a 'length' vSt = 100 mm(the distance travelled by the Pacific plate over the plume in oneyear at velocity v = 100 mm/a). Both the sea floor and the Mohoare raised, and sea water is displaced, so the effective difference indensity is that between the mantle (pm) and sea water (pw). The rateof addition to the weight (negative buoyancy) of the new swell isthen = g(pm - pw)wvh = b (11.2.2)By the argument just given, the buoyancy flow rate b in the plume isequal to W. Using the values quoted above yields b = 1 x 104 N/sfor Hawaii.If the plume buoyancy is thermal, it can be related to the rateof heat transport by the plume, since both depend on the excesstemperature, AT = Tp — Tm, of the plume. Thus the differencebetween the plume density, pp, and the mantle density isPp - An =while the heat flow rate is (see Section 7.7) (11.2.3)Q = nr upmCPAT (11.2.4)



298 1 1 THE PLUME MODETaking the ratio of Q and b and using Equation (11.2.3) then yieldsQ = CPb/ga (11.2.5)Note particularly that this relationship does not depend on theexcess temperature of the plume. In fact this is the same relation-ship as we derived in Section 10.4.4 between the buoyancy and heatflow rates of plates (Equation (10.4.4)). Thus this is another specificand quantitative example of the general relationship between con-vection and topography that we discussed in Section 8.8.With CP = 1000J/kg° C and a = 3 x l 0 ~5 / o C this yieldsroughly Q = 2 x 1011 W, which is about 0.5% of the global heatflow. The total rate of heat transport by all known plumes has beenestimated very roughly by Davies [11], and more carefully by Sleep[12], with similar results. Although there are 40 or more identifiedhotspots, all of them are weaker than Hawaii and many of them aresubstantially weaker. The total heat flow rate of plumes is about2.3 x 1012 W (2.3 TW), which is about 6% of the global heat flow(41 TW, Table 10.1).This value is comparable to estimates of the heat flow out ofthe core. Stacey [13] estimated this from the thermal conductivity ofthe core and its adiabatic temperature gradient, obtaining 3.7 TWfor the heat that would be conducted down this gradient.Convective heat transport in the core would add to this, but com-positional convection, due to continuing solidification of the innercore, might subtract from it. Another estimate can be made fromthermal history calculations (Chapter 14), in which the core coolsby several hundred degrees through earth history. Taking thepresent cooling rate to be about 70 ° C/Ga, the core mass tobe 1.94 x 1020kg and the specific heat to be 500J/kg° C yields arate of heat loss of about 2.3 TW.These estimates carry substantial uncertainty. As well, the esti-mate of plume heat flow rate should include the heat carried byplume heads (Sections 11.4, 11.5). Hill et al. [14] used the frequencyof flood basalt eruptions in the geological record of the past 250 Mato estimate that plume heads carry approximately 50% of the heatcarried by plume tails. Thus the total heat flow rate in plumeswould be approximately 3.5TW, less than 10% of the globalheat flow rate.The approximate correspondence of the estimate of the heattransported by plumes with the rate of heat loss from the coresupports Morgan's proposal that plumes come from a thermalboundary layer at the base of the mantle. According to our generaldiscussion of convection in Chapter 8, a bottom thermal boundary



11.3 VOLUME FLOW RATES AND ERUPTION RATES OF PLUMES 299layer is formed when heat enters through the bottom boundary of afluid layer.Stacey and Loper [15] were apparently the first to appreciatethat this implies that plumes are cooling the core, in the sense thatthey are the agent by which heat from the core is mixed into themantle. In this interpretation, the role of plumes is primarily totransfer heat from the core through the mantle, but not out of themantle. Plumes bring heat to the base of the lithosphere, which ismostly quite thick and conducts heat only very slowly to the sur-face. For example, no excess heat flux has been consistentlydetected over the Hawaiian swell [16]. While in some cases, likeIceland, the lithosphere is thin and a substantial part of the excessplume heat may be lost to the surface, more commonly much of theplume heat would remain in the mantle, presumably to be mixedinto the mantle after the overlying lithosphere subducts.11.3 Volume flow rates and eruption rates of plumesIt was stressed above that the buoyancy flow rate of a plume can beestimated from the swell size without knowing the plume tempera-ture. However, if we do have an estimate of plume temperature it isthen possible to estimate the volumetric flow rate of the plume. It isinstructive to compare this with the rate of volcanic eruption.From the petrology of erupted lavas, plumes are estimated tohave a peak temperature of 250-300 ° C above that of normal man-tle [17]. The volumetric flow rate up the plume is &p = nr u, whereu is the average velocity in the conduit and r is its radius. FromEquations (11.2.1) and (11.2.3), this is related to the buoyancy flowrate, b, by<Pp=b/gpmaAT (11.3.1)b was also related to the rate at which the swell volume is created,0S = wvh, through the weight of topography, W, in Equation(11.2.2):0S = wvh = W/g(pm - pw) = b/g(pm - pw) (11.3.2)so the plume volumetric flow rate is related to the swell volumetricrate of creation through



300 1 1 THE PLUME MODEFor example, for Hawaii &s = 0.1km3/a. If pm = 3300 kg/m3,Pw = 1000 kg/m3, a = 3x 10~5 /° C and AT = 300 ° C, then(fim — Pw)/PmaAT = 75. In other words the plume volumetricflow rate is about 75 times the rate of uplift of the swell. Thusfor Hawaii &p = 7.5km3/a.The Hawaiian eruption rate, that is the rate at which the vol-canic chain has been constructed, has been about <Pe = 0.03km3/aover the past 25 Ma [18, 19]. It is immediately evident that this isvery much less than the plume volumetric flow rate. It implies thatonly about 0.4% of the volume of the plume material is erupted asmagma at the surface. Even if there is substantially more magmaemplaced below the surface, such as at the base of the crust underHawaii [9, 20], the average melt fraction of the plume is unlikely tobe much more than 1 %.Since the magmas show evidence of being derived from perhaps5-10% partial melting of the source [17, 21], this presumably meansthat about 80-90% of the plume material does not melt at all, andthe remainder undergoes about 5-10% partial melt. This result isimportant for the geochemical interpretation of plume-derivedmagmas and it is also useful for evaluating an alternative hypoth-esis for the existence of hotspot swells (Section 11.6.3).11.4 The dynamics and form of mantle plumesHaving looked at the observational evidence for the existence ofmantle plumes, and having derived some important measures ofthem, we now turn to the fluid dynamics of buoyant upwellings.Our understanding of the physics of such upwellings is quite well-developed, and there are some inferences and predictions that canbe made with considerable confidence. This means that the hypoth-esis of mantle plumes can potentially be subjected to a number ofquantitative observational tests.This understanding of plume dynamics has arisen from somemathematical results, some long-standing and some more recent,and from some elegant laboratory experiments supplemented byphysical scaling analyses and some numerical modelling. Plumedynamics is more tractable than plate dynamics largely becauseplumes are entirely fluid.11.4.1 Experimental formsThe buoyant upwellings from a hot thermal boundary layer mighthave the form of sheets or columns. The downwellings driven bysinking plates clearly have the form of sheets, at least in the upper



11.4 THE DYNAMICS AND FORM OF MANTLE PLUMESpart of the mantle, since plates are stiff sheets at the surface andsubduct along continuous curvilinear trenches. The stiffness of theplate would be expected to preserve this form to some depth, andrecent results of seismic tomography seem to confirm this expecta-tion (Chapter 5).In contrast, Whitehead and Luther [22] showed experimentallyand mathematically that upwellings from a buoyant fluid layerpreferentially form columns rather than sheets. In experimentsstarting with a thin uniform fluid layer underlying a thick layerof a more dense fluid, the less dense fluid formed upwellings thatstarted as isolated domes, rather than as sheets. Whitehead andLuther supplemented this laboratory demonstration with a mathe-matical analysis of second-order perturbation theory that showedthat the rate of growth of a columnar upwelling is greater than therate of growth of a sheet upwelling. This is an extension of theRayleigh-Taylor instability that we encountered in Section 8.4.Whitehead and Luther's experiments also demonstrated thatthe viscosity of an upwelling relative to the viscosity of the fluidit rises through has a strong influence on the form of the upwelling.This is illustrated in Figure 11.4, which shows buoyant upwellings 301
Figure 11.4. Photographs from laboratory experiments showing the effect ofviscosity on the forms of buoyant upwellings. (a) The buoyant fluid is moreviscous than the fluid it rises through, and the upwellings have fairlyuniform diameter. In this case the buoyant fluid began as a thin uniformlayer at the base of the tank. From Whitehead and Luther [22]. Copyrightby the American Geophysical Union, (b) The buoyant fluid is less viscousthan the fluid it rises through, and the upwelling has the form of a largespherical head and a thin columnar tail. In this case the buoyant fluid wasinjected through the base of the tank, and dyed to distinguish it. FromRichards, Duncan and Courtillot [23]. Copyright American Association forthe Advancement of Science. Reprinted with permission.



302 1 1 THE PLUME MODErising from the base of a tank. If the buoyant fluid is much moreviscous than the ambient fluid (Figure 11.4a), the diameter of thebuoyant columns is fairly uniform over its height. If the buoyantfluid is much less viscous (Figure 11.4b), then the column has alarge, nearly spherical head at the top with a very thin conduit ortail connecting it to source. The reason for these different forms canbe understood fairly simply, and this will be addressed in the nextsection.Each of the experiments shown in Figure 11.4 involved twodifferent fluids with different densities and viscosities. However,in the mantle we expect that the material ascending in a plume isthe same material as normal mantle, but hotter. The higher tem-perature would make the plume less dense, and also lower its visc-osity (Section 6.10.2). We might expect therefore that a mantleupwelling from a hot thermal boundary layer would form aplume, and that the plume would have a head-and-tail structure,as in Figure 11.4b. This is confirmed by the experiment illustratedin Figure 11.5a which shows a plume formed by heating a fluidwhose viscosity is a strong function of temperature. The viscosity ofthe plume fluid is about 0.3% of the viscosity of the surroundingfluid, and the plume has a pronounced head-and-tail structure.A striking new feature in Figure 11.5a is that the injected fluidforms a spiral inside the plume head. This is caused by thermalentrainment of surrounding, clear fluid into the head. As the headrises, heat diffuses out of it into the surrounding, cooler fluid,forming a thermal boundary layer around the head. Because thisfluid is heated, it becomes buoyant, and so it tends to rise with thehead. The spiral structure forms because there is a circulationwithin the plume head, with an upflow in the centre, where hotnew fluid is arriving from the conduit, and a relative downflowaround the equator, where the rise of the plume is resisted by thesurrounding fluid. The fluid from the thermal boundary layeraround the head is entrained into this internal circulation, flowingup next to the central conduit. This process is quantified in Section11.4.3.Thermal entrainment is not so important if the plume fluid iscold. Figure 11.5b shows a column of cold, dense, more viscousfluid descending into the same kind of fluid. The subdued head-and-tail structure is due to some of the surrounding fluid coolingand descending with the plume, but the resistance to the head fromthe surrounding lower-viscosity fluid is not sufficient to generate asignificant internal circulation in the head, so there is no entrain-ment into it.



11.4 THE DYNAMICS AND FORM OF MANTLE PLUMES 303Figure 11.5. Thermal plumes in laboratory experiments, formed by injectinghot or cold dyed fluid into otherwise identical fluid. The fluid has a strongtemperature dependence of viscosity, (a) The buoyant fluid is hot, and theplume viscosity is about 1/300 times that of the surrounding fluid. A spiralstructure forms in the head due to thermal entrainment of ambient fluid.From Griffiths and Campbell [24]. (b) The injected fluid is cooler and hencedenser and more viscous than the ambient fluid. There is little entrainmentof cooled surrounding fluid, and only a very small head forms. FromCampbell and Griffiths [25]. Copyright by Elsevier Science. Reprinted withpermission.Returning to the hot, low-viscosity plume of Figure 11.5a,similar structures are formed if a plume grows from a hot thermalboundary layer and the fluid viscosity is a strong function of tem-perature. Results of a numerical experiment scaled approximatelyto the mantle are shown in Figure 11.6. The panels are sectionsthrough an axisymmetric model showing the growth of a plumefrom an initial perturbation in the boundary layer. A line of passivetracers delineates the fluid initially within the hot boundary layer.The tracers reveal that the boundary layer fluid forms a spiral in thehead due to thermal entrainment, as in Figure 11.5a. This numer-ical model also reveals the thermal structure within the plume. Thehottest parts of the plume are the tail and the top of the head,where the tail material spreads out. Most of the head is cooler,and there are substantial thermal gradients within it.Temperatures within the head are intermediate between theplume tail temperature and the surrounding fluid.



304 1 1 THE PLUME MODE4 Ma 43 Ma 83 Ma 100 Ma 121 Ma 176 Mannn0 Temperature (C) 1846Figure 11.6. Sequence from a numerical model in which a plume growsfrom a thermal boundary layer. The model is axisymmetric and scaledapproximately to the mantle. Viscosity is a strong function of temperature,and the ambient viscosity is 1022 Pa s. The bottom boundary temperature is430 ° C above the interior temperature, and the fluid viscosity there is about1 % of that of the interior fluid. A line of passive tracers delineates fluidinitially within the thermal boundary layer.11.4.2 Heads and tailsHere we look at why low-viscosity plumes form a head-and-tailstructure. In the case in which the plume has a higher viscositythan the surroundings, the rise of the plume is limited mainly bythe viscous resistance within the plume itself and within the bound-ary layer that feeds it. This means that the fluid in the plume doesnot rise faster than the top or head, and so it does not accumulateinto a large head. The moderate variation of thickness with heightis explained by the stretching of the column as the top rises fasterthan the stiff fluid can flow after it.On the other hand, in the case where the plume has a lowerviscosity, the plume fluid can flow readily from the boundary layerinto and up the plume, and the main resistance to its rise comesfrom the surrounding more viscous fluid, which must be pushed outof the way. In this situation, the rise of the top of the plume isanalogous to the rise of a buoyant sphere, and is regulated by thesame balance of buoyancy and viscous resistance. In Chapter 6 wederived the Stokes formula for the velocity at which a buoyantsphere rises (Equation (6.8.3)). In fact you can see that the headsof the plumes in Figures 11.4b and 11.5a closely approximate asphere. The role of this sphere is to force a path through themore viscous surroundings. Its rate of rise is initially slow, but itgrows by the addition of plume fluid flowing out of the boundarylayer. Once the head is large enough to force a path, the low-



11.4 THE DYNAMICS AND FORM OF MANTLE PLUMES 305viscosity plume fluid can readily follow, requiring only a narrowconduit to flow through, its rate of flow being regulated by the rateat which it can flow out of the thin boundary layer. This is why theconduit trailing the head can have a much smaller radius.The way the head-and-tail structure of plumes depends on theviscosity contrast between the plume and its surroundings is illu-strated further in Figure 11.7. This shows three numerical modelsof plumes with different ratios of plume viscosity to surroundingviscosity: respectively 1, 1/30 and 1/200. The size of the head issimilar in each case, but the conduit is thinner for the lower visc-osities, reflecting the fact that the lower viscosity material requiresonly a thin conduit for a similar rate of flow.11.4.3 Thermal entrainment into plumesWe will now consider the thermal structure of plumes in moredetail. As the hot fluid in the conduit reaches the top of thehead, it spreads radially out and around the periphery of thesphere, becoming very thin because of the greater radius of thehead (Figures 11.6, 11.7). Because it is thinned, its heat diffusesout much more quickly (remember, from Chapter 7, that a diffu-0 Temperature (C) 1700Figure 11.7. Plumes from three numerical models with different ratios ofminimum plume viscosity to ambient viscosity, respectively 1, 1/30 and1/200, showing how the tail is thinner for lower-viscosity plumes. Themodels are axisymmetric about the left-hand side of each panel. Severallines of tracers in this model mark fluid from different levels in the box. Theinitial configuration is shown in the right-hand panel. A secondaryinstability has developed in the right-hand model.
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Figure 11.8. Sketchof a thermalboundary layeraround a hot plumehead. The fluid inthe thermalboundary layer isheated by diffusionfrom the head. It isthen buoyant and isentrained into thehead. Boundarylayer thickness is S,head radius is R,head rise velocity isU and thevolumetric flow rateup the plume tail is

sion time scale is proportional to the square of the length scaleinvolved). This heat goes partly outwards, to form the thermalboundary layer around the head, and partly inwards, to furtherheat the entrained material wrapping under it. As a result, thehead has a temperature intermediate between that of the conduitand the surroundings. The spiral structure of the plume fluid, whichis revealed by the dye in Figure 11.5a and by the tracers in Figures11.6 and 11.7, is not evident in the thermal structure, because it issmoothed out by thermal diffusion. There are still thermal gradi-ents in the head, but they are subdued relative to the temperaturedifference between the conduit and the surroundings.The additional lines of tracers in Figure 11.7 reveal that most ofthe material entrained into the head comes from the lowest 10-20%of the fluid layer. Since these numerical experiments are scaledapproximately to the mantle, this conclusion will apply also toplumes in the mantle. This is important for the interpretation ofthe geochemistry of flood basalts (Section 11.5).We can quantify the rate of entrainment into a plume headusing our understanding of thermal diffusion (Section 7.2) and ofrising buoyant spheres (Section 6.8), following the approach usedby Griffiths and Campbell [24]. The situation is sketched in Figure11.8. We take the approach of using approximations that arerough, but that scale in the appropriate way. The thickness, S, ofthe thermal boundary layer adjacent to the hot plume head willdepend on the time the adjacent fluid is in contact with the passingplume head. This time will be of the order of 2R/U, where theplume head radius is R and its rise velocity is U. Then, fromSection 7.2, (11.4.1)where K is the thermal diffusivity. The horizontal cross-sectionalarea of the boundary layer near the head's equator is the headcircumference times this thickness, 2nRS, and the rate at whichboundary layer fluid flows through this area is (11.4.2)We can assume that this fluid, or a constant fraction of it, becomesentrained into the head, so that <Pe is an estimate of the volumetricrate of entrainment. The velocity, U, at which the head rises isgiven by the Stokes formula for a low-viscosity sphere (Section 6.8):



11.4 THE DYNAMICS AND FORM OF MANTLE PLUMES 3073/zwhere p, a and /x are the density, thermal expansion coefficient andviscosity of the fluid respectively and A T is the temperature differ-ence between the head and its surroundings.If we take standard mantle values for these quantities(Appendix 2) with a viscosity appropriate for lower mantle,IJL = 1022Pas, a temperature difference of 100 ° C and a radius of500 km, this yields a rise velocity of U = 7 x 10~10 m/s = 20 mm/a.The boundary layer thickness is then 40 km and the rate of entrain-ment is 2.7km3/a. This is comparable to the volume flow rateinferred for the Hawaiian plume tail of 7.5km3/a, which is thestrongest plume tail by about a factor of 3 [11, 12]. The rate ofincrease of the head radius due to entrainment is (11.4.4)dt 4nR2With the values just derived, the rate of increase of radius is 1 mm/a= 1 km/Ma. This compares with a rise velocity of 20 mm/a.This may suggest that entrainment is not very important, butGriffiths and Campbell integrated Equations (11.4.1-3), takingaccount of the influx from the tail, <Pp, and the drop in averagetemperature as the entrainment proceeds. As cool fluid is entrained,the heat content of the plume is diffused through a larger volume. Ifthe rate of inflow of fluid, <Pp, is constant, the total heat supplied isproportional to ATs@p(t — t0) = ATs@pAt, where ATs is the tem-perature excess of the source and At is the duration of the inflow. Ifthe head volume at a later time is V, then conservation of energyrequires that= ATs<PpAt/V (11.4.5)Combining Equations (11.4.1-3) with this yieldsI 2TI/X JThen we can write an equation for the radius as a function of timeas 4nR2



308 1 1 THE PLUME MODEGriffiths and Campbell found that plume head sizes of about500 km radius at the top of the mantle are predicted rather consis-tently, independent of the tail flow rate and the temperature differ-ence of the plume fluid source. Some of their results are shown inFigure 11.9. The initial rate of increase of the radius is much greaterthan it is as the head nears the top of the mantle, which explains theslow rates estimated above. Most of the curves in Figure 11.9 arefor a mantle viscosity of 1022 Pas, believed to be appropriate forthe deep mantle where most of the head growth occurs. A lowerviscosity of 1021 might be appropriate for the mantle in theArchean, and a smaller head is then predicted (Figure 11.9a).The plume head in the numerical experiment of Figure 11.6approaches 1000 km in diameter near the top, consistent withtheir predictions. Taking the box depth to be 3000 km, the thermalhalo in the fourth panel is 1000 km across and the tracers spanabout 800 km.Entrainment may also occur into a plume tail. When the tail isvertical, as in Figures 11.6,7,10, this is so small that it is not evidentin any obvious way. In fact Loper and Stacey have calculated that astrictly vertical plume tail with a strong viscosity contrast wouldentrain only a small percentage of additional material. Presumablythis is because the travel time of the fluid up the conduit is shortenough that diffusive heat loss to the surroundings is small. In the3000 20001800160014001200"S 1000
Q 800600400200°0(b)"—.>—^103 --0T s = 200°C_____^<^c:

^~-<^\0 0 8 0 0 ° C ---104 105Buoyancy flux (N/s)200 400 600 800 1000 1200Diameter of head (km)Figure 11.9. (a) Predicted plume head diameter versus height risen in amantle of viscosity 1022 Pas (heavy) and 1021 Pas (light). Curves are labelledwith buoyancy flow rate Qh = gAp <Pp. (b) Predicted plume head diameter atthe top of the mantle for a mantle viscosity of 1022 Pas and a range ofbuoyancy flow rates in the plume tail and fluid source excess temperatures,ATS. From Griffiths and Campbell [24]. Copyright by Elsevier Science.Reprinted with permission.



11.4 THE DYNAMICS AND FORM OF MANTLE PLUMESnumerical experiment depicted in the right-hand panel of Figure11.7 the temperature in the centre of the conduit varies by onlyabout 3% over most of its height. On the other hand, if the plumetail is inclined to the vertical, as it would be if the surrounding fluidwere moving horizontally, then entrainment occurs by the samemechanism as for the plume head, and substantially larger degreesof entrainment may occur. This has been demonstrated experimen-tally by Richards and Griffiths [26].11.4.4 Effects of a viscosity step and of phase changesFigure 11.6 showed a numerical model of a thermal plume in whichthe viscosity depends on temperature. However, in the mantle theviscosity is also believed to vary substantially with depth, as dis-cussed in Chapters 6 and 10. As well, phase transformations in themantle transition zone may affect the rise of plumes, as discussed inSection 5.3, and the descent of subducted lithosphere discussed inChapter 10.The effects of including depth dependence of viscosity and aphase transformation are illustrated by the sequence from a numer-ical model shown in Figure 11.10. The viscosity increases withdepth in a similar way to the models in Figure 10.12: there is astep by a factor of 20 at 700 km and an exponential increase by afactor of 10. As the plume head rises, its top feels the viscosityreducing and rises faster, stretching the plume head vertically.
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78 Ma 94 Ma 98 Ma 106 Ma 114 Ma 137 MaTemperature (C) 1846Figure 11.10. Sequence from a numerical plume model including increasingviscosity with depth and a phase transformation. The viscosity steps by afactor of 20 at 700 km depth and has an exponential increase by a factor of10. The phase transformation at 700 km depth has a Clapeyron slope of—2MPa/K. The plume slows and thickens through the phasetransformation, but then narrows and speeds up in the low-viscosity upperlayer.



310 1 1 THE PLUME MODEThis becomes pronounced as it enters the low-viscosity upper layer,where its rate of ascent increases and it necks down to a narrowerdiameter. As it then rises through the upper layer, it begins to forma second entrainment spiral, resulting in some convolution of theoriginal spiral structure. The plume tail also speeds up and becomesnarrower as it enters the upper layer (last frame).This model also includes the effect of a phase transformation at700 km depth with a moderately negative Clapeyron slope of—2MPa/K. In this case the effect is not sufficient to block theascent of the plume, though it does slow its rise in the vicinity ofthe phase transformation. This is most clearly evident in the lastframe, where the plume tail bulges out as it slows, and then narrowsagain as it passes the phase transformation and enters the low-viscosity upper layer.Compared with the plume in Figure 11.6, this plume reaches ashallower level. This is because it is much narrower as it rises intothe upper mantle, and it does not trap as much mantle betweenitself and the lithosphere. Also as it spreads it is significantly thin-ner than in Figure 11.6, because of the lower viscosity below thelithosphere. Because it spreads faster, the high-temperature regionis broader. These features are significant for the plume head modelof flood basalts (Section 11.5), since they tend to promote greatermelting over a broader area than in the model of Figure 11.6.The effects of phase transformations with more negativeClapeyron slopes are illustrated by the models in Figure 11.11[27]. As we have just seen in Figure 11.10, if the Clapeyron slopeis —2MPa/K, the plume continues through, and it is virtuallyunchanged except for a local bulge where its ascent is slowed bythe phase transformation. If the Clapeyron slope is — 3MPa/K,then the plume is unable to penetrate. Apparently, if it does notpenetrate immediately, then it spreads sufficiently rapidly that itC. slope = -2 C. slope = -2.5 C. slope = -3-1.03.0 Log Viscosity 0.0 1800 Temperature (C) 1800Figure 11.11. Plume models like that in Figure 11.10, but with differentClapeyron slopes (C. slope) of the phase transformation. The viscositystructure is shown on the left of these panels and the temperature on theright. From Davies [27]. Copyright by Elsevier Science. Reprinted withpermission.



11.5 FLOOD BASALT ERUPT IONS AND THE PLUME HEAD MODEL 311cannot ever penetrate. If the Clapeyron slope is —2.5MPa/K, thenthe main part of the plume head penetrates but the tail is chokedoff and accumulates below the phase boundary. This would giverise to a tailless head in the upper mantle. (The precise value of theClapeyron slope at which plume penetration is blocked is depen-dent on other details of the models, so these models should not betaken as a precise determination, but as a reasonable illustration ofthe process.)11.5 Flood basalt eruptions and the plume head modelIn Sections 11.1-3 we looked at observations that can be inter-preted to relate to plume tails. It was the age-progressive volcanicchains that originally motivated Morgan's plume hypothesis, amodel that we now identify more specifically as a plume tail. In1981, Morgan [6] pointed out that several hotspot tracks emergedfrom flood basalt provinces. A notable example is the Chagos-Laccadive Ridge running south from the Deccan Traps flood basaltprovince in western India to Reunion Island in the Indian Ocean(Figures 4.3, 11.12).Flood basalts are evidence of the largest volcanic eruptionsidentified in the geological record. They range up to 2000 kmacross, with accumulated thicknesses of basalt flows up to severalkilometres. A map of the main identified flood basalt provinces isshown in Figure 11.12. Total volumes of extrusive eruptions rangeup to 10 million cubic kilometres, and evidence is accumulatingthat much of this volume is erupted in less than 1 million years[28]. It has been recognised within the past decade that some ocea-nic plateaus are oceanic equivalents of continental flood basalts.The largest flood basalt province is the Ontong-Java Plateau, asubmarine plateau east of New Guinea.Morgan [6] proposed that if flood basalts and hotspot tracksare associated, then the head-and-tail structure of a new plume,which had been demonstrated by Whitehead and Luther, wouldprovide an explanation. Figure 11.13 illustrates the concept. Theflood basalt eruption would be due to the arrival of the plume head,and the hotspot track would be formed by the tail following thehead. If the overlying plate is moving, then the flood basalt and theunderlying head remnant would be carried away, and the hotspottrack would emerge from the flood basalt province and connect itto the currently active volcanic centre, which would be underlain bythe active plume tail.Not a lot of attention was given to Morgan's proposal untilRichards, Duncan and Courtillot [23] revived and advocated the



312 1 1 THE PLUME MODEFigure 11.12. Map of continental and oceanic flood basalt provinces. Dotted lines show known orconjectured connections with active volcanic hotspots. After Duncan and Richards [2]. Copyright bythe American Geophysical Union.idea. Subsequently Griffiths and Campbell [17, 24] demonstratedthe thermal entrainment process and argued in more detail for theplume head explanation of flood basalts. In particular Griffiths andCampbell argued that plume heads could reach much larger dia-metres, 800-1200 km, than had previously been estimated, if theyrise from the bottom of the mantle, and also that they wouldFloodbasalt Hotspot trackFigure 11.13. Sketch of the way a new plume with a head-and-tail structurecan account for the relationship observed between some flood basalts andhotspot tracks, in which the hotspot track emerges from a flood basaltprovince and connects it to a currently active volcanic hotspot. It isassumed in the sketch that the plate and subjacent mantle are moving to theleft relative to the plume source.



11.5 FLOOD BASALT ERUPT IONS AND THE PLUME HEAD MODEL 313approximately double in horizontal diameter as they flattened andspread below the lithosphere (Figures 11.6, 11.10). This is in goodagreement with the observed total extents of flood basalt provinces,the Karoo flood basalts being scattered over a region about2500 km in diameter. Campbell and Griffiths argued that importantaspects of the petrology and geochemistry of flood basalts could beexplained by the model, in particular the concentration near thecentres of provinces of picrites, which are products of higherdegrees of melting than basalts. They argued that this can beexplained by the temperature distribution of a plume head, whichis hottest at the central conduit and cooler to the sides (Figure11.6).Though this model of flood basalt formation has attracted wideinterest, it has not yet been fully explored quantitatively. The prin-cipal outstanding question is whether it can account quantitativelyfor the observed volumes of flood basalts in cases where thereappears to have been little or no rifting. The perceived problemhas been that normal mantle compositions do not begin to meltuntil they have risen to depths less than about 120 km even if theyare 200 ° C hotter than normal [29, 30]. Since continental litho-sphere is commonly at least this thick, we would not expect plumesto melt at all under continents.However plumes are known not to have normal mantle com-position. It is widely recognised by geochemists on the basis oftrace element contents that they have a larger complement of basal-tic composition than normal mantle. This component of their com-position is hypothesised to come from previously subductedoceanic crust that is entrained in plumes near the base of the mantle(Chapter 13; [21]). Such a composition would substantially lowerthe solidus temperature and enhance melt production. Some pre-liminary models [31] and continuing work indicate that meltvolumes of the order of 1 million cubic kilometres can be producedfrom such a plume head. Examples of calculations of melt volumefrom a simplified plume head model with an enhanced basalticcomponent are shown in Figure 11.14. These show that it is plau-sible that several million cubic kilometres of magma could beerupted within about 1 Ma.Other factors being evaluated for their influence on plume headmelting are higher plume temperatures [32], the effect of mantleviscosity structure on the height to which plumes can penetrate,noted in Section 11.4.4 (Figure 11.10), or that plumes may bemore effective at thinning the lithosphere and penetrating to shal-low depths than has been recognised. The indications at this stageare that a satisfactory quantitative account of flood basalts will
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Time(Myr)[lm = 1021Pas]1 2 3H 1 1 1 1 1 1 1 1 1 h H—I—I  4.0A: Age = 6.25 Myr, d = 300 ° CB: Age = 25.0 Myr, d = 300 ° CC: Age = 6.25 Myr, d = 200 ° C10 20T i m e (Myr) [ l m = :Figure 11.14. Calculated rates of magma generation, F, from a simplifiednumerical model of a plume head that includes 15% additional basalticcomponent. The curves assume different initial plume temperature excesses,d r , and different ages (and thus thicknesses) of lithosphere. The plumehead was modelled as a sphere with initially uniform temperature. The leftand bottom scales assume a mantle viscosity of 1022 Pa s, the right and topscales are for 1021 Pa s. From Cordery et al. [31]. Copyright by theAmerican Geophysical Union.emerge from the plume head model, but this has not yet beenattained.11.6 Some alternative theories11.6.1 Rifting model of flood basaltsWhite and McKenzie [30] proposed a theory for the formation ofvery thick sequences of volcanic flows found along some continen-tal margins and of flood basalt eruptions. The theory can usefullybe separated into three parts. The first part is that the marginalvolcanic provinces are produced when rifting occurs over a regionof mantle that is hotter than normal because it is derived from aplume. This seems to give a very viable account of such provinces.The second part is that all flood basalts can be explained by this



1 1.6 S O M E A L T E R N A T I V E T H E O R I E S 3 1 5mechanism. The third part is that the plume material is derivedmainly from a plume tail, since they assumed that plumes arepart of an upper mantle convection system and that plumes there-fore derive from no deeper than 670 km. In this case the plumeheads would have diameters of no more than about 300 km andvolumes less than about 5% of a plume head from the bottom ofthe mantle [24].The second part of White and McKenzie's model encountersthe difficulty that a number of flood basalt provinces are said, onthe basis of field evidence, to have erupted mainly before substan-tial rifting occurred (e.g. Deccan Traps) or in the absence of anysubstantial rifting (e.g. Siberian Traps, Columbia River Basalts)[33]. It also fails to explain the very short time scale of flood basalteruptions, less than 1 Ma in the best-constrained cases. The thirdpart of their model implies that a sufficient volume of warm mantlewould take about 50 Ma to accumulate, but at the time the DeccanTraps erupted, India was moving north at about 180 mm/yr(180 km/Ma) so it would have traversed the extent of the floodbasalts in only about 10 Ma. It is difficult to see how sufficientwarm mantle could accumulate from a plume tail under such afast-moving plate.These difficulties are avoided by the plume head model of floodbasalts, since the flow rate of the plume head is much greater thanthe tail and much of the melting is inferred to occur from beneaththe intact lithosphere upon arrival of the plume head. It is true thatthe volumes of the eruptions have yet to be fully explained quanti-tatively, but current indications are that this is not a fundamentaldifficulty.11.6.2 Mantle wetspotsGreen [34] has argued that volcanic hotspots can be explained bymantle 'wetspots'. From a petrological point of view, this idea hassome merits, since a small amount of water (less than 0.1%) cansubstantially reduce the solidus temperature, at which melting firstoccurs. It is also true that hydrated forms of minerals are generallyless dense than their dry counterparts, which could provide thebuoyancy required to explain hotspot swells. The effect on densityneeds to be better quantified, and it would need to be shown thatobserved water contents of hotspot volcanics are consistent withthe amounts required to explain the buoyancy. It needs also to beshown that sufficient melt can be produced to explain the observedvolcanism, since although water reduces the solidus temperature,



316 1 1 THE PLUME MODEsubstantial degrees of melting still do not occur until the dry solidustemperature is approached.However, a remaining difficulty would still be to explain theduration of long-lived volcanic centres like Hawaii. While ahydrated portion of the mantle, perhaps old subducted oceaniccrust, might produce a burst of volcanism, there is no explanationoffered for how the source might persist for 100 Ma or more. It isuseful to estimate the volume of mantle required to supply theHawaiian plume for 100 Ma. The total volume erupted into theHawaiian and Emperor seamounts over 90 Ma is about 106km3.If we assume that there was about 5% melting of the source, thisrequires a source volume of 2 x 10 km3, equivalent to a sphere ofdiameter 340 km. If such a large and buoyant region existed as aunit in the mantle, it would rise and produce a burst of volcanism.To explain the Hawaiian volcanic chain the hydrated mantle mate-rial needs to be supplied at a small and steady rate.The advantage of the thermal plume hypothesis is that arenewal mechanism is straightforwardly provided if the plume ori-ginates from a thermal boundary layer. It may be that the effects ofwater on melting and on plume buoyancy are significant, but it isfar from clear that water alone could provide a sufficient explana-tion of the observations, while heat alone, or heat plus water, pro-vides a straightforward and quantitatively successful account of thedynamical requirements of a theory of plumes.11.6.3 Melt residue buoyancy under hotspot swellsJ. P. Morgan and others [19] have proposed that the buoyancysupporting hotspot swells is due significantly also to the composi-tional buoyancy of the residue remaining after the hotspot magmahas erupted. The residue will be less dense because iron partitionspreferentially into the melt phase. However, the estimates made inSections 11.2 and 11.3 indicate that the amount of melt produced isless than 1% of the volume of the plume material, in which case thiswill be a minor effect. Morgan and others estimate the densitychange of the residue as a function of mean melt fraction, / ,from the formulaAp = pmpfwhere /3 = 0.06 is an empirically evaluated constant. This impliesthat the annual volume of mantle that arrives through the plumeshould expand by the same fraction, fif, and this expansion is whatis manifest as the plume swell. We can therefore estimate the annual



11.7 INEVITABILITY OF MANTLE PLUMES 317contribution to the swell volume from the effect of residue buoy-ancy asUsing the values $ p = 7.5km3/a a n d / = 0.01, used earlier forHawaii, this gives <PSI = 0.0045 km3/a, which is only about 5% ofthe observed rate of swell formation of 0.1 km3/a. While the residuebuoyancy may be more significant locally under the volcanic chain,it seems that the direct buoyancy of the plume material is stillrequired to account for most of the Hawaiian swell. This impliesin turn that the estimates of buoyancy and heat flow rate given inSection 11.2 are reasonable.11.7 Inevitability of mantle plumesThe earth is believed to have been strongly heated during the latestages of its formation. The heat comes from the release of gravita-tional energy of material falling onto the growing earth. The earthis believed to have formed from a disk of particles orbiting the sunand left over from the sun's formation. Models of the process ofaccumulation of material into larger bodies indicate that manybodies would grow simultaneously, but that there would be awide distribution of sizes, with only a few large bodies and greaternumbers of smaller bodies. In this situation the final stages ofaccumulation would involve the collision of very large bodies. Aplausible and currently popular theory for the formation of themoon proposes that the moon was formed from the debris of acollision of a Mars-sized body with the earth. A collision of thismagnitude would probably have melted much of the earth, andvaporised some of it. Accounts of these ideas can be found in[35, 36, 37].Suppose that the earth was heated in this way, and that itquickly homogenised thermally, as a substantially liquid bodywould do. The temperature would not be uniform, but would fol-low an adiabatic profile with depth, due to the effect of pressure, asdiscussed in Chapter 7. The earth's temperature as a function ofdepth would therefore look like curve (a) sketched in Figure 11.15.The earth would then lose heat through its surface. This wouldform an outer thermal boundary layer (a precursor to the litho-sphere) and, with the mantle being very hot and possibly partiallymolten, rapid mantle convection could be expected. In this way themantle would be cooled. Suppose, for the simplicity of this argu-ment, that the entire mantle convected and cooled in this way.



318 1 1 THE PLUME MODE RadiusFigure 11.15. Sketch of the form of the temperature profile within the earth(a) soon after formation, and (b) later, after the mantle has cooled by heatloss to the surface. The core can only begin to lose heat after the mantle hasbecome cooler than the core. Thereafter the heat conducting from the coreinto the base of the mantle forms a thermal boundary layer that cangenerate buoyant upwellings.After some time, the temperature profile would have looked likecurve (b) of Figure 11.15.Initially, the core would not have been able to lose heat,because we assumed that the mantle and core had the same tem-perature at their interface. However, as the mantle cooled, heatwould begin to conduct out of the core into the base of the mantle,and cooling of the core would commence. This heat from the corewould form a thermal boundary layer at the base of the mantle,depicted in curve (b) of Figure 11.15. If the mantle viscosity weresufficiently low and the heat flow from the core sufficiently high,both of which are highly likely, this thermal boundary layer wouldbecome unstable and buoyant upwellings would rise from it. Theseupwellings would have a lower viscosity than the mantle they wererising through, so they would develop a head-and-tail structure, asdiscussed in Section 11.4.Thus we have a general argument for the existence of thermalplumes in the mantle. The assumptions are that the core and mantlestarted with similar temperatures at their interface, that the mantlehas been cooling, and that the conditions are such that the relevantRayleigh number is greater than its critical value for instability andconvection to occur. If the earth, now or in the past, functioned asmore than two independent layers, then the argument generalisesvery simply: the layers would cool from the outside inwards, and



11.8 THE PLUME MODE OF MANTLE CONVECTION 319plumes would be generated in each layer by heat conducting fromthe next deeper layer.11.8 The plume mode of mantle convectionWe have seen that the existence of volcanic island and seamountchains terminating in isolated active volcanic hotspots, such asHawaii, and surrounded by broad topographic swells imply theexistence of narrow, long-lived columns of buoyant, rising mantlematerial. Morgan called these mantle plumes. The buoyancy andexcess melting can be explained if the plumes are 200-300 ° C hotterthan normal mantle, and their longevity is plausible if they derivefrom a hot thermal boundary layer. Their higher temperatureimplies that plumes would have lower viscosity than normal man-tle. Fluid dynamics experiments show that the preferred form oflow-viscosity buoyant upwellings is columnar, and that new plumeswould start with a large, spherical head. Plume heads are calculatedto reach diameters of about 1000 km near the top of the mantle,and they provide a plausible explanation for flood basalt eruptions.The association of plume heads with their following plume tailsprovides an explanation for hotspot tracks that emerge fromflood basalt provinces.Plumes and the flow they drive in surrounding mantle comprisea distinct mode of mantle convection, driven by a hot, lower ther-mal boundary layer. They therefore complement the plate modedriven by the cool, top thermal boundary layer. As with the platemode, there will be a passive downward return flow driven byplumes that balances the upflow in plumes. The fact that hotspotlocations do not correlate strongly with the current configurationof plates (Figure 11.1; [38]) indicates that the plume and platemodes are not strongly coupled. The implication is that plumesrise through the plate-scale flow without substantially disruptingit. Experiments have shown that plume tails can rise through ahorizontal background flow, bending away from the vertical butretaining their narrow tubular form [39, 40, 41]. However, there is acorrelation between plume locations, broad geoid highs and slowerseismic wavespeeds in the deep mantle [38, 42], indicating thatplumes form preferentially away from deeply subducted litho-sphere.Plumes may have been significant tectonic agents throughmuch of earth history. They may trigger ridge jumps or occasionallarger-scale rifting events [5, 43]. Plume heads have been proposedas the direct source of Archean greenstone belts and the indirectcause, through their heat, of associated granitic terrains from sec-



320 1 1 THE PLUME MODEondary crustal melting [44]. They may have been a significantsource of continental crust, directly from continental flood basaltsand through the accretion as exotic terrains of oceanic flood basalts[14, 45]. They may be the source of many dike swarms, and as asource of heat they may have been involved in some regional'anorogenic' crustal heating and melting events and in the rework-ing and mineralising of a significant proportion of the continentalcrust [14]. The term 'plume tectonics' has been used to encapsulatetheir possibly substantial tectonic role [14].A fundamental aspect of mantle convection is that the thermalboundary layers are distinct agents, as I stressed in Chapter 8. It istherefore incorrect to regard plumes and plume tectonics as a pos-sible substitute for plate tectonics, as has been speculated not infre-quently for the early earth and for Venus. Currently in the earth,plate tectonics cools the mantle. If plate tectonics did not operate,then the top boundary layer would have to operate in another wayin order to remove heat from the mantle. The role of plumes is totransfer heat from the layer below (the core) into the convectingmantle. Any surface heat flow or tectonic effect from plumes isincidental, and adds to whatever tectonics are driven by the topboundary layer. This will be discussed in more detail in Chapter 14.A further implication of this last point is that the level ofactivity of plumes depends on the strength of the hot thermalboundary layer at the base of the mantle. This may have variedwith time, though calculations suggest that it may have been ratherconstant (Chapter 14). It follows also that the two thermal bound-ary layers need to be prescribed separately in numerical models ofmantle convection. In other words, it is sensible to define separateRayleigh numbers for each thermal boundary layer, and hence foreach mode of mantle convection.11.9 References1. T. S. Crough and D. M. Jurdy, Subducted lithosphere, hotspots andthe geoid, Earth Planet. Sci. Lett. 48, 15-22, 1980.2. R. A. Duncan and M. A. Richards, Hotspots, mantle plumes, floodbasalts, and true polar wander, Rev. Geophys. 29, 31-50, 1991.3. J. T. Wilson, A possible origin of the Hawaiian islands, Can. J. Phys.41, 863-70, 1963.4. W. J. Morgan, Convection plumes in the lower mantle, Nature 230,42-3, 1971.5. W. J. Morgan, Plate motions and deep mantle convection, Mem. Geol.Soc. Am. 132, 7-22, 1972.



1 1.9 REFERENCES 3216. W. J. Morgan, Hotspot tracks and the opening of the Atlantic andIndian Oceans, in: The Sea, C. Emiliani, ed., Wiley, New York,443-87, 1981.7. K. C. Burke and J. T. Wilson, Hot spots on the earth's surface, Sci.Am. 235, 46-57, 1976.8. M. A. Richards, B. H. Hager and N. H. Sleep, Dynamically supportedgeoid highs over hotspots: observation and theory, / . Geophys. Res.93, 7690-708, 1988.9. A. B. Watts and U. S. ten Brink, Crustal structure, flexure andsubsidence history of the Hawaiian Islands, / . Geophys. Res. 94,10473-500, 1989.10. D. L. Turcotte and G. Schubert, Geodynamics: Applications ofContinuum Physics to Geological Problems, 450 pp., Wiley, NewYork, 1982.11. G. F. Davies, Ocean bathymetry and mantle convection, 1. Large-scale flow and hotspots, / . Geophys. Res. 93, 10 467-80, 1988.12. N. H. Sleep, Hotspots and mantle plumes: Some phenomenology, / .Geophys. Res. 95, 6715-36, 1990.13. F. D. Stacey, Physics of the Earth, 513 pp., Brookfield Press, Brisbane,1992.14. R. I. Hill, I. H. Campbell, G. F. Davies and R. W. Griffiths, Mantleplumes and continental tectonics, Science 256, 186-93, 1992.15. F. D. Stacey and D. E. Loper, Thermal histories of the core andmantle, Phys. Earth Planet. Inter. 36, 99-115, 1984.16. R. P. Von Herzen, M. J. Cordery, R. S. Detrick and C. Fang, Heatflow and thermal origin of hotspot swells: the Hawaiian swell revis-ited, / . Geophys. Res. 94, 13 783-99, 1989.17. I. H. Campbell and R. W. Griffiths, Implications of mantle plumestructure for the evolution of flood basalts, Earth Planet. Sci. Lett.99, 79-83, 1990.18. D. A. Clague and G. B. Dalrymple, Tectonics, geochronology andorigin of the Hawaiian-Emperor volcanic chain, in: The EasternPacific Ocean and Hawaii, E. L. Winterer, D. M. Hussong and R.W. Decker, eds., Geological Society of America, Boulder, CO,188-217, 1989.19. J. P. Morgan, W. J. Morgan and E. Price, Hotspot melting generatesboth hotspot swell volcanism and a hotspot swell?, / . Geophys. Res.100, 8045-62, 1995.20. P. Wessel, A re-examination of the flexural deformation beneath theHawaiian islands, / . Geophys. Res. 98, 12 177-90, 1993.21. A. W. Hofmann and W. M. White, Mantle plumes from ancientoceanic crust, Earth Planet. Sci. Lett. 57, 421-36, 1982.22. J. A. Whitehead and D. S. Luther, Dynamics of laboratory diapir andplume models, / . Geophys. Res. 80, 705-17, 1975.23. M. A. Richards, R. A. Duncan and V. E. Courtillot, Floodbasalts and hot-spot tracks: plume heads and tails, Science 246,103-7, 1989.



322 1 1 THE PLUME MODE24. R. W. Griffiths and I. H. Campbell, Stirring and structure in mantleplumes, Earth Planet. Sci. Lett. 99, 66-78, 1990.25. I. H. Campbell and R. W. Griffiths, The evolution of the mantle'schemical structure, Lithos 30, 389-99, 1993.26. M. A. Richards and R. W. Griffiths, Deflection of plumes by mantleshear flow: experimental results and a simple theory, Geophys. J. 94,367-76, 1988.27. G. F. Davies, Penetration of plates and plumes through the mantletransition zone, Earth Planet. Sci. Lett. 133, 507-16, 1995.28. M. F. Coffin and O. Eldholm, Large igneous provinces: crustal struc-ture, dimensions and external consequences, Rev. Geophys. 32, 1-36,1994.29. D. P. McKenzie and M. J. Bickle, The volume and composition ofmelt generated by extension of the lithosphere, / . Petrol. 29, 625-79,1988.30. R. White and D. McKenzie, Magmatism at rift zones: the generationof volcanic continental margins and flood basalts, / . Geophys. Res. 94,7685-730, 1989.31. M. J. Cordery, G. F. Davies and I. H. Campbell, Genesis of floodbasalts from eclogite-bearing mantle plumes, /. Geophys. Res. 102,20179-97, 1997.32. C. Farnetani and M. A. Richards, Numerical investigations of themantle plume initiation model for flood basalt events., / . Geophys.Res. 99, 13 813-33, 1994.33. P. R. Hooper, The timing of crustal extension and the eruption ofcontinental flood basalts, Nature 345, 246-9, 1990.34. D. H. Green and T. J. Falloon, Pyrolite: A Ringwood concept and itscurrent expression, in: The Earth's Mantle: Composition, Structure andEvolution, I. N. S. Jackson, ed., Cambridge University Press,Cambridge, 311-78, 1998.35. G. W. Wetherill, Occurrence of giant impacts during the growth of theterrestrial planets, Science 228, 877-9, 1985.36. G. W. Wetherill, Formation of the terrestrial planets, Annu. Rev.Astron. Astrophys. 18, 77-113, 1980.37. H. E. Newsom and J. H. Jones, Origin of the Earth, 378, OxfordUniversity Press, New York, 1990.38. M. Stefanick and D. M. Jurdy, The distribution of hot spots, /.Geophys. Res. 89, 9919-25, 1984.39. M. A. Richards and R. W. Griffiths, Thermal entrainment bydeflected mantle plumes, Nature 342, 900-2, 1989.40. R. W. Griffiths and I. H. Campbell, On the dynamics of long-livedplume conduits in the convecting mantle, Earth Planet. Sci. Lett. 103,214-27, 1991.41. R. W. Griffiths and M. A. Richards, The adjustment of mantle plumesto changes in plate motion, Geophys. Res. Lett. 16, 437^1-0, 1989.42. M. A. Richards and D. C. Engebretson, Large-scale mantle convec-tion and the history of subduction, Nature 355, 437-40, 1992.



1 1.9 REFERENCES 32343. R. I. Hill, Starting plumes and continental breakup, Earth Planet. SetLett. 104, 398-416, 1991.44. I. H. Campbell and R. I. Hill, A two-stage model for the formation ofthe granite-greenstone terrains of the Kalgoorlie-Norseman area,Western Australia, Earth Planet. Sci. Lett. 90, 11-25, 1988.45. M. A. Richards, D. L. Jones, R. A. Duncan and D. J. DePaolo, Amantle plume initiation model for the Wrangellia flood basalt andother oceanic plateaus, Science 254, 263-7, 1991.



CHAPTER 8ConvectionConvection is a kind of fluid flow driven by internal buoyancy. Ingeneral, the buoyancy that drives convection derives from horizon-tal density gradients. In the mantle, the main sources of densitygradients are horizontal thermal boundary layers. Convection isdriven when the buoyancy (positive or negative) of a thermalboundary layer causes it to become unstable, so that fluid from itleaves the boundary of the fluid and rises or falls through theinterior of the fluid. This statement may seem to be labouring theobvious, but there has been a lot of confusion about the nature ofmantle convection, and much of this confusion can be avoided bykeeping these basic ideas clearly in mind.In general the buoyancy driving convection may be of thermalor compositional origin. We will be concerned mainly with thermalbuoyancy, but compositional buoyancy is also important in themantle. It is best to consider first thermal convection, that is con-vection driven by thermal buoyancy. Some aspects of composi-tional buoyancy will be considered in Chapter 14.Here I describe sources of buoyancy, give a simple example ofthermal convection, and show how there is an intimate relationshipbetween convection and the surface topography that it produces.This establishes some basic concepts that will be applied moreexplicitly to the mantle in subsequent chapters.In the course of doing this, I show how convection problemsscale, how the Rayleigh number encapsulates this scaling, why con-vection occurs only if the fluid is heated or cooled strongly enough,and how the mode of heating (from below or internally) governsthe nature of the thermal boundary layers. In principle there maybe two thermal boundary layers in a fluid layer, one at the top andone at the bottom, or there may be only one, depending on the waythe fluid is heated and cooled. 211



212 8 CONVECTION8.1 BuoyancyBuoyancy arises from gravity acting on density differences.Technically, buoyancy is used to describe a force. Thus it is notthe same as a density difference. Rather, it is the product of adensity difference, Ap, a volume, V, and the gravitational accelera-tion, g:B = -gVAp=-gAm (8.1.1)where Am is the mass anomaly due to a volume V with a densitydifference Ap = pv — p from its surroundings. The minus is usedbecause, in common usage, buoyancy is positive upwards, whereasgravity and weight are positive downwards. Thus for a densityexcess, Ap is positive and B is negative, that is downwards.It is buoyancy rather than just density difference that is impor-tant in convection. A large density difference within a small volumemay be unimportant. For example, you might expect intuitivelythat a steel ball-bearing, 1 cm in diameter, embedded in the mantlewould not sink rapidly to the core, despite a density difference ofover 100%. On the other hand, a plume head with a density con-trast of only about 1% would have a significant velocity if itsdiameter were 1000km, as we saw in Section 6.8.With thermal buoyancy, density differences arise from thermalexpansion. This is described byp = A,[1 - a(T - To)] (8.1.2)where p is density, a is the volume coefficient of thermal expansion,T is temperature, and p0 is the density at a reference temperatureTo. With a typically about 3 x 10~5/° C (Table 7.3), a temperaturecontrast of 1000 ° C gives rise to a density contrast of about 3%. Inthe lower mantle, where a may be only about 1 x 10~5/° C due tothe effect of pressure, the corresponding density difference wouldbe only about 1%.There are some density differences in the earth larger than thesethermal density differences, and these are due to differences inchemical or mineralogical composition. For example the oceaniccrust has a density of about 2.9 Mg/m3, compared with an uppermantle density of about 3.3 Mg/m3, so it has a density deficit ofabout 400kg/m3 or 12%. The total density change through themantle transition zone is about 15%. Much or all of this is believedto be due to pressure-induced phase transformations of the mineralassemblage (Chapter 5), and so it is not necessarily a source ofbuoyancy. However, locally all of the density differences associated



8.1 BUOYANCY 213with particular transformations may be operative because thedepth of the transformation is changed by temperature, as wasdiscussed in Chapter 5. Apart from this, if the density increasethrough the transition zone is not all due to phase transformations,the maximum that could be attributed to a difference between thecomposition of the upper mantle and the lower mantle is a smallpercentage, according to the seismological and material propertyconstraints discussed in Chapter 5.It is useful to have some idea of the magnitudes of buoyanciesof various objects. For example, a ball bearing would exert a buoy-ancy force of about — 0.02 N (taking buoyancy to be positiveupwards), while a plume head 1000 km in diameter with a tempera-ture difference of 300 ° C would have a buoyancy of about2 x 1020N. Subducted Hthosphere extending to a depth of 600 kmexerts a buoyancy of about —40  TN per metre of oceanic trench,that is per metre horizontally in the direction of strike of the sub-ducted slab.If the subducted hthosphere extended to the bottom of themantle, about 3000 km in depth, its buoyancy would be about—200TN/m. Comparing this with a plume head, it takes a pieceof subducted hthosphere about 1000 km wide and 3000 km deep toequal in magnitude the buoyancy of a plume head. While this maymake plume heads seem to be very important, you should bear inmind that the total length of oceanic trenches is over 30 000 km.Thus, while the buoyancy of a plume head is impressive, it is stillsmall compared to the total buoyancy of subducted hthosphere.The crustal component of subducted Hthosphere undergoes adifferent sequence of pressure-induced phase transformations thanthe mantle component, and as a result it is sometimes less denseand sometimes denser than the surrounding mantle, with the dif-ference usually no more than about 200kg/m3 (Section 5.3.4). Evenif it had the same density difference, say — 100kg/m3, extendingthroughout the mantle, its thickness is only about 7 km and itstotal contribution to slab buoyancy would be only about 20 TN/m, compared with the slab thermal buoyancy of —200  TN/m. Thissuggests that normally the crustal component of subducted htho-sphere does not substantially affect the slab buoyancy. However, ifthe subducted hthosphere is young, so that its negative thermalbuoyancy is small, the crustal buoyancy may be more important.This may have been more commonly true at earlier times in earthhistory. These possibilities will be taken up again in Chapter 14.The very large range of the magnitudes of buoyancies of thevarious objects just considered serves to emphasise that we must



214 8 CONVECTIONconsider the volume occupied by anomalous density, not just themagnitude of the density anomaly itself.8.2 A simple quantitative convection modelWe are now ready to consider a convection model that is simple inconcept but goes to the heart of plate tectonics and its relationshipwith mantle convection. The approach was first used by Turcotteand Oxburgh in 1967 [1]. At that time plate tectonics was only justbeginning to gain acceptance amongst geophysicists. I give a sim-plified version here. A more detailed version is given by Turcotteand Schubert [2], p. 279. I also acknowledge that it is only withinthe last five years or so that numerical models have become sub-stantially superior to Turcotte and Oxburgh's approximate analy-tical model. Such is the power of capturing the simple essence of aproblem.Consider plates on a viscous mantle, as sketched in Figure 8.1a.The plates comprise a thermal boundary layer, within which thetemperature changes from the surface temperature to the tempera-ture within the interior of the mantle. Because the plates are cold,they are denser and prone to sink: they have negative buoyancy. InFigure 8.1a, one plate is depicted as subducting, and we presumehere that it is sinking under its own weight. As the subducted partsinks, it drags along the surrounding viscous mantle with it. Themotion of the plate is resisted by the viscous stresses accompanyingFigure 8.1. (a) Sketch of flow driven by a subducting plate, (b) Idealisedform of the situation in (a).



8.2 A SIMPLE QUANTITATIVE CONVECTION MODEL 215this mantle flow. The viscous stresses are proportional to velocity.This permits an equilibrium to develop between the opposingforces: the velocity adjusts until the resistance balances the buoy-ancy.Our approach is based on the same principle as that used inChapter 6 when we considered flow down a pipe that is driven bythe fluid's own weight, and the rise of a buoyant sphere. In eachcase, there was a balance between a buoyancy force and a viscousresistance. The system achieves balance by adjusting its velocityuntil the viscous resistance balances the buoyancy. This balanceis stable, in the sense that a change in the velocity will induce animbalance of the forces that will quickly return the velocity to itsequilibrium value. However, we should remember that the motionsare so slow in the mantle that accelerations and momenta are quitenegligible, and the forces are essentially in balance at every instant,though their magnitudes may slowly change in concert.Let us make a simple dimensional estimate of the balancebetween buoyancy and viscous forces, in the same way as we didfor the buoyant sphere in Chapter 6. Here, because the two-dimen-sional sketch is assumed to be a cross-section through a structurethat extends in the third dimension, the forces will be calculated perunit length in the third dimension. Let us also simplify the geome-try into that depicted in Figure 8.1b.First consider the buoyancy of the lithosphere descendingdown the right side of the box. Assume that this lithosphere simplyturned and descended, preserving its thickness and temperatureprofile. From the basic formulas (8.1.1) and (8.1.2), the buoyancy isB = gDd- paATwhere ATMs the average difference in temperature between thedescending lithosphere and the fluid interior. This is approximatelyAT = —T12, where  Tv& the temperature of the interior fluid. (Weused the same approximation in estimating the subsidence ofoceanic lithosphere in Section 7.4). ThusB=-g-DdpaT/2 (8.2.1)If we want to evaluate this expression, we can independentlyestimate the values of all quantities except the thickness, d, of thelithosphere upon subduction. This is just the thickness of the layerthat has cooled by conduction of heat to the surface, as we con-sidered in Section 7.3. It is determined by the amount of time thesubducting piece of lithosphere spent at the surface. This time is



216 8 CONVECTIONt = D/v. According to the discussion of thermal diffusion inChapter 7, the thickness of the layer from which heat has diffusedis approximated byd = *J~Kt = JKD/V (8.2.2)where K is the thermal diffusivity. So we have an expression for d,but now it includes the still-unknown quantity v. We will see belowhow to deal with it.Now consider the viscous resistance. As with our rough esti-mate for a buoyant sphere (Section 6.8.1), we estimate the viscousstresses from a characteristic velocity gradient. In this case, thevelocity changes from v to —v across the dimensions of the box,so a representative velocity gradient is 2v/D. The resisting viscousstress a acting on the side of the descending slab is thena = IJL • 2v/DThis is a force per unit area. We get the force per unit length (in thethird dimension) by multiplying o by the vertical length, D, of theslab:R = Do = D- 2iiv/D = 2\iv (8.2.3)The buoyancy and resistance are balanced when B + R = 0.From (8.2.1) and (8.2.3), this occurs whenv = -g- DdpaT/Aii (8.2.4)This expression for v also involves d. We can combine Equations(8.2.2) and (8.2.4) to solve for the two unknowns v and d. The resultisUsing D = 3000 km, p = 4000 kg/m3, a = 2 x 10~5/° C, T =1400 ° C, /c=10~6m2/s and /x=102 2Pas, this yields v =2.8 x 10~9m/s = 90 mm/a. This is quite a good estimate of thevelocity of the faster plates.Other quantities can be estimated from these results. FromEquation (8.2.2), the thickness of the lithosphere is 33 km. This isof the same order of magnitude as the observed oceanic litho-sphere, though about a factor of two too small. If we had usedthe more accurate estimate of d = 2*J(kt) that is obtained from the



8.3 SCALING AND THE RAYLEIGH NUMBER 217error function solution for the cooling lithosphere (Equation(7.3.3)), we would have obtained 66 km. Also our estimate of thetime the lithosphere spent cooling at the surface is a bit small,because we assumed implicitly in Figure 8.1b that the plate isonly as wide as the mantle is deep, that is about 3000 km. At avelocity of 90 mm/a = 90 km/Ma, the plate will be only 33 Ma oldwhen it subducts. Observed lithosphere of this age is about 60 kmthick. If the box were longer, the plate would be older and thicker.This problem is left as an Exercise.The surface heat flux, q, can also be estimated from the tem-perature gradient through the boundary layer: q = KTId, where Kis the thermal conductivity. Using i^ = 3W/mK, this gives# = 130mW/m2. This compares with an observed heat flux ofabout 90mW/m2 for lithosphere of this age, and a mean heatflux of about 100mW/m2 for the whole sea floor.The point of these estimates is not that they are not very accu-rate, but that they are of the right order of magnitude. In theabsence of the simple theory developed above, one could notmake a sensible estimate even of the orders of magnitude to beexpected. Given the crudity of the approximations made, the agree-ment within about a factor of two is very good, perhaps better thanis really justified.The agreement of these estimates with observations suggeststhat we have a viable theory for mantle convection that explainswhy plates move at their observed velocities. Think about the sig-nificance of that statement for a moment. Plate tectonics is recog-nised as a fundamental mechanism driving geological processes.Within a few pages, with some simple physics and simple approx-imations, we have produced a theory that is consistent with someprimary observations of plate tectonics (their velocities, thicknessesand heat fluxes). We thus have a candidate theory for the under-lying mechanism for a very wide range of geological processes. Wewill be further testing the viability (and sufficiency) of this theorythrough much of the rest of this book.8.3 Scaling and the Rayleigh numberThe approximate theory just developed yields not only reasonablenumerical estimates of observed quantities, but also information onhow these quantities should scale. Thus, for example, according toEquation (8.2.5), if the viscosity were a factor of 10 lower at someearlier time in earth history, the plate velocities would not be 10times greater, but 10 = 4.6 times greater. Similarly, we can com-bine Equations (8.2.2) and (8.2.5) and deduce that



218 8 CONVECTIONd f - <••••  ( 8 - 3 - 1 }This implies that the boundary layer thickness would have been2.15 times less (15 km) and the heat flow 2.15 times higher(275mW/m2) with a viscosity 10 times lower.Equation (8.3.1) is written in this particular form to make amore general point. The left side involves a ratio of lengths, and it istherefore dimensionless. One can work through the dimensions ofthe right side and confirm that it is also dimensionless, as it shouldbe. This particular, rather arbitrary looking, collection of constantsactually encapsulates the scaling properties that we have justlooked at, and others besides. In fact it encapsulates many of thescaling properties of convection in a fluid layer in general, not justthe mantle convection we are concerned with here. For this reasonit has been recognised by fluid dynamicists as having a fundamentalsignificance for all forms of thermal convection. It was LordRayleigh who first demonstrated this, and this dimensionless com-bination (without the numerical factor) is known as the Rayleighnumber in his honour. It is usually written (8.3.2)For the mantle, using values used in the last section, we can esti-mate that Ra « 3 x 10 6.We can see explicitly the way in which the Rayleigh numberencapsulates the scaling properties by rewriting the above results interms of Ra. Thus, from Equation (8.3.1),d/D ~ Ra'1'3 (8.3.3)where '~' implies proportionality and 'of the order of. The ratiod/D is obviously dimensionless also, and we can view this ratio as away of scaling d, relative to a length scale that is characteristic ofthe problem, namely the depth of the fluid layer, D. Similarly, fromEquation (8.2.5)V(D/K) = V/V~ Ra2/3 (8.3.4)The dimensions of K are (Iength2/time), so the ratio K/D has thedimensions of velocity. We can thus regard V = K/D as a velocityscale characteristic of the problem. Then Equation (8.3.4) showshow the actual flow velocity v relates to the velocity scale V derived



8.3 SCALING AND THE RAYLEIGH NUMBER 219from the geometry of the problem and the properties of thematerial.Fluid dynamicists are enamoured of these dimensionless ratios,for the very good reason that they encapsulate important scalinginformation, and they have named lots of them after people. Thusthe combination VD/K is called the Peclet number, written Pe:Pe = vD/K = v/V (8.3.5)Then Equation (8.2.5) reduces to Pe ~ Ra2^. Using values fromthe last section, we can estimate that for the mantle Pe & 9000.I will not go through an exhaustive catalogue of these dimen-sionless numbers here, but a couple of further examples are worthnoting. First, it is instructive to combine the scaling quantities Vand D to define a characteristic time:tK = D/V = D2/K (8.3.6)From Chapter 7, this can be recognised as a diffusion time scale. Itis an estimate of the time it would take the fluid layer to coolsignificantly by thermal diffusion, that is by conduction, in theabsence of convection. Compare this with a time scale that ismore characteristic of the convection process: tv = D/v. This isthe time it takes the fluid to traverse the depth of the fluid layerat the typical convective velocity, v, so it can be called the transittime. From Equations (8.3.4) and (8.3.6),tv = D/v = tKRcT213 (8.3.7)If Ra = 3 x 106, then tv = 5 x 1 0 ~ \ . Thus if Ra is large, tv is muchsmaller than tK, reflecting the fact that, at high Rayleigh numbers,convection is a much more efficient heat transport mechanism thanconduction.Actually Equation (8.3.7) indicates that tK is not a very usefultime scale for convection processes, since it is a measure of thermalconduction. A better one would be that given by the second equal-ity in Equation (8.3.7). Thus we can define a time scale character-istic of convection astv = {D2/K)RCT213 (8.3.8)To complete this discussion of scaling for now, we will returnto the heat flux, estimated in the last section from q = KTId. UsingEquation (8.3.3), you can see that



220 8 CONVECTIONq = (KT/D)Ral/3 (8.3.9)Again you can recognise (KT/D) as a scaling quantity. In this caseit is the heat that would be conducted across the fluid layer (not theboundary layer) if the base were held at the temperature T and thesurface at T = 0. In other words, it is the heat that would be con-ducted in the steady state in the absence of convection. Denote thisas qK. The ratio q/qK is known as the Nusselt number, denoted asNu: Nu = q/qK = qD/KT (8.3.10)Then Equation (8.3.9) reduces toNu~Ra1/3 (8.3.11)Thus the Nusselt number is a direct measure of the efficiency ofconvection as a heat transport mechanism relative to conduction.For the mantle, Nu & 100. In other words, mantle convection isabout two orders of magnitude more efficient at transporting heatthan conduction would be.8.4 Marginal stabilityTraditional treatments of convection often begin with an analysisof marginal stability, which is the analysis of a fluid layer just at thepoint when convection is about to begin. This approach reflects thehistorical development of the topic, and the fact that the mathe-matics of marginal stability has yielded analytical solutions. Themantle is far from marginal stability, as we will see, and so I beganthe topic of convection differently, with the more directly relevant'finite amplitude' convection problem.Nevertheless the marginal stability problem gives us someimportant physical insights into convection and the Rayleigh num-ber. However, many treatments of it give long and intricate math-ematical derivations and do not always make the physics clear. Iwill err in the other direction, keeping the mathematics as simple aspossible and endeavouring to clarify the physics.The marginal stability problem arises from the fact that, for afluid layer heated uniformly on a lower horizontal boundary, thereis a minimum amount of heating below which convection does notoccur. If the temperature at the bottom is initially equal to thetemperature at the top, then of course there will be no convection.Now if the bottom temperature is slowly increased, still there will



8.4 MARGINAL STABILITY 221be no convection, until some critical temperature difference isreached, at which point slow convection will begin. At this point,the fluid layer has just become unstable and begins to overturn. Thetransition, just at the point of instability, is called marginal stabi-lity. Lord Rayleigh [3] was the first to provide a mathematicalanalysis of this. He showed that marginal stability occurs at acritical value of the Rayleigh number. The critical value dependson the particular boundary conditions and other geometric details,but is usually of the order of 1000. The mathematical analysis ofmarginal stability is reproduced by Chandrasekhar [4] and byTurcotte and Schubert [2] (p. 274).Consider the two layers of fluid sketched in Figure 8.2. Thelower layer is less dense, and the interface between them has a bulgeof height h and width w. Take h to be quite small. This bulge isbuoyant relative to the overlying fluid, and its buoyancy is approxi-matelyB=gApwhper unit length in the third dimension. Its buoyancy will make itgrow, so that its highest point rises with some velocity v = dh/dt,and its growth will be resisted by viscous stresses.The viscous resistance will have different forms, depending onwhether the width of the bulge is smaller or larger than the layerdepth D. If w <C D, the dominant shear resistance will be propor-tional to the velocity gradient v/w. The resisting force is thenRs = fj,(v/w)w = IJLV = fidh/dtwhere v/w is a characteristic strain rate and the subscript's' denotessmall w. Equating B and Rs to balance the forces yieldsdh gApw~dt~ [i 3.4.1)which has the solutionFigure 8.2. Sketch of two layers of fluid with the denser fluid above andwith an undulating interface that is unstable.



222 8 CONVECTIONh = hoexp(t/rs) (8.4.2)where h0 is a constant and*s=——  (8-4-3)In other words, the bulge grows exponentially with a time constantTS, because the interface is unstable: the lighter fluid wants to rise tothe top. This kind of instability is called the Rayleigh-Taylorinstability. It occurs regardless of the reason for the density differ-ence between the two fluids.Notice that TS gets smaller as w gets bigger. That is, broaderbulges grow more quickly. However, there is a limit to this: whenthe width of the bulge is comparable to the depth, D, of the fluidlayer, the top boundary starts to interfere with the flow and toincrease the viscous resistance. If w is much larger than D, thenthe dominant viscous resistance comes from horizontal shear flowwith velocity u along the layer. By conservation of mass, uD = vw.The characteristic velocity gradient of this shear flow is thenu/D = vw/D2. The resulting shear stress acts across the width wof the bulge, so the resisting force in this case isRi = IJL(U/D)W = IJLVW /Dwhere subscript T denotes large w. Balancing R{ and B then yields(S.4.4)at \iwwhich has the same form as Equation (8.4.1) except for the con-stants. It also has the same form of exponentially growing solution(Equation (8.4.2)), but with a different time scale T\: .4.5)gApD2Notice here that T\ gets bigger for larger w, whereas TS getssmaller, and their values are equal when w = D. We have consid-ered the two extreme cases w <C D and w » D. As w approaches Dfrom either side, the time scale of the growth of the instability getssmaller. This implies that the time scale is a minimum near w = D.In other words, a bulge whose horizontal scale is w = D is thefastest growing bulge, and its growth time scale is



8.4 MARGINAL STABILITY 223(8.4.6)where the subscript 'RT' connotes the Rayleigh-Taylor time scale.A more rigorous analysis that yields this result is given by Turcotteand Schubert [2] (p. 251). The implication of this result is that ifthere are random small deviations of the interface from being per-fectly horizontal, deviations that have a width comparable to thelayer depth will grow exponentially with the shortest time scale andwill quickly come to dominate. As a result, the buoyant layer willform into a series of rising blobs with a spacing of about 2w.Now let us consider the particular situation in which the den-sity difference is due to the lower layer having a higher temperaturebecause the bottom boundary of the fluid is hot. Then the densitydifference would be Ap = pa AT, where AT" is a measure of theaverage difference in temperature between the layers. Suppose firstthat the thermal conductivity of the fluid is high and the growth ofthe bulge is negligibly slow: then temperature differences would bequickly smeared out by thermal diffusion. In the process, the bulgewould be smeared out. After a time the temperature wouldapproach a uniform gradient between the bottom and top bound-aries, and the bulge would have ceased to exist.However, I showed above that the bulge grows because of itsbuoyancy. Evidently there is a competition between the buoyancyand the thermal diffusion. We can characterise this competition interms of the time scales of the two processes: TRT for the buoyantgrowth and xK for the thermal diffusion, whererK = D2/K (8.4.7)We can use D as a measure of the distance that heat must diffuse inorder to wipe out the fastest growing bulge. In order for the bulgeto grow, TRT will need to be significantly less than rK. FromEquations (8.4.6) and (8.4.7), this condition is (8.4.where c is a numerical constant and you can recognise the left-handside of Equation (8.4.8) as the Rayleigh number.This result tells us that there is indeed a value of the Rayleighnumber that must be exceeded before the thermal boundary layercan rise unstably in the presence of continuous heat loss by thermaldiffusion. If it cannot, there will be no thermal convection. Thus we



224 8 CONVECTIONhave derived the essence of Rayleigh's result. In this case, we do notget a very good numerical estimate of the critical value of theRayleigh number, since a rigorous stability analysis yieldsc & 1000, rather than c & 1.The quantitative value may not be very accurate, but we havebeen able to see that the controlling physics is the competitionbetween the Rayleigh-Taylor instability and thermal diffusion(the Rayleigh-Taylor instability involving an ever-changing bal-ance between buoyancy and viscous resistance). In fact, you cansee now that the Rayleigh number is just the ratio of the time scalesof these two processes:Ra = — (8.4.9)TRTThe mantle Rayleigh number is at least 3 x 106, well above thecritical value of about 1000. This indicates that the mantle is wellbeyond the regime of marginal stability. One way to look at this,using Equation (8.4.9), is that the thermal diffusion time scale isvery long, which means that heat does not diffuse very far in thetime it takes the fluid to become unstable and overturn. This meansthat the thermal boundary layers will be thin compared with thefluid layer thickness.Thin boundary layers were assumed without comment in thesimple theory of convection given in Section 8.2. That theory actu-ally is most appropriate with very thin boundary layers, that is atvery high Rayleigh numbers. For this reason it is known as theboundary layer theory of convection. Thus the marginal stabilitytheory applies just above the critical Rayleigh number, while theboundary layer theory applies at the other extreme of highRayleigh number.8.5 Flow patternsIn a series of classic experiments, Benard [5] observed that, in aliquid just above marginal stability, the convection flow formed asystem of hexagonal cells, like honeycomb, when viewed fromabove. Considerable mathematical effort was devoted subsequentlyto trying to explain this. It was presumed that it must imply thathexagonal cells are the most efficient at convecting heat. It turnedout that the explanation for the hexagons lay in the effect of surfacetension in the experiments, and specifically on differences in surfacetension accompanying differences in temperature. Surface tension



8.6 HEATING MODES AND THERMAL BOUNDARY LAYERS 225was important because Benard's liquid layers were only 1 mm orless in thickness.There is an important lesson here. If a factor like the tempera-ture-dependence of surface tension could so strongly influence thehorizontal pattern, or 'planform', of the convection, then the fluidmust not have a strong preference for a particular planform; that is,different planforms must not have much influence on the efficiencyof the convection. The implication is that, in other situations, otherfactors influencing the material properties of the fluid in the bound-ary layers might also have a strong influence on planform.Pursuing this logic, if the top and bottom thermal boundarylayers in a fluid layer should have material properties that aredistinctly different from each other, then each may tend to drivea distinctive pattern of convection. What then will be the resultingbehaviour? The possibility of the different thermal boundary layerstending to have different planforms is not made obvious in stan-dard treatments of convection. Whether it occurs depends both onthe physical properties of the fluid and on the mode of heating,which we will look at next.In the mantle, a hot boundary layer does have distinctly differ-ent mechanical properties from a cold boundary layer, and the twoseem to behave quite differently. As well, the cold boundary layerin the earth is laterally heterogeneous, containing continents and soon, and it develops other heterogeneities in response to deforma-tion: it breaks along faults. The effects of material properties onflow patterns are major themes of the next three chapters, whichfocus on the particular case of the earth's mantle.8.6 Heating modes and thermal boundary layersTextbook examples of convection often show the case of a layer offluid heated from below and cooled from above. In this case there isa hot thermal boundary layer at the bottom and a cool thermalboundary layer at the top (Figure 8.3a). If, as well, the Rayleighnumber is not very high, the resulting pattern of flow is such thateach of the thermal boundary layers reinforces the flow driven bythe other one. In other words the buoyant upwellings rise betweenthe cool downwellings, so that a series of rotating 'cells' is formedwhich are driven in the same sense of rotation from both sides. Thiscooperation between the upwellings and downwellings disguises thefact that the boundary layers are dynamically separate entities. It ispossible that they might drive different flow patterns, as I intimatedin the last section. It is also possible that one of the thermal bound-ary layers is weak or absent.



226 (c) INSULATINGCOLD TemperatureHOTFigure 8.3. Sketches illustrating how the existence and strength of a lowerthermal boundary layer depend on the way in which the fluid layer isheated.For example, a fluid layer might be heated from within byradioactivity. If there is no heat entering the base, perhaps becauseit is insulating, then there will be no hot thermal boundary at thebottom. If the fluid layer is still cooled from the top, the onlythermal boundary layer will be the cool one at the top (Figure8.3b). In fact this was assumed, without comment, in the simpletheory of convection presented in Section 8.2. In this case, the coolfluid sinking from the top boundary layer still drives circulation,but the upwelling is passive. By this I mean that although the fluidflows upwards between the downwellings (Figure 8.3b), it is notbuoyant relative to the well-mixed interior fluid. It is merelybeing displaced to make way for the actively sinking cold fluid.Although this may seem to be a trivial point here, it has beenvery commonly assumed, for example, that because there is clearlyupwelling occurring under midocean ridges, the upwelling mantlematerial is hotter than normal and thus buoyant and 'actively'upwelling. We will see evidence in Chapter 10 that this is usuallynot true. A lot of confusion about the relationship between mantleconvection and continental drift and plate tectonics can be avoidedby keeping this simple point clearly in mind.



8.6 HEATING MODES AND THERMAL BOUNDARY LAYERS 227More generally, the heat input to the fluid layer might be acombination of heat entering from below and heat generated within(by radioactivity, in the case of the mantle), and states intermediatebetween those of Figures 8.3a and 8.3b will result (Figure 8.3c).Suppose, as implied in Figure 8.3a, that the temperature of thelower boundary is fixed. If there is no internal heating, then thetemperature profile will be like that shown to the right of Figure8.3a. If there is no heating from below, the internal temperaturewill be the same as the bottom boundary, as shown to the right ofFigure 8.3b. If there is some internal heating, then the internaltemperature will be intermediate, as in Figure 8.3c. As a result,the top thermal boundary layer will be stronger (having a largertemperature jump across it) and the lower thermal boundary layerwill be correspondingly weaker. The mantle seems to be in such anintermediate state, as we will see.The point is illustrated by numerical models in Figure 8.4. Theleft three panels are frames from a model with a prescribed bottomtemperature and no internal heating. You can see both cool sinkingcolumns and hot rising columns. The right three panels are from aninternally heated model, and only the upper boundary layer exists.Downwellings are active, as in the bottom-heated model, but theupwellings are passive, broad and slow. Away from downwellings,isotherms are nearly horizontal, and the fluid is stably stratified.This is because the coolest fluid sinks to the bottom, and is then218.3 Ma 349.6 Ma441.9 Ma536.7 Ma 587.0 Ma738.7 Ma TemperatureFigure 8.4. Frames from numerical models, illustrating the differencesbetween convection in a layer heated from below (left-hand panels) and in alayer heated internally (right-hand panels). (Technical specifications of thesemodels are given in Appendix 2.)



228 8 CONVECTIONslowly displaced upwards by later cool fluid as it slowly warms byinternal heating.Figure 8.4 illustrates two other important points. First, the flowis unsteady. This is characteristic of convection at high Rayleighnumbers in constant-viscosity fluids. It is because the heating is sostrong that the boundary layers become unstable before they havetravelled a distance comparable to the depth of the fluid, which isthe width of cells that allows the most vertical limbs while alsominimising the viscous dissipation. Incipient instabilities in thetop boundary layer are visible in the middle right panel of Figure8.4. By the last panel they have developed into full downwellings.Second, the two thermal boundary layers in the left sequenceare behaving somewhat independently, especially on the left side ofthe panels. In fact in the bottom panel an up welling and a down-welling are colliding. This illustrates the point made earlier thateach boundary layer is an independent source of buoyancy, andthey may interact only weakly. This becomes more pronounced athigher Rayleigh numbers.8.6.1 Other Rayleigh numbers [Advanced]We have so far specified the thermal state of the convecting fluid interms of temperatures prescribed for each boundary. However, inFigures 8.3b and 8.4 (right panels) the bottom boundary is specifiedas insulating, that is as having zero heat flux through it, and theheating is specified as being internal. The temperature is not speci-fied ahead of time. It is evident that this model is specified in termsof heat input, rather than in terms of a temperature differencebetween the boundaries. How then can the Rayleigh number bedefined?The philosophy of the dimensional estimates used in this chap-ter is that representative quantities are used. With appropriatechoices, order-of-magnitude estimates will (usually) result. TheRayleigh number defined by Equation (8.3.2) is defined in termsof such representative quantities. This suggests that we look forrepresentative and convenient measures in different situations.We lack a representative temperature difference for the situa-tion in Figure 8.3b, but we can assume that a heat flux, q, is spe-cified. One way to proceed is to derive a quantity from q that hasthe dimensions of temperature; for example, we can use the tem-perature difference, ATq, across the layer that would be required toconduct the specified heat flux, q:



8.6 HEATING MODES AND THERMAL BOUNDARY LAYERS 229ATq = qD/KWe can then define a new Rayleigh number asgpaD3ATq gpaqD4This Rayleigh number is useful in any situation in which it is theheat input rather than a temperature difference that is specified.It is possible in principle that some heat, say qh, is specified atthe base, and some is specified to be generated internally. If theinternal heating is uniform, and generated at the rate H per unitvolume of fluid, then the rate of internal heat generation per unitarea of the layer surface is HD. The total heat input will then beq = qh + HDAlthough in a laboratory setting it is not easy to prescribe a heatflux, it is easy in numerical experiments and it is useful to make theconceptual distinction between the two kinds of bottom thermalboundary layer: prescribed temperature and prescribed heat flux.The Rayleigh numbers Rq (Equation (8.6.1)) and Ra (Equation(8.3.2)) are distinct quantities with different numerical values, as wewill see, and this is why different symbols are used here for them.However they are also related. Recall that the Nusselt number, Nu,was defined as the ratio of actual heat flux, q, to the heat flux, qK,that would be conducted with the same temperature differenceacross the layer (Equation (8.3.10)). In the case considered earlier,it was qK that was specified ahead of time and q that was deter-mined by the behaviour of the fluid layer. Here it is the reverse.However we can still use this definition of Nu. Thus, if the actualtemperature difference across the layer that results from the con-vection process is A T, then qK = KA T/D andNu = q/qK = ATq/AT (8.6.2)Thus here the Nusselt number gives the ratio of the temperaturedifference, ATq, that would be required to conduct the heat flux qthrough the layer, to the actual temperature difference in the pre-sence of convection.Similarly, although A T is not known ahead of time here, it canstill be used conceptually to define the Rayleigh number Ra(Equation (8.3.2)). It is then easy to see the relationship betweenRa and Rq:



230 8 CONVECTIONIn the earlier discussion of scaling, we found that Nu ~ Ral/3, soi?? ~ Ra4/3. Thus if i?a has the value 3 x 106 estimated earlier, forexample, then Rq will be about 4.3 x 108. Thus Rq is numericallylarger than Ra. Nevertheless it is a convenient way to characterisecases where it is the heat flux that is specified, rather than thetemperature difference. You must of course be careful aboutwhich definition of Rayleigh number is being used in a given con-text, as they have different scaling properties as well as differentnumerical values.This discussion illustrates the general point that differentRayleigh numbers may be defined in different contexts. There isnothing profound about this, it is merely a matter of adopting adefinition that is convenient and relevant for the context, so that itencapsulates the scaling properties of the particular situation.For the earth's mantle, however, there is a complication. Anappropriate way of specifying the heat input into models of themantle is through a combination of internal heating from radio-activity and a prescribed temperature at the base. Although thevalue of the temperature at the base of the mantle is not wellknown, the liquid core is believed to have a low viscosity, so thatit would keep the temperature quite homogeneous. This means thecore can be viewed as a heat bath imposing a uniform temperatureon the base of the mantle. This combination of a heating rate and aprescribed uniform bottom temperature is not covered by either ofthe Rayleigh numbers Ra or Rq, so there is not a convenient apriori thermal prescription of mantle models. In the mantle it isthe heat output, at the top surface that is well-constrained. Thismeans that some trial and error may be necessary to obtain modelsthat match the observed heat output of the mantle.8.7 Dimensionless equations [Advanced]The equations governing convection are often put into dimension-less form, that is they are expressed in terms of dimensionless vari-ables. This is done to take advantage of the kind of scalingproperties that we have been looking at, because one solutioncan then be scaled to a variety of contexts. There are differentways in which this can be done. We have seen an example of thisalready, in the different Rayleigh numbers that can be defined,depending on the way the fluid is heated. Other alternatives aremore arbitrary. For example, two different time scales are com-



8.7 DIMENSIONLESS EQUATIONS 231monly invoked, and others are possible. Since these alternatives arenot usually presented systematically, I will do so here.The equations governing the flow of a viscous incompressiblefluid were developed in Chapter 6 (Equation (6.6.3)), and the equa-tion governing heat flow with advection, diffusion and internal heatgeneration was developed in Chapter 7 (Equation (7.8.2)). Thefollowing dimensional forms of these equations are convenienthere.In Equation (8.7.1), the buoyancy force Bt (positive upwards), iswritten in terms of the density and the gravity vector gt (positivedownwards). In Equation (8.7.2), the first derivative, T)T/T)t, isknown as the total derivative, and its definition is implicit in thefirst identity of that equation. A is the internal heat production perunit time, per unit volume.Three scaling quantities suffice to express these equations indimensionless form: a length, a temperature difference and atime. For length, an appropriate choice is usually D, the depth ofthe convection fluid layer. Using this, we can define dimensionlessposition coordinates, xt, for example, such thatxl = Dx{where I have changed notation: the prime denotes a dimensionalquantity and unprimed quantities are dimensionless, unless specifi-cally identified as a dimensional scaling quantity, like D.For temperature, we have seen in the last section two possiblechoices:AT = ATT = (Tb - Ts) (8.7.3)AT = ATq = qD/K (8.7.4)For the moment, I will retain the general notation AT to coverboth of these possibilities.A time scale that is often used is the thermal diffusion timescale of Equation (8.3.6): tK = D2/K. Another one sometimes used is



232 8 CONVECTIONtK/Ra. A third possibility emerged from the earlier discussion ofscaling, namely the transit time tv = 1,^/Ra2^ (Equations (8.3.7),(8.3.8)). Here I will carry all three possibilities by using a generaltime scale tn, whereh = tK = D2/Kt2 = tJRa (8.7.5)t3 = tv = tJRa2'3Dimensional scales can be derived from D, AT and tn forviscous stress, buoyancy and heat generation rate as follows.Viscous stress is viscosity times velocity gradient, so an appropriatescale is ii{D/tn)/D = fi/tn. Buoyancy per unit volume isgAp = gpoaAT. Using these scales in Equation (8.7.1) yieldsli fdrij_dP\ =Dtn \dxt dxjthat iŝ - ¥-  = RF(Pgi) (8.7.6)oXj ax,where RF denotes a dimensionless combination of constants in theforce balance equations: (8.7.7)Similarly, for Equation (8.7.2) we need a scale for heat genera-tion. The heat flux scale identified earlier (Equations (8.3.9) and(8.3.10)) is qK, the heat flux that would be conducted with the sametemperature difference. The heat generation rate per unit volumethat corresponds to this is qK/D = KAT/D2. Then Equation(8.7.2) becomesRemembering that K/pCP = K, this can be writtenD7^— = Rn(V2T + A) (8.7.8)



8.8 TOPOGRAPHY GENERATED BY CONVECTION 233where i?H denotes a dimensionless combination in the heatequation:* H = | f (8.7.9)Equations (8.7.6) and (8.7.8) are dimensionless versions of theflow and heat equations, and they involve the two dimensionlessratios RF and Rn. The three choices of time scale proposed inEquations (8.7.5) then yieldtn = t1: R F = Ra i ? H = 1 (8.7.10a)tn = t2: RF = l Rn = l/Ra (8.7.10b)tn = t3 : RF = Ra1'3 Rn = l/Rci2'3 (8.7.10c)The choice of time scale is mainly a matter of convenience. Withthe choice t3, one dimensionless time unit will correspond approxi-mately with a transit time, regardless of the Rayleigh number, andit will be easier to judge the progress of a numerical calculation. Onthe other hand, the choice between ATT and ATg depends on themode of heating of the fluid. The notation thus refers to a moresubstantial difference in the model than convenience, and morecare must be taken to ensure the proper interpretation of resultsof calculations.8.8 Topography generated by convectionThe topography generated by convection is of crucial importanceto understanding mantle convection, since the earth's topographyprovides some of the most important constraints on mantle con-vection. Here I present the general principle qualitatively. Theparticular features of topography to be expected for mantleconvection, and their quantification and comparison with observa-tions, will be given in following Chapters. We have already coveredone important example in Chapter 7, the subsidence of the seafloor.The central idea is that buoyancy does two things: it drivesconvective flow and it vertically deflects the horizontal surfaces ofthe fluid layer. Because the buoyancy is (in the thermal convectionof most interest here) of thermal origin, there are intimate relation-ships between topography, fluid flow rates and heat transport rates.



234 8 CONVECTIONThe principle is illustrated in Figure 8.5. This shows a fluidlayer with three buoyant blobs, labelled (a), (b) and (c). Blob (a)is close to the top surface and has lifted the surface. The surfaceuplift is required by Newton's laws of motion. If there were noforce opposing the buoyancy of the blob, the blob would continu-ously accelerate. Of course there are viscous stresses opposing theblob locally, but these only shift the problem. The fluid adjacent tothe blob opposes the blob, but then this fluid exerts a force on fluidfurther out. In other words, the viscous stresses transmit the forcethrough the fluid, but do not result in any net opposing force. Thiscomes from the deflected surface.There is, in Figure 8.5, blob (a), a simple force balance: theweight of the topography balances the buoyancy of the blob.Geologists might recognise this as an isostatic balance. Anotherway to think of it is that the topography has negative buoyancy,due to its higher density than the material it has displaced (air orwater, in the case of the mantle). Recalling the definition ofbuoyancy given earlier (Equation (8.1.1)), this implies that theexcess mass of the topography equals the mass deficiency of theblob.As I have already stressed, there is in this very viscous systeman instantaneous force balance, even though the blob is moving.Such topography has sometimes been referred to as 'dynamic topo-graphy', but this terminology may be confusing, because it maysuggest that momentum is involved. It is not. The balance is a static(strictly, a quasi-static), instantaneous balance. The 'dynamic' ter-minology derives from the term 'dynamic stresses', which meansthe stresses due to the motion, which are the viscous stresses. Whilethis terminology may be technically correct, it is not very helpful,because it may obscure the fact that there is a simple force balance0Figure 8.5. Sketch of the effects of buoyant blobs on the surfaces of a fluidlayer. The layer surfaces are assumed to be free to deflect vertically, with aless dense fluid (e.g. air or water) above, and a more dense fluid (e.g. thecore) below.



8.8 TOPOGRAPHY GENERATED BY CONVECTION 235involved, and it may make the problem seem more complicatedthan it really is.Blob (b) in Figure 8.5 is near the bottom of the fluid layer.It causes the bottom surface of the fluid to deflect. This isbecause the viscous stresses caused by the blob are larger closeto the blob than far away, so the main effect is on the nearbybottom surface. I have implicitly assumed in Figure 8.5 thatthere is a denser fluid below the bottom surface, such as thecore under the mantle. In this case, the topography causes denser(core) material to replace less dense (mantle) material. Thus itgenerates a downward compensating force, or negative buoy-ancy, just as does topography on the top surface. This forcebalances the buoyancy of blob (b).Does blob (b) cause any deflection of the top surface? Yes,there will be a small deflection over a wide area of the surface.Blob (c) makes this point more explicitly: it is near the middle ofthe layer, and it deflects both the top and the bottom surfaces bysimilar amounts. In this case, we can see that the force balance isactually between the positive buoyancy of the blob and the twodeflected surfaces. In fact this will always be true, even for blobs(a) and (b), but I depicted them close to one surface or the other tosimplify the initial discussion, since this makes the deflection of onesurface negligible.To summarise the principle, buoyancy in a fluid layer deflectsboth the top and the bottom surfaces of the fluid (supposing they aredeformable), and the combined weight of the topographies balancesthe internal buoyancy. The amount of deflection of each surfacedepends on the magnitude of the viscous stresses transmitted toeach surface. This depends on the distance from the buoyancy tothe surface. It also depends on the viscosity of the intervening fluid,a point that will be significant in following chapters.Now apply these ideas to the thermal boundary layers we wereconsidering above. The top thermal boundary layer is cooler anddenser than the ambient interior fluid, so it is negatively buoyantand pulls the surfaces down. Because it is adjacent to the top fluidsurface, it is this surface that is deflected the most. There will be, toa good approximation, an isostatic balance between the massexcess of the thermal boundary layer and the mass deficiency ofthe depression it causes. The result is sketched in Figure 8.6 in aform that is like that of the mantle. The topography on the left ishighest where the boundary layer is thinnest. Away from this inboth directions, the surface is depressed by the thicker boundarylayer.



236 8 CONVECTIONFigure 8.6. Sketch of two types of topography on the top surface of aconvecting fluid layer. The top thermal boundary layer cools, thickens andsubsides by thermal contraction as it moves away from the spreading centreat left, leaving a topographic high where it is thin. The bottom thermalboundary layer generates no topography on the top surface until materialfrom it rises to the top, where it raises the top surface (upwelling on right).On the other hand, the bottom thermal boundary layer isadjacent to the bottom surface of the fluid, and generates topo-graphy there (Figure 8.6). It does not generate significanttopography on the top surface except where a buoyant columnhas risen to the top of the fluid layer. There the top surface islifted. Thus it is possible for the bottom thermal boundary layerto generate topography on the top surface, but only after materialfrom it has risen to the top.There is an important difference between the two topographichighs in Figure 8.6. The high on the left has no 'active' upwellingbeneath it: it is high because the surface on either side of it hassubsided, because of the negative buoyancy of the top thermalboundary layer. In contrast, the high on the right does have an'active', positively buoyant upwelling beneath it that has lifted it up.You will see in the following chapters that the forms of con-vection driven by the two mantle boundary layers are different. Asa result, the forms of topography they generate are recognisablydifferent. Because buoyancy is directly involved both in the topo-graphy and in the convection, the observed topography of the earthcontains important information about the forms of convectionpresent in the mantle.Even better, the topography contains quantitative informationabout the fluxes of buoyancy and heat involved. This is most read-ily brought out in the mantle context, where the topographic formsare distinct and lend themselves to extracting this information.However, it should by now be no surprise to you that such infor-mation is present, given the intimate involvement of buoyancy,convection and topography.



8.10 EXERCISES 2378.9 References1. D. L. Turcotte and E. R. Oxburgh, Finite amplitude convection cellsand continental drift, / . Fluid Mech. 28, 29-42, 1967.2. D. L. Turcotte and G. Schubert, Geodynamics: Applications ofContinuum Physics to Geological Problems, 450 pp., Wiley, NewYork, 1982.3. Lord Rayleigh, On convective currents in a horizontal layer of fluidwhen the higher temperature is on the under side, Philos. Mag. 32,529-46, 1916.4. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability,Oxford University Press, Oxford, 1961.5. H. Benard, Les tourbillons cellulaires dans une nappe liquide trans-portant de la chaleur par convection en regime permanent, Ann. Chim.Phys. 23, 62-144, 1901.8.10 Exercises1. Use Equations (8.1.1) and (8.1.2) to evaluate the buoyancyof the following. These are meant to be rough estimates, sodo not calculate results to more than one or two significantfigures.(a) A ball bearing 1 cm in diameter and with density7.7Mg/m3 in mantle of density 3.3Mg/m3.(b) A plume head with a radius of 500 km and temperatureexcess of 300 ° C in a mantle of density 3.3 Mg/m3 andthermal expansion coefficient 3 x 10~5/° C.(c) A sheet of subducted lithosphere 100 km thick extendingto a depth of (i) 600 km, (ii) 3000 km. Calculate a buoyancyper metre in the horizontal direction of the oceanic trench.Assume the slab temperature varies linearly through itsthickness from 0 ° C to the mantle temperature of 1300 ° C;you need only consider its mean temperature deficit.Assume other parameters as above.(d) Suppose part of the slab just considered includedoceanic crust 7 km thick with a density in the mantle of 3.2Mg/m3. Calculate its contribution to the slab buoyancy.2. Repeat the derivation of the approximate formula (8.2.5)for the convection velocity in the model of Figure 8.1, butthis time assume that the cell length, L, is not the same asits depth, D. You will need to consider the horizontal andvertical velocities, u and v, to be different, and to relatethem using conservation of mass. You will also need toinclude two terms in the viscous resistance, one



238 8 CONVECTIONproportional to the velocity gradient 2u/D and oneproportional to 2v/L. The answer can be expressed in theform of Equation (8.2.5) with the addition of a factorinvolving (L/D). Using values from the text, compare thevelocity when L = D = 3000 km and when L = 14000 km,the maximum width of the Pacific plate.


