CHAPTER 11

The plume mode

Mantle plumes are buoyant mantle upwellings that are inferred to
exist under some volcanic centres. In Chapter 8 I stated the basic
idea that convection is driven by thermal boundary layers that
become unstable, detach from the boundary and thereby drive
flow in the interior of a fluid layer. In Chapter 10 we looked at
plates as a thermal boundary layer of the convecting mantle, driv-
ing a distinctive form of convection in the mantle that I called the
plate mode of mantle convection.

Here we look at the evidence that there is a mode of mantle
convection driven by a lower, hot thermal boundary layer, at the
expected form of such a mode, and at the consistency of the evi-
dence with that expectation. Since it will become clear that the form
and dynamics of such upwellings, or plumes, are quite different
from the downwellings of lithosphere driving the plate mode, I
will call the plumes and the flow they drive the plume mode of
mantle convection.

11.1 Volcanic hotspots and hotspot swells

In Chapter 3 I described Wilson’s observation that there are, scat-
tered about the earth’s surface, about 40 isolated volcanic centres
that do not seem to be associated with plates and that seem to
remain fixed relative to each other as plates move around (Figure
11.1). Their fixity (or at least their slow motion relative to plate
velocities) is inferred from the existence of ‘hotspot tracks’, that is
of chains of volcanoes that are progressively older the further they
are from the active volcanic centre. Wilson was building on the
inferences of Darwin and Dana that a number of the island chains
in the Pacific seem to age progressively along the chain.

The classic example is the Hawaiian volcanic chain of islands
and seamounts, evident in the topography shown in Figure 11.2.
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Figure 11.1. Locations of volcanic hotspots (dots). Residual geoid contours
(in m) are superimposed (from Crough and Jurdy [1] ). The residual geoid
may reflect mainly signal from the lower mantle. Hotspots correlate with
residual geoid highs but not with the present plate boundaries. From
Duncan and Richards [2]. Copyright by the American Geophysical Union.

The south-eastern extremity of this chain, the island of Hawaii, is
volcanically active, and the islands and seamounts to the north-
west are progressively older. Wilson [3] hypothesised that the
source of the eruptions was a ‘mantle hotspot’ located in a region
of the mantle where convective velocities are small, such as the
middle of a convection ‘cell’. Morgan [4, 5] proposed instead that
the source of the eruptions is a mantle plume, that is a column of
hot, buoyant mantle rising from the core-mantle boundary.

Emperor
Seamounts

Figure 11.2. Topography of the sea floor near the Hawaiian Islands,
showing the volcanic chain of islands and seamounts and the broad swell
surrounding them. The contours are at depths of 3800 m and 5400 m.



11.1 VOLCANIC HOTSPOTS AND HOTSPOT SWELLS

Wilson’s hypothesis had the disadvantages that the existence of
the mantle hotspot was ad hoc, with no obvious reason for being
there, and that it was not clear how a finite volume of warmer
mantle could provide a steady supply of volcanism for tens of
millions of years. Morgan’s hypothesis at least implied a plausible
physical source and the potential for longevity. Morgan’s hypoth-
esis immediately became the preferred one. Because of this, I pro-
posed, in Chapter 3, dropping the concept of an internal mantle
hotspot, and using the term ‘volcanic hotspot’ for the surface
expression of the mantle phenomenon.

The number of volcanic hotspots has been variously estimated
between about 40 [1, 6] and over 100 [7], but it is debatable whether
many of the latter might be associated with individual mantle
plumes. Figure 11.1 shows 40 hotspot locations selected by
Duncan and Richards [2]. Contours of the hydrostatic geoid (i.e.
relative to the shape of a rotating hydrostatic earth) are included.
The suggestion is that hotspots correlate with highs in the geoid,
which plausibly are due to structure in the lower mantle (Chapter
10), and specifically to regions of the deep mantle that are warmer
because there has been no subduction into them in the past 200 Ma
or so [8]. On the other hand, it is striking that hotspots show little
correlation with the present configuration of plate boundaries.

As well as the narrow topography of the Hawaiian volcanic
chain, there is evident in Figure 11.2 a broad swell in the sea floor
surrounding the chain. This swell is up to about 1km high and
about 1000 km wide. Such a swell might be due to thickened ocea-
nic crust, to a local imbalance of isostasy maintained by the
strength of the lithosphere, or to buoyant material raising the litho-
sphere. Seismic reflection profiles show that the oceanic crust is not
significantly thicker than normal [9]. Nor can such a broad swell be
held up by the flexural strength of the lithosphere. The colder parts
of the lithosphere behave elastically even on geological time scales,
as long as their yield stress is not exceeded. For lithosphere of the
age of that near Hawaii, about 90 Ma, the effective elastic thickness
of the lithosphere is about 30 km thick, and it has a flexural wave-
length of about 500 km [10]. However the wavelength of the swell is
about 2000 km. If the swell were held out of isostatic balance by the
lithosphere, the stresses would exceed the plausible yield stress of
the lithosphere.

The straightforward conclusion is that the Hawaiian swell is
held up by buoyant material under the lithosphere. In conjunction
with the existence of the isolated volcanic centre, it is then a
straightforward inference that there is a narrow column of hot
mantle rising under Hawaii. Both the unusual volcanism and the
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supply of buoyancy to the base of the lithosphere would be
explained if the column had a higher temperature than normal
mantle. The volcanism occurs in a small, isolated locality far
from plate boundaries, in contrast, for example, to the curvilinear
volcanic island arcs near subduction zones. The isolation implies
that the buoyant material is in the form of a column rather than a
sheet. Since the active volcanism is confined to within an area of the
order of 100km across, it is reasonable to infer that the column
diametre is of the same order. The fact that the Hawaiian hotspot
track extends, through the bend into the Emperor seamounts, to
ages of at least 90 Ma indicates that the mantle source is long-lived,
and not due to an isolated heterogeneity within the mantle. Morgan
called such a hot, narrow column a mantle plume.

11.2 Heat transported by plumes

Swells like that in Figure 11.2 are evident around many of the
identified volcanic hotspots. Other conspicuous examples are at
Iceland, which straddles the Mid-Atlantic Ridge, and at Cape
Verde, off the west coast of Africa (Figure 4.3). The latter is
2km high and even broader than the Hawaiian swell, presumably
because the African plate is nearly stationary relative to the hotspot
[2].

The swells can be used to estimate the rate of flow of buoyancy
in the plumes. Buoyancy, as we saw in Chapter 8, is the gravita-
tional force due to the density deficit of the buoyant material. If the
plume is envisaged as a vertical cylinder with radius r and if the
plume material flows upward with an average velocity u (as in
Figure 7.7), then the buoyancy flow rate is

b=gAp- ru (11.2.1)

where Ap = (p, — py,) 1s the density difference between the plume
and the surrounding mantle.

The way buoyancy flow rate can be inferred from hotspot
swells is clearest in the case of Hawaii. The Hawaiian situation is
sketched in Figure 11.3, which shows a map view and two cross-
sections. As the Pacific plate moves over the rising plume column it
is lifted by the plume buoyancy. There will be a close isostatic
balance between the weight of the excess topography created by
this uplift and the buoyancy of the plume material under the plate,
as we discussed in Section 8.8. Since the plate is moving over the
plume, the parts of the plate that are already elevated are being
carried away from the plume. In order for the swell to persist, new



11.2 HEAT TRANSPORTED BY PLUMES
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Figure 11.3. Sketch of a hotspot swell like that of Hawaii (Figure 11.2) in
map view (left) and two cross-sections, showing the relationship of the swell
to the plume that is inferred to be below the lithosphere. The swell is
inferred to be raised by the buoyancy of the plume material. This allows the
rate of flow of buoyancy and heat in the plume to be estimated.

parts of the plate have to be continuously raised as they arrive near
the plume. This requires the arrival of new buoyant plume material
under the plate (cross-section AB). Thus the rate at which new swell
topography is generated will be a measure of the rate at which
buoyant plume material arrives under the lithosphere.

The addition to swell topography each year is equivalent to
elevating by a height 7= 1km a strip of sea floor with a ‘width’
w = 1000 km (the width of the swell) and a ‘length’ v = 100 mm
(the distance travelled by the Pacific plate over the plume in one
year at velocity v = 100mm/a). Both the sea floor and the Moho
are raised, and sea water is displaced, so the effective difference in
density is that between the mantle (p,,) and sea water (p,,). The rate
of addition to the weight (negative buoyancy) of the new swell is
then

W =g(pm — pu)wvh =b (11.2.2)

By the argument just given, the buoyancy flow rate b in the plume is
equal to W. Using the values quoted above yields b = 7 x 10* N/s
for Hawaii.

If the plume buoyancy is thermal, it can be related to the rate
of heat transport by the plume, since both depend on the excess
temperature, AT =T, — T;,, of the plume. Thus the difference
between the plume density, p,, and the mantle density is

Pp — Pm = PmAAT (11.2.3)
while the heat flow rate is (see Section 7.7)

0 = wup, CpAT (11.2.4)
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Taking the ratio of Q and b and using Equation (11.2.3) then yields
0 =Cpb/gua (11.2.5)

Note particularly that this relationship does not depend on the
excess temperature of the plume. In fact this is the same relation-
ship as we derived in Section 10.4.4 between the buoyancy and heat
flow rates of plates (Equation (10.4.4)). Thus this is another specific
and quantitative example of the general relationship between con-
vection and topography that we discussed in Section 8.8.

With Cp=1000J/kg°C and a=3x 107°/°C this yields
roughly Q0 =2 x 10" W, which is about 0.5% of the global heat
flow. The total rate of heat transport by all known plumes has been
estimated very roughly by Davies [11], and more carefully by Sleep
[12], with similar results. Although there are 40 or more identified
hotspots, all of them are weaker than Hawaii and many of them are
substantially weaker. The total heat flow rate of plumes is about
2.3 x 10" W (2.3 TW), which is about 6% of the global heat flow
(41 TW, Table 10.1).

This value is comparable to estimates of the heat flow out of
the core. Stacey [13] estimated this from the thermal conductivity of
the core and its adiabatic temperature gradient, obtaining 3.7 TW
for the heat that would be conducted down this gradient.
Convective heat transport in the core would add to this, but com-
positional convection, due to continuing solidification of the inner
core, might subtract from it. Another estimate can be made from
thermal history calculations (Chapter 14), in which the core cools
by several hundred degrees through earth history. Taking the
present cooling rate to be about 70°C/Ga, the core mass to
be 1.94 x 10 kg and the specific heat to be 500J/kg°C yields a
rate of heat loss of about 2.3TW.

These estimates carry substantial uncertainty. As well, the esti-
mate of plume heat flow rate should include the heat carried by
plume heads (Sections 11.4, 11.5). Hill et al. [14] used the frequency
of flood basalt eruptions in the geological record of the past 250 Ma
to estimate that plume heads carry approximately 50% of the heat
carried by plume tails. Thus the total heat flow rate in plumes
would be approximately 3.5TW, less than 10% of the global
heat flow rate.

The approximate correspondence of the estimate of the heat
transported by plumes with the rate of heat loss from the core
supports Morgan’s proposal that plumes come from a thermal
boundary layer at the base of the mantle. According to our general
discussion of convection in Chapter 8, a bottom thermal boundary
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layer is formed when heat enters through the bottom boundary of a
fluid layer.

Stacey and Loper [15] were apparently the first to appreciate
that this implies that plumes are cooling the core, in the sense that
they are the agent by which heat from the core is mixed into the
mantle. In this interpretation, the role of plumes is primarily to
transfer heat from the core through the mantle, but not out of the
mantle. Plumes bring heat to the base of the lithosphere, which is
mostly quite thick and conducts heat only very slowly to the sur-
face. For example, no excess heat flux has been consistently
detected over the Hawaiian swell [16]. While in some cases, like
Iceland, the lithosphere is thin and a substantial part of the excess
plume heat may be lost to the surface, more commonly much of the
plume heat would remain in the mantle, presumably to be mixed
into the mantle after the overlying lithosphere subducts.

11.3 Volume flow rates and eruption rates of plumes

It was stressed above that the buoyancy flow rate of a plume can be
estimated from the swell size without knowing the plume tempera-
ture. However, if we do have an estimate of plume temperature it is
then possible to estimate the volumetric flow rate of the plume. It is
instructive to compare this with the rate of volcanic eruption.

From the petrology of erupted lavas, plumes are estimated to
have a peak temperature of 250-300 °C above that of normal man-
tle [17]. The volumetric flow rate up the plume is &, = nru, where
u 1s the average velocity in the conduit and r is its radius. From
Equations (11.2.1) and (11.2.3), this is related to the buoyancy flow
rate, b, by

&, =b/gpnaAT (11.3.1)

b was also related to the rate at which the swell volume is created,
&, = wvh, through the weight of topography, W, in Equation
(11.2.2):

D = wrh = W/g(pm — pw) = b/g(pm — Pw) (11.3.2)

so the plume volumetric flow rate is related to the swell volumetric
rate of creation through

gpp = Do — Pw)/ Pm@ AT (11.3.3)
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For example, for Hawaii &, =0.1km%/a. If p, = 3300kg/m’,
pw = 1000kg/m®, «=3x10"/°C and AT =300°C, then
(Pm — Pwl/ Pm@ AT =75, In other words the plume volumetric
flow rate is about 75 times the rate of uplift of the swell. Thus
for Hawaii @, =7.5 km’/a.

The Hawaiian eruption rate, that is the rate at which the vol-
canic chain has been constructed, has been about @, = 0.03km?/a
over the past 25Ma [18, 19]. It is immediately evident that this is
very much less than the plume volumetric flow rate. It implies that
only about 0.4% of the volume of the plume material is erupted as
magma at the surface. Even if there is substantially more magma
emplaced below the surface, such as at the base of the crust under
Hawaii [9, 20], the average melt fraction of the plume is unlikely to
be much more than 1%.

Since the magmas show evidence of being derived from perhaps
5-10% partial melting of the source [17, 21], this presumably means
that about 80-90% of the plume material does not melt at all, and
the remainder undergoes about 5-10% partial melt. This result is
important for the geochemical interpretation of plume-derived
magmas and it is also useful for evaluating an alternative hypoth-
esis for the existence of hotspot swells (Section 11.6.3).

11.4 The dynamics and form of mantle plumes

Having looked at the observational evidence for the existence of
mantle plumes, and having derived some important measures of
them, we now turn to the fluid dynamics of buoyant upwellings.
Our understanding of the physics of such upwellings is quite well-
developed, and there are some inferences and predictions that can
be made with considerable confidence. This means that the hypoth-
esis of mantle plumes can potentially be subjected to a number of
quantitative observational tests.

This understanding of plume dynamics has arisen from some
mathematical results, some long-standing and some more recent,
and from some elegant laboratory experiments supplemented by
physical scaling analyses and some numerical modelling. Plume
dynamics is more tractable than plate dynamics largely because
plumes are entirely fluid.

11.4.1 Experimental forms

The buoyant upwellings from a hot thermal boundary layer might
have the form of sheets or columns. The downwellings driven by
sinking plates clearly have the form of sheets, at least in the upper
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part of the mantle, since plates are stiff sheets at the surface and
subduct along continuous curvilinear trenches. The stiffness of the
plate would be expected to preserve this form to some depth, and
recent results of seismic tomography seem to confirm this expecta-
tion (Chapter 5).

In contrast, Whitehead and Luther [22] showed experimentally
and mathematically that upwellings from a buoyant fluid layer
preferentially form columns rather than sheets. In experiments
starting with a thin uniform fluid layer underlying a thick layer
of a more dense fluid, the less dense fluid formed upwellings that
started as isolated domes, rather than as sheets. Whitehead and
Luther supplemented this laboratory demonstration with a mathe-
matical analysis of second-order perturbation theory that showed
that the rate of growth of a columnar upwelling is greater than the
rate of growth of a sheet upwelling. This is an extension of the
Rayleigh—Taylor instability that we encountered in Section 8.4.

Whitehead and Luther’s experiments also demonstrated that
the viscosity of an upwelling relative to the viscosity of the fluid
it rises through has a strong influence on the form of the upwelling.
This is illustrated in Figure 11.4, which shows buoyant upwellings

Figure 11.4. Photographs from laboratory experiments showing the effect of
viscosity on the forms of buoyant upwellings. (a) The buoyant fluid is more
viscous than the fluid it rises through, and the upwellings have fairly
uniform diameter. In this case the buoyant fluid began as a thin uniform
layer at the base of the tank. From Whitehead and Luther [22]. Copyright
by the American Geophysical Union. (b) The buoyant fluid is less viscous
than the fluid it rises through, and the upwelling has the form of a large
spherical head and a thin columnar tail. In this case the buoyant fluid was
injected through the base of the tank, and dyed to distinguish it. From
Richards, Duncan and Courtillot [23]. Copyright American Association for
the Advancement of Science. Reprinted with permission.
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rising from the base of a tank. If the buoyant fluid is much more
viscous than the ambient fluid (Figure 11.4a), the diameter of the
buoyant columns is fairly uniform over its height. If the buoyant
fluid is much less viscous (Figure 11.4b), then the column has a
large, nearly spherical head at the top with a very thin conduit or
tail connecting it to source. The reason for these different forms can
be understood fairly simply, and this will be addressed in the next
section.

Each of the experiments shown in Figure 11.4 involved two
different fluids with different densities and viscosities. However,
in the mantle we expect that the material ascending in a plume is
the same material as normal mantle, but hotter. The higher tem-
perature would make the plume less dense, and also lower its visc-
osity (Section 6.10.2). We might expect therefore that a mantle
upwelling from a hot thermal boundary layer would form a
plume, and that the plume would have a head-and-tail structure,
as in Figure 11.4b. This is confirmed by the experiment illustrated
in Figure 11.5a which shows a plume formed by heating a fluid
whose viscosity is a strong function of temperature. The viscosity of
the plume fluid is about 0.3% of the viscosity of the surrounding
fluid, and the plume has a pronounced head-and-tail structure.

A striking new feature in Figure 11.5a is that the injected fluid
forms a spiral inside the plume head. This is caused by thermal
entrainment of surrounding, clear fluid into the head. As the head
rises, heat diffuses out of it into the surrounding, cooler fluid,
forming a thermal boundary layer around the head. Because this
fluid is heated, it becomes buoyant, and so it tends to rise with the
head. The spiral structure forms because there is a circulation
within the plume head, with an upflow in the centre, where hot
new fluid is arriving from the conduit, and a relative downflow
around the equator, where the rise of the plume is resisted by the
surrounding fluid. The fluid from the thermal boundary layer
around the head is entrained into this internal circulation, flowing
up next to the central conduit. This process is quantified in Section
11.4.3.

Thermal entrainment is not so important if the plume fluid is
cold. Figure 11.5b shows a column of cold, dense, more viscous
fluid descending into the same kind of fluid. The subdued head-
and-tail structure is due to some of the surrounding fluid cooling
and descending with the plume, but the resistance to the head from
the surrounding lower-viscosity fluid is not sufficient to generate a
significant internal circulation in the head, so there is no entrain-
ment into it.
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(@)

Figure 11.5. Thermal plumes in laboratory experiments, formed by injecting
hot or cold dyed fluid into otherwise identical fluid. The fluid has a strong
temperature dependence of viscosity. (a) The buoyant fluid is hot, and the
plume viscosity is about 1/300 times that of the surrounding fluid. A spiral
structure forms in the head due to thermal entrainment of ambient fluid.
From Griffiths and Campbell [24]. (b) The injected fluid is cooler and hence
denser and more viscous than the ambient fluid. There is little entrainment
of cooled surrounding fluid, and only a very small head forms. From
Campbell and Griffiths [25]. Copyright by Elsevier Science. Reprinted with
permission.

Returning to the hot, low-viscosity plume of Figure 11.5a,
similar structures are formed if a plume grows from a hot thermal
boundary layer and the fluid viscosity is a strong function of tem-
perature. Results of a numerical experiment scaled approximately
to the mantle are shown in Figure 11.6. The panels are sections
through an axisymmetric model showing the growth of a plume
from an initial perturbation in the boundary layer. A line of passive
tracers delineates the fluid initially within the hot boundary layer.
The tracers reveal that the boundary layer fluid forms a spiral in the
head due to thermal entrainment, as in Figure 11.5a. This numer-
ical model also reveals the thermal structure within the plume. The
hottest parts of the plume are the tail and the top of the head,
where the tail material spreads out. Most of the head is cooler,
and there are substantial thermal gradients within it.
Temperatures within the head are intermediate between the
plume tail temperature and the surrounding fluid.
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Figure 11.6. Sequence from a numerical model in which a plume grows
from a thermal boundary layer. The model is axisymmetric and scaled
approximately to the mantle. Viscosity is a strong function of temperature,
and the ambient viscosity is 10°? Pa s. The bottom boundary temperature is
430 °C above the interior temperature, and the fluid viscosity there is about
1% of that of the interior fluid. A line of passive tracers delineates fluid
initially within the thermal boundary layer.

11.4.2 Heads and tails

Here we look at why low-viscosity plumes form a head-and-tail
structure. In the case in which the plume has a higher viscosity
than the surroundings, the rise of the plume is limited mainly by
the viscous resistance within the plume itself and within the bound-
ary layer that feeds it. This means that the fluid in the plume does
not rise faster than the top or head, and so it does not accumulate
into a large head. The moderate variation of thickness with height
is explained by the stretching of the column as the top rises faster
than the stiff fluid can flow after it.

On the other hand, in the case where the plume has a lower
viscosity, the plume fluid can flow readily from the boundary layer
into and up the plume, and the main resistance to its rise comes
from the surrounding more viscous fluid, which must be pushed out
of the way. In this situation, the rise of the top of the plume is
analogous to the rise of a buoyant sphere, and is regulated by the
same balance of buoyancy and viscous resistance. In Chapter 6 we
derived the Stokes formula for the velocity at which a buoyant
sphere rises (Equation (6.8.3)). In fact you can see that the heads
of the plumes in Figures 11.4b and 11.5a closely approximate a
sphere. The role of this sphere is to force a path through the
more viscous surroundings. Its rate of rise is initially slow, but it
grows by the addition of plume fluid flowing out of the boundary
layer. Once the head is large enough to force a path, the low-
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viscosity plume fluid can readily follow, requiring only a narrow
conduit to flow through, its rate of flow being regulated by the rate
at which it can flow out of the thin boundary layer. This is why the
conduit trailing the head can have a much smaller radius.

The way the head-and-tail structure of plumes depends on the
viscosity contrast between the plume and its surroundings is illu-
strated further in Figure 11.7. This shows three numerical models
of plumes with different ratios of plume viscosity to surrounding
viscosity: respectively 1, 1/30 and 1/200. The size of the head is
similar in each case, but the conduit is thinner for the lower visc-
osities, reflecting the fact that the lower viscosity material requires
only a thin conduit for a similar rate of flow.

11.4.3 Thermal entrainment into plumes

We will now consider the thermal structure of plumes in more
detail. As the hot fluid in the conduit reaches the top of the
head, it spreads radially out and around the periphery of the
sphere, becoming very thin because of the greater radius of the
head (Figures 11.6, 11.7). Because it is thinned, its heat diffuses
out much more quickly (remember, from Chapter 7, that a diffu-

1/1 | 1/30 | 1/200

0 Temperature (°C) 1700

Figure 11.7. Plumes from three numerical models with different ratios of
minimum plume viscosity to ambient viscosity, respectively 1, 1/30 and
1/200, showing how the tail is thinner for lower-viscosity plumes. The
models are axisymmetric about the left-hand side of each panel. Several
lines of tracers in this model mark fluid from different levels in the box. The
initial configuration is shown in the right-hand panel. A secondary
instability has developed in the right-hand model.
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sion time scale is proportional to the square of the length scale
involved). This heat goes partly outwards, to form the thermal
boundary layer around the head, and partly inwards, to further
heat the entrained material wrapping under it. As a result, the
head has a temperature intermediate between that of the conduit
and the surroundings. The spiral structure of the plume fluid, which
is revealed by the dye in Figure 11.5a and by the tracers in Figures
11.6 and 11.7, is not evident in the thermal structure, because it is
smoothed out by thermal diffusion. There are still thermal gradi-
ents in the head, but they are subdued relative to the temperature
difference between the conduit and the surroundings.

The additional lines of tracers in Figure 11.7 reveal that most of
the material entrained into the head comes from the lowest 10-20%
of the fluid layer. Since these numerical experiments are scaled
approximately to the mantle, this conclusion will apply also to
plumes in the mantle. This is important for the interpretation of
the geochemistry of flood basalts (Section 11.5).

We can quantify the rate of entrainment into a plume head
using our understanding of thermal diffusion (Section 7.2) and of
rising buoyant spheres (Section 6.8), following the approach used
by Griffiths and Campbell [24]. The situation is sketched in Figure
11.8. We take the approach of using approximations that are
rough, but that scale in the appropriate way. The thickness, 3, of
the thermal boundary layer adjacent to the hot plume head will
depend on the time the adjacent fluid is in contact with the passing
plume head. This time will be of the order of 2R/U, where the
plume head radius is R and its rise velocity is U. Then, from
Section 7.2,

2kR

5= ii= /= (11.4.1)

where « is the thermal diffusivity. The horizontal cross-sectional
area of the boundary layer near the head’s equator is the head
circumference times this thickness, 2nRS, and the rate at which
boundary layer fluid flows through this area is

®, = 2nRSU (11.4.2)

We can assume that this fluid, or a constant fraction of it, becomes
entrained into the head, so that @, is an estimate of the volumetric
rate of entrainment. The velocity, U, at which the head rises is
given by the Stokes formula for a low-viscosity sphere (Section 6.8):
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gpaATR?

U=
3p

(11.4.3)

where p, @ and u are the density, thermal expansion coefficient and
viscosity of the fluid respectively and AT is the temperature differ-
ence between the head and its surroundings.

If we take standard mantle values for these quantities
(Appendix 2) with a viscosity appropriate for lower mantle,
u =102 Pas, a temperature difference of 100°C and a radius of
500 km, this yields a rise velocity of U = 7 x 107'° m/s = 20 mm/a.
The boundary layer thickness is then 40 km and the rate of entrain-
ment is 2.7km?/a. This is comparable to the volume flow rate
inferred for the Hawaiian plume tail of 7.5km?/a, which is the
strongest plume tail by about a factor of 3 [11, 12]. The rate of
increase of the head radius due to entrainment is

R P,
ot  4nR?

(11.4.4)

With the values just derived, the rate of increase of radius is 1 mm/a
= 1km/Ma. This compares with a rise velocity of 20 mm/a.

This may suggest that entrainment is not very important, but
Griffiths and Campbell integrated Equations (11.4.1-3), taking
account of the influx from the tail, @,, and the drop in average
temperature as the entrainment proceeds. As cool fluid is entrained,
the heat content of the plume is diffused through a larger volume. If
the rate of inflow of fluid, @, is constant, the total heat supplied is
proportional to AT @, (1 — 1)) = AT P, At, where AT is the tem-
perature excess of the source and At is the duration of the inflow. If
the head volume at a later time is V, then conservation of energy
requires that

AT = AT, 9, A1/ V (11.4.5)

Combining Equations (11.4.1-3) with this yields

(11.4.6)

12
. = 2R |:Kg,oaA T,9, At:|
21

Then we can write an equation for the radius as a function of time
as

IR D, + D,
ot  4nR?

(11.4.7)
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Griffiths and Campbell found that plume head sizes of about
500 km radius at the top of the mantle are predicted rather consis-
tently, independent of the tail flow rate and the temperature differ-
ence of the plume fluid source. Some of their results are shown in
Figure 11.9. The initial rate of increase of the radius is much greater
than it is as the head nears the top of the mantle, which explains the
slow rates estimated above. Most of the curves in Figure 11.9 are
for a mantle viscosity of 10°* Pas, believed to be appropriate for
the deep mantle where most of the head growth occurs. A lower
viscosity of 10*' might be appropriate for the mantle in the
Archean, and a smaller head is then predicted (Figure 11.9a).
The plume head in the numerical experiment of Figure 11.6
approaches 1000km in diameter near the top, consistent with
their predictions. Taking the box depth to be 3000 km, the thermal
halo in the fourth panel is 1000 km across and the tracers span
about 800 km.

Entrainment may also occur into a plume tail. When the tail is
vertical, as in Figures 11.6,7,10, this is so small that it is not evident
in any obvious way. In fact Loper and Stacey have calculated that a
strictly vertical plume tail with a strong viscosity contrast would
entrain only a small percentage of additional material. Presumably
this is because the travel time of the fluid up the conduit is short
enough that diffusive heat loss to the surroundings is small. In the
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Figure 11.9. (a) Predicted plume head diameter versus height risen in a
mantle of viscosity 10> Pas (heavy) and 10*' Pas (light). Curves are labelled
with buoyancy flow rate Qy, = gAp ®,. (b) Predicted plume head diameter at
the top of the mantle for a mantle viscosity of 10%* Pas and a range of
buoyancy flow rates in the plume tail and fluid source excess temperatures,
AT;. From Griffiths and Campbell [24]. Copyright by Elsevier Science.
Reprinted with permission.
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numerical experiment depicted in the right-hand panel of Figure
11.7 the temperature in the centre of the conduit varies by only
about 3% over most of its height. On the other hand, if the plume
tail is inclined to the vertical, as it would be if the surrounding fluid
were moving horizontally, then entrainment occurs by the same
mechanism as for the plume head, and substantially larger degrees
of entrainment may occur. This has been demonstrated experimen-
tally by Richards and Griffiths [26].

11.4.4 Effects of a viscosity step and of phase changes

Figure 11.6 showed a numerical model of a thermal plume in which
the viscosity depends on temperature. However, in the mantle the
viscosity is also believed to vary substantially with depth, as dis-
cussed in Chapters 6 and 10. As well, phase transformations in the
mantle transition zone may affect the rise of plumes, as discussed in
Section 5.3, and the descent of subducted lithosphere discussed in
Chapter 10.

The effects of including depth dependence of viscosity and a
phase transformation are illustrated by the sequence from a numer-
ical model shown in Figure 11.10. The viscosity increases with
depth in a similar way to the models in Figure 10.12: there is a
step by a factor of 20 at 700 km and an exponential increase by a
factor of 10. As the plume head rises, its top feels the viscosity
reducing and rises faster, stretching the plume head vertically.

78Ma 94Ma 98Ma 106Ma 114 Ma 137 Ma

0 Temperature (°C) 1846

Figure 11.10. Sequence from a numerical plume model including increasing
viscosity with depth and a phase transformation. The viscosity steps by a
factor of 20 at 700 km depth and has an exponential increase by a factor of
10. The phase transformation at 700 km depth has a Clapeyron slope of
—2MPa/K. The plume slows and thickens through the phase
transformation, but then narrows and speeds up in the low-viscosity upper
layer.
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This becomes pronounced as it enters the low-viscosity upper layer,
where its rate of ascent increases and it necks down to a narrower
diameter. As it then rises through the upper layer, it begins to form
a second entrainment spiral, resulting in some convolution of the
original spiral structure. The plume tail also speeds up and becomes
narrower as it enters the upper layer (last frame).

This model also includes the effect of a phase transformation at
700km depth with a moderately negative Clapeyron slope of
—2MPa/K. In this case the effect is not sufficient to block the
ascent of the plume, though it does slow its rise in the vicinity of
the phase transformation. This is most clearly evident in the last
frame, where the plume tail bulges out as it slows, and then narrows
again as it passes the phase transformation and enters the low-
viscosity upper layer.

Compared with the plume in Figure 11.6, this plume reaches a
shallower level. This is because it is much narrower as it rises into
the upper mantle, and it does not trap as much mantle between
itself and the lithosphere. Also as it spreads it is significantly thin-
ner than in Figure 11.6, because of the lower viscosity below the
lithosphere. Because it spreads faster, the high-temperature region
is broader. These features are significant for the plume head model
of flood basalts (Section 11.5), since they tend to promote greater
melting over a broader area than in the model of Figure 11.6.

The effects of phase transformations with more negative
Clapeyron slopes are illustrated by the models in Figure 11.11
[27]. As we have just seen in Figure 11.10, if the Clapeyron slope
is —2MPa/K, the plume continues through, and it is virtually
unchanged except for a local bulge where its ascent is slowed by
the phase transformation. If the Clapeyron slope is —3 MPa/K,
then the plume is unable to penetrate. Apparently, if it does not
penetrate immediately, then it spreads sufficiently rapidly that it

-1.0  Log Viscosity 3.0 0.0 Temperature (°C) 1800

Figure 11.11. Plume models like that in Figure 11.10, but with different
Clapeyron slopes (C. slope) of the phase transformation. The viscosity
structure is shown on the left of these panels and the temperature on the
right. From Davies [27]. Copyright by Elsevier Science. Reprinted with
permission.



11.5 FLOOD BASALT ERUPTIONS AND THE PLUME HEAD MODEL

cannot ever penetrate. If the Clapeyron slope is —2.5 MPa/K, then
the main part of the plume head penetrates but the tail is choked
off and accumulates below the phase boundary. This would give
rise to a tailless head in the upper mantle. (The precise value of the
Clapeyron slope at which plume penetration is blocked is depen-
dent on other details of the models, so these models should not be
taken as a precise determination, but as a reasonable illustration of
the process.)

11.5 Flood basalt eruptions and the plume head model

In Sections 11.1-3 we looked at observations that can be inter-
preted to relate to plume tails. It was the age-progressive volcanic
chains that originally motivated Morgan’s plume hypothesis, a
model that we now identify more specifically as a plume tail. In
1981, Morgan [6] pointed out that several hotspot tracks emerged
from flood basalt provinces. A notable example is the Chagos—
Laccadive Ridge running south from the Deccan Traps flood basalt
province in western India to Reunion Island in the Indian Ocean
(Figures 4.3, 11.12).

Flood basalts are evidence of the largest volcanic eruptions
identified in the geological record. They range up to 2000km
across, with accumulated thicknesses of basalt flows up to several
kilometres. A map of the main identified flood basalt provinces is
shown in Figure 11.12. Total volumes of extrusive eruptions range
up to 10 million cubic kilometres, and evidence is accumulating
that much of this volume is erupted in less than 1 million years
[28]. It has been recognised within the past decade that some ocea-
nic plateaus are oceanic equivalents of continental flood basalts.
The largest flood basalt province is the Ontong—Java Plateau, a
submarine plateau east of New Guinea.

Morgan [6] proposed that if flood basalts and hotspot tracks
are associated, then the head-and-tail structure of a new plume,
which had been demonstrated by Whitehead and Luther, would
provide an explanation. Figure 11.13 illustrates the concept. The
flood basalt eruption would be due to the arrival of the plume head,
and the hotspot track would be formed by the tail following the
head. If the overlying plate is moving, then the flood basalt and the
underlying head remnant would be carried away, and the hotspot
track would emerge from the flood basalt province and connect it
to the currently active volcanic centre, which would be underlain by
the active plume tail.

Not a lot of attention was given to Morgan’s proposal until
Richards, Duncan and Courtillot [23] revived and advocated the

311



312

11 THE PLUME MODE

O

broswesighs e

Figure 11.12. Map of continental and oceanic flood basalt provinces. Dotted lines show known or
conjectured connections with active volcanic hotspots. After Duncan and Richards [2]. Copyright by
the American Geophysical Union.

idea. Subsequently Griffiths and Campbell [17, 24] demonstrated
the thermal entrainment process and argued in more detail for the
plume head explanation of flood basalts. In particular Griffiths and
Campbell argued that plume heads could reach much larger dia-
metres, 800-1200km, than had previously been estimated, if they
rise from the bottom of the mantle, and also that they would

Flood
basalt Hotspot track

Plume head

Figure 11.13. Sketch of the way a new plume with a head-and-tail structure
can account for the relationship observed between some flood basalts and
hotspot tracks, in which the hotspot track emerges from a flood basalt
province and connects it to a currently active volcanic hotspot. It is
assumed in the sketch that the plate and subjacent mantle are moving to the
left relative to the plume source.
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approximately double in horizontal diameter as they flattened and
spread below the lithosphere (Figures 11.6, 11.10). This is in good
agreement with the observed total extents of flood basalt provinces,
the Karoo flood basalts being scattered over a region about
2500 km in diameter. Campbell and Griffiths argued that important
aspects of the petrology and geochemistry of flood basalts could be
explained by the model, in particular the concentration near the
centres of provinces of picrites, which are products of higher
degrees of melting than basalts. They argued that this can be
explained by the temperature distribution of a plume head, which
is hottest at the central conduit and cooler to the sides (Figure
11.6).

Though this model of flood basalt formation has attracted wide
interest, it has not yet been fully explored quantitatively. The prin-
cipal outstanding question is whether it can account quantitatively
for the observed volumes of flood basalts in cases where there
appears to have been little or no rifting. The perceived problem
has been that normal mantle compositions do not begin to melt
until they have risen to depths less than about 120 km even if they
are 200°C hotter than normal [29, 30]. Since continental litho-
sphere is commonly at least this thick, we would not expect plumes
to melt at all under continents.

However plumes are known not to have normal mantle com-
position. It is widely recognised by geochemists on the basis of
trace element contents that they have a larger complement of basal-
tic composition than normal mantle. This component of their com-
position is hypothesised to come from previously subducted
oceanic crust that is entrained in plumes near the base of the mantle
(Chapter 13; [21]). Such a composition would substantially lower
the solidus temperature and enhance melt production. Some pre-
liminary models [31] and continuing work indicate that melt
volumes of the order of 1 million cubic kilometres can be produced
from such a plume head. Examples of calculations of melt volume
from a simplified plume head model with an enhanced basaltic
component are shown in Figure 11.14. These show that it is plau-
sible that several million cubic kilometres of magma could be
erupted within about 1 Ma.

Other factors being evaluated for their influence on plume head
melting are higher plume temperatures [32], the effect of mantle
viscosity structure on the height to which plumes can penetrate,
noted in Section 11.4.4 (Figure 11.10), or that plumes may be
more effective at thinning the lithosphere and penetrating to shal-
low depths than has been recognised. The indications at this stage
are that a satisfactory quantitative account of flood basalts will
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Figure 11.14. Calculated rates of magma generation, I', from a simplified
numerical model of a plume head that includes 15% additional basaltic
component. The curves assume different initial plume temperature excesses,
dT, and different ages (and thus thicknesses) of lithosphere. The plume
head was modelled as a sphere with initially uniform temperature. The left
and bottom scales assume a mantle viscosity of 10*? Pa s, the right and top
scales are for 10?! Pa s. From Cordery et al. [31]. Copyright by the
American Geophysical Union.

emerge from the plume head model, but this has not yet been
attained.

11.6 Some alternative theories
11.6.1 Rifting model of flood basalts

White and McKenzie [30] proposed a theory for the formation of
very thick sequences of volcanic flows found along some continen-
tal margins and of flood basalt eruptions. The theory can usefully
be separated into three parts. The first part is that the marginal
volcanic provinces are produced when rifting occurs over a region
of mantle that is hotter than normal because it is derived from a
plume. This seems to give a very viable account of such provinces.
The second part is that all flood basalts can be explained by this



11.6 SOME ALTERNATIVE THEORIES

mechanism. The third part is that the plume material is derived
mainly from a plume tail, since they assumed that plumes are
part of an upper mantle convection system and that plumes there-
fore derive from no deeper than 670km. In this case the plume
heads would have diameters of no more than about 300 km and
volumes less than about 5% of a plume head from the bottom of
the mantle [24].

The second part of White and McKenzie’s model encounters
the difficulty that a number of flood basalt provinces are said, on
the basis of field evidence, to have erupted mainly before substan-
tial rifting occurred (e.g. Deccan Traps) or in the absence of any
substantial rifting (e.g. Siberian Traps, Columbia River Basalts)
[33]. It also fails to explain the very short time scale of flood basalt
eruptions, less than 1 Ma in the best-constrained cases. The third
part of their model implies that a sufficient volume of warm mantle
would take about 50 Ma to accumulate, but at the time the Deccan
Traps erupted, India was moving north at about 180 mm/yr
(180km/Ma) so it would have traversed the extent of the flood
basalts in only about 10 Ma. It is difficult to see how sufficient
warm mantle could accumulate from a plume tail under such a
fast-moving plate.

These difficulties are avoided by the plume head model of flood
basalts, since the flow rate of the plume head is much greater than
the tail and much of the melting is inferred to occur from beneath
the intact lithosphere upon arrival of the plume head. It is true that
the volumes of the eruptions have yet to be fully explained quanti-
tatively, but current indications are that this is not a fundamental
difficulty.

11.6.2 Mantle wetspots

Green [34] has argued that volcanic hotspots can be explained by
mantle ‘wetspots’. From a petrological point of view, this idea has
some merits, since a small amount of water (less than 0.1%) can
substantially reduce the solidus temperature, at which melting first
occurs. It is also true that hydrated forms of minerals are generally
less dense than their dry counterparts, which could provide the
buoyancy required to explain hotspot swells. The effect on density
needs to be better quantified, and it would need to be shown that
observed water contents of hotspot volcanics are consistent with
the amounts required to explain the buoyancy. It needs also to be
shown that sufficient melt can be produced to explain the observed
volcanism, since although water reduces the solidus temperature,
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substantial degrees of melting still do not occur until the dry solidus
temperature is approached.

However, a remaining difficulty would still be to explain the
duration of long-lived volcanic centres like Hawaii. While a
hydrated portion of the mantle, perhaps old subducted oceanic
crust, might produce a burst of volcanism, there is no explanation
offered for how the source might persist for 100 Ma or more. It is
useful to estimate the volume of mantle required to supply the
Hawaiian plume for 100 Ma. The total volume erupted into the
Hawaiian and Emperor seamounts over 90 Ma is about 10%km°.
If we assume that there was about 5% melting of the source, this
requires a source volume of 2 x 10" km?, equivalent to a sphere of
diameter 340 km. If such a large and buoyant region existed as a
unit in the mantle, it would rise and produce a burst of volcanism.
To explain the Hawaiian volcanic chain the hydrated mantle mate-
rial needs to be supplied at a small and steady rate.

The advantage of the thermal plume hypothesis is that a
renewal mechanism is straightforwardly provided if the plume ori-
ginates from a thermal boundary layer. It may be that the effects of
water on melting and on plume buoyancy are significant, but it is
far from clear that water alone could provide a sufficient explana-
tion of the observations, while heat alone, or heat plus water, pro-
vides a straightforward and quantitatively successful account of the
dynamical requirements of a theory of plumes.

11.6.3 Melt residue buoyancy under hotspot swells

J. P. Morgan and others [19] have proposed that the buoyancy
supporting hotspot swells is due significantly also to the composi-
tional buoyancy of the residue remaining after the hotspot magma
has erupted. The residue will be less dense because iron partitions
preferentially into the melt phase. However, the estimates made in
Sections 11.2 and 11.3 indicate that the amount of melt produced is
less than 1% of the volume of the plume material, in which case this
will be a minor effect. Morgan and others estimate the density
change of the residue as a function of mean melt fraction, f,
from the formula

Ap = puff

where 8 =0.06 is an empirically evaluated constant. This implies
that the annual volume of mantle that arrives through the plume
should expand by the same fraction, 8f, and this expansion is what
is manifest as the plume swell. We can therefore estimate the annual
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contribution to the swell volume from the effect of residue buoy-
ancy as

@sr = @pﬂf

Using the values &, =7.5 km’/a and f =0.01, used carlier for
Hawaii, this gives @y = 0.0045km>/a, which is only about 5% of
the observed rate of swell formation of 0.1 km®/a. While the residue
buoyancy may be more significant locally under the volcanic chain,
it seems that the direct buoyancy of the plume material is still
required to account for most of the Hawaiian swell. This implies
in turn that the estimates of buoyancy and heat flow rate given in
Section 11.2 are reasonable.

11.7 Inevitability of mantle plumes

The earth is believed to have been strongly heated during the late
stages of its formation. The heat comes from the release of gravita-
tional energy of material falling onto the growing earth. The earth
is believed to have formed from a disk of particles orbiting the sun
and left over from the sun’s formation. Models of the process of
accumulation of material into larger bodies indicate that many
bodies would grow simultaneously, but that there would be a
wide distribution of sizes, with only a few large bodies and greater
numbers of smaller bodies. In this situation the final stages of
accumulation would involve the collision of very large bodies. A
plausible and currently popular theory for the formation of the
moon proposes that the moon was formed from the debris of a
collision of a Mars-sized body with the earth. A collision of this
magnitude would probably have melted much of the earth, and
vaporised some of it. Accounts of these ideas can be found in
[35, 36, 37].

Suppose that the earth was heated in this way, and that it
quickly homogenised thermally, as a substantially liquid body
would do. The temperature would not be uniform, but would fol-
low an adiabatic profile with depth, due to the effect of pressure, as
discussed in Chapter 7. The earth’s temperature as a function of
depth would therefore look like curve (a) sketched in Figure 11.15.

The earth would then lose heat through its surface. This would
form an outer thermal boundary layer (a precursor to the litho-
sphere) and, with the mantle being very hot and possibly partially
molten, rapid mantle convection could be expected. In this way the
mantle would be cooled. Suppose, for the simplicity of this argu-
ment, that the entire mantle convected and cooled in this way.
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Figure 11.15. Sketch of the form of the temperature profile within the earth
(a) soon after formation, and (b) later, after the mantle has cooled by heat
loss to the surface. The core can only begin to lose heat after the mantle has
become cooler than the core. Thereafter the heat conducting from the core
into the base of the mantle forms a thermal boundary layer that can
generate buoyant upwellings.

After some time, the temperature profile would have looked like
curve (b) of Figure 11.15.

Initially, the core would not have been able to lose heat,
because we assumed that the mantle and core had the same tem-
perature at their interface. However, as the mantle cooled, heat
would begin to conduct out of the core into the base of the mantle,
and cooling of the core would commence. This heat from the core
would form a thermal boundary layer at the base of the mantle,
depicted in curve (b) of Figure 11.15. If the mantle viscosity were
sufficiently low and the heat flow from the core sufficiently high,
both of which are highly likely, this thermal boundary layer would
become unstable and buoyant upwellings would rise from it. These
upwellings would have a lower viscosity than the mantle they were
rising through, so they would develop a head-and-tail structure, as
discussed in Section 11.4.

Thus we have a general argument for the existence of thermal
plumes in the mantle. The assumptions are that the core and mantle
started with similar temperatures at their interface, that the mantle
has been cooling, and that the conditions are such that the relevant
Rayleigh number is greater than its critical value for instability and
convection to occur. If the earth, now or in the past, functioned as
more than two independent layers, then the argument generalises
very simply: the layers would cool from the outside inwards, and
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plumes would be generated in each layer by heat conducting from
the next deeper layer.

11.8 The plume mode of mantle convection

We have seen that the existence of volcanic island and seamount
chains terminating in isolated active volcanic hotspots, such as
Hawaii, and surrounded by broad topographic swells imply the
existence of narrow, long-lived columns of buoyant, rising mantle
material. Morgan called these mantle plumes. The buoyancy and
excess melting can be explained if the plumes are 200-300 °C hotter
than normal mantle, and their longevity is plausible if they derive
from a hot thermal boundary layer. Their higher temperature
implies that plumes would have lower viscosity than normal man-
tle. Fluid dynamics experiments show that the preferred form of
low-viscosity buoyant upwellings is columnar, and that new plumes
would start with a large, spherical head. Plume heads are calculated
to reach diameters of about 1000 km near the top of the mantle,
and they provide a plausible explanation for flood basalt eruptions.
The association of plume heads with their following plume tails
provides an explanation for hotspot tracks that emerge from
flood basalt provinces.

Plumes and the flow they drive in surrounding mantle comprise
a distinct mode of mantle convection, driven by a hot, lower ther-
mal boundary layer. They therefore complement the plate mode
driven by the cool, top thermal boundary layer. As with the plate
mode, there will be a passive downward return flow driven by
plumes that balances the upflow in plumes. The fact that hotspot
locations do not correlate strongly with the current configuration
of plates (Figure 11.1; [38]) indicates that the plume and plate
modes are not strongly coupled. The implication is that plumes
rise through the plate-scale flow without substantially disrupting
it. Experiments have shown that plume tails can rise through a
horizontal background flow, bending away from the vertical but
retaining their narrow tubular form [39, 40, 41]. However, there is a
correlation between plume locations, broad geoid highs and slower
seismic wavespeeds in the deep mantle [38, 42], indicating that
plumes form preferentially away from deeply subducted litho-
sphere.

Plumes may have been significant tectonic agents through
much of earth history. They may trigger ridge jumps or occasional
larger-scale rifting events [5, 43]. Plume heads have been proposed
as the direct source of Archean greenstone belts and the indirect
cause, through their heat, of associated granitic terrains from sec-
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ondary crustal melting [44]. They may have been a significant
source of continental crust, directly from continental flood basalts
and through the accretion as exotic terrains of oceanic flood basalts
[14, 45]. They may be the source of many dike swarms, and as a
source of heat they may have been involved in some regional
‘anorogenic’ crustal heating and melting events and in the rework-
ing and mineralising of a significant proportion of the continental
crust [14]. The term ‘plume tectonics’ has been used to encapsulate
their possibly substantial tectonic role [14].

A fundamental aspect of mantle convection is that the thermal
boundary layers are distinct agents, as I stressed in Chapter 8. It is
therefore incorrect to regard plumes and plume tectonics as a pos-
sible substitute for plate tectonics, as has been speculated not infre-
quently for the early earth and for Venus. Currently in the earth,
plate tectonics cools the mantle. If plate tectonics did not operate,
then the top boundary layer would have to operate in another way
in order to remove heat from the mantle. The role of plumes is to
transfer heat from the layer below (the core) into the convecting
mantle. Any surface heat flow or tectonic effect from plumes is
incidental, and adds to whatever tectonics are driven by the top
boundary layer. This will be discussed in more detail in Chapter 14.

A further implication of this last point is that the level of
activity of plumes depends on the strength of the hot thermal
boundary layer at the base of the mantle. This may have varied
with time, though calculations suggest that it may have been rather
constant (Chapter 14). It follows also that the two thermal bound-
ary layers need to be prescribed separately in numerical models of
mantle convection. In other words, it is sensible to define separate
Rayleigh numbers for each thermal boundary layer, and hence for
cach mode of mantle convection.
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CHAPTER 8

Convection

Convection is a kind of fluid flow driven by internal buoyancy. In
general, the buoyancy that drives convection derives from horizon-
tal density gradients. In the mantle, the main sources of density
gradients are horizontal thermal boundary layers. Convection is
driven when the buoyancy (positive or negative} of a thermal
boundary layer causes it to become unstable, so that fluid from it
leaves the boundary of the fluid and rises or falls through the
interior of the fluid. This statement may seem to be labouring the
obvious, but there has been a lot of confusion about the nature of
mantle convection, and much of this confusion can be avoided by
keeping these basic ideas clearly in mind.

In general the buoyancy driving convection may be of thermal
or compositional origin. We will be concerned mainly with thermal
buoyancy, but compositional buoyancy is also important in the
mantle. It is best to consider first thermal convection, that is con-
vection driven by thermal buoyancy. Some aspects of composi-
tional buoyancy will be considered in Chapter 14.

Here 1 describe sources of buoyancy, give a simple example of
thermal convection, and show how there is an intimate relationship
between convection and the surface topography that it produces.
This establishes some basic concepts that will be applied more
explicitly to the mantle in subsequent chapters.

In the course of doing this, I show how convection problems
scale, how the Rayleigh number encapsulates this scaling, why con-
vection occurs only if the fluid is heated or cooled strongly enough,
and how the mode of heating (from below or internally) governs
the nature of the thermal boundary layers. In principle there may
be two thermal boundary layers in a fluid layer, one at the top and
one at the bottom, or there may be only one, depending on the way
the fluid is heated and cooled.
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8.1 Buoyancy

Buoyancy arises from gravity acting on density differences.
Technically, buoyancy is used to describe a force. Thus it is not
the same as a density difference. Rather, it is the product of a
density difference, Ap, a volume, ¥V, and the gravitational accelera-
tion, g:

B=—gVAp=—gAm (8.1.1)

where Am is the mass anomaly due to a volume V with a density
difference Ap = pp — p from its surroundings. The minus is used
because, in common usage, buoyancy is positive upwards, whereas
gravity and weight are positive downwards. Thus for a density
excess, Ap is positive and B is negative, that is downwards.

It is buoyancy rather than just density difference that is impor-
tant in convection. A large density difference within a small volume
may be unimportant. For example, you might expect intuitively
that a steel ball-bearing, 1 cm in diameter, embedded in the mantle
would not sink rapidly to the core, despite a density difference of
over 100%. On the other hand, a plume head with a density con-
trast of only about 1% would have a significant velocity if its
diameter were 1000 km, as we saw in Section 6.8.

With thermal buoyancy, density differences arise from thermal
expansion. This is described by

p=poll — (T — Ty)] (8.1.2)

where p is density, « is the volume coefficient of thermal expansion,
T is temperature, and p, is the density at a reference temperature
To. With « typically about 3 x 107°/°C (Table 7.3), a temperature
contrast of 1000 °C gives rise to a density contrast of about 3%. In
the lower mantle, where & may be only about 1 x 107°/°C due to
the effect of pressure, the corresponding density difference would
be only about 1%.

There are some density differences in the earth larger than these
thermal density differences, and these are due to differences in
chemical or mineralogical composition. For example the oceanic
crust has a density of about 2.9 Mg/m®, compared with an upper
mantle density of about 3.3 Mg/m®, so it has a density deficit of
about 400 kg/m® or 12%. The total density change through the
mantle transition zone is about 15%. Much or all of this is believed
to be due to pressure-induced phase transformations of the mineral
assemblage (Chapter 5), and so it is not necessarily a source of
buoyancy. However, locally all of the density differences associated
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with particular transformations may be operative because the
depth of the transformation is changed by temperature, as was
discussed in Chapter 5. Apart from this, if the density increase
through the transition zone is not all due to phase transformations,
the maximum that could be attributed to a difference between the
composition of the upper mantle and the lower mantle is a small
percentage, according to the seismological and material property
constraints discussed in Chapter 5.

It is useful to have some idea of the magnitudes of buoyancies
of various objects. For example, a ball bearing would exert a buoy-
ancy force of about —0.02N (taking buoyancy to be positive
upwards), while a plume head 1000 km in diameter with a tempera-
ture difference of 300°C would have a buoyancy of about
2 x 10°° N. Subducted lithosphere extending to a depth of 600 km
exerts a buoyancy of about —40 TN per metre of oceanic trench,
that is per metre horizontally in the direction of strike of the sub-
ducted slab.

If the subducted lithosphere extended to the bottom of the
mantle, about 3000 km in depth, its buoyancy would be about
—200 TN/m. Comparing this with a plume head, it takes a piece
of subducted lithosphere about 1000 km wide and 3000 km deep to
equal in magnitude the buoyancy of a plume head. While this may
make plume heads seem to be very important, you should bear in
mind that the total length of oceanic trenches is over 30000 km.
Thus, while the buoyancy of a plume head is impressive, it is still
small compared to the total buoyancy of subducted lithosphere.

The crustal component of subducted lithosphere undergoes a
different sequence of pressure-induced phase transformations than
the mantle component, and as a result it is sometimes less dense
and sometimes denser than the surrounding mantle, with the dif-
ference usually no more than about 200 kg/m? (Section 5.3.4). Even
if it had the same density difference, say —100kg/m?, extending
throughout the mantle, its thickness is only about 7km and its
total contribution to slab buoyancy would be only about 20 TN/
m, compared with the slab thermal buoyancy of —200 TN/m. This
suggests that normally the crustal component of subducted litho-
sphere does not substantially affect the slab buoyancy. However, if
the subducted lithosphere is young, so that its negative thermal
buoyancy is small, the crustal buoyancy may be more important.
This may have been more commonly true at earlier times in earth
history. These possibilities will be taken up again in Chapter 14.

The very large range of the magnitudes of buoyancies of the
various objects just considered serves to emphasise that we must
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consider the volume occupied by anomalous density, not just the
magnitude of the density anomaly itself.

8.2 A simple quantitative convection model

We are now ready to consider a convection model that is simple in
concept but goes to the heart of plate tectonics and its relationship
with mantle convection. The approach was first used by Turcotte
and Oxburgh in 1967 [1]. At that time plate tectonics was only just
beginning to gain acceptance amongst geophysicists. I give a sim-
plified version here. A more detailed version is given by Turcotte
and Schubert [2], p. 279. I also acknowledge that it is only within
the last five years or so that numerical models have become sub-
stantially superior to Turcotte and Oxburgh’s approximate analy-
tical model. Such is the power of capturing the simple essence of a
problem.

Consider plates on a viscous mantle, as sketched in Figure 8.1a.
The plates comprise a thermal boundary layer, within which the
temperature changes from the surface temperature to the tempera-
ture within the interior of the mantle. Because the plates are cold,
they are denser and prone to sink: they have negative buoyancy. In
Figure 8.1a, one plate is depicted as subducting, and we presume
here that it is sinking under its own weight. As the subducted part
sinks, it drags along the surrounding viscous mantle with it. The
motion of the plate is resisted by the viscous stresses accompanying

@) T=0
H
TR e
T e

VNS

®) T=0

D d

Figure 8.1. (a) Sketch of flow driven by a subducting plate. (b) Idealised
form of the situation in (a).
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this mantle flow. The viscous stresses are proportional to velocity.
This permits an equilibrium to develop between the opposing
forces: the velocity adjusts until the resistance balances the buoy-
ancy.

Our approach is based on the same principle as that used in
Chapter 6 when we considered flow down a pipe that is driven by
the fluid’s own weight, and the rise of a buoyant sphere. In each
case, there was a balance between a buoyancy force and a viscous
resistance. The system achieves balance by adjusting its velocity
until the viscous resistance balances the buoyancy. This balance
is stable, in the sense that a change in the velocity will induce an
imbalance of the forces that will quickly return the velocity to its
equilibrium value. However, we should remember that the motions
are so slow in the mantle that accelerations and momenta are quite
negligible, and the forces are essentially in balance at every instant,
though their magnitudes may slowly change in concert.

Let us make a simple dimensional estimate of the balance
between buoyancy and viscous forces, in the same way as we did
for the buoyant sphere in Chapter 6. Here, because the two-dimen-
sional sketch is assumed to be a cross-section through a structure
that extends in the third dimension, the forces will be calculated per
unit length in the third dimension. Let us also simplify the geome-
try into that depicted in Figure 8.1b.

First consider the buoyancy of the lithosphere descending
down the right side of the box. Assume that this lithosphere simply
turned and descended, preserving its thickness and temperature
profile. From the basic formulas (8.1.1) and (8.1.2), the buoyancy is

B=g Dd-paAT

where AT is the average difference in temperature between the
descending lithosphere and the fluid interior. This is approximately
AT = —T/2, where T is the temperature of the interior fluid. (We
used the same approximation in estimating the subsidence of
oceanic lithosphere in Section 7.4). Thus

B=—g-DdpaT/2 (8.2.1)

If we want to evaluate this expression, we can independently
estimate the values of all quantities except the thickness, d, of the
lithosphere upon subduction. This is just the thickness of the layer
that has cooled by conduction of heat to the surface, as we con-
sidered in Section 7.3. It is determined by the amount of time the
subducting piece of lithosphere spent at the surface. This time is
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t = D/v. According to the discussion of thermal diffusion in
Chapter 7, the thickness of the layer from which heat has diffused
is approximated by

d =kt = \/kD/v (8.2.2)

where « is the thermal diffusivity. So we have an expression for d,
but now it includes the still-unknown quantity v. We will see below
how to deal with it.

Now consider the viscous resistance. As with our rough esti-
mate for a buoyant sphere (Section 6.8.1), we estimate the viscous
stresses from a characteristic velocity gradient. In this case, the
velocity changes from v to —v across the dimensions of the box,
so a representative velocity gradient is 2v/D. The resisting viscous
stress o acting on the side of the descending slab is then

o=pn- 2v/D

This is a force per unit area. We get the force per unit length (in the
third dimension) by multiplying o by the vertical length, D, of the
slab:

R=Do=D 2uv/D=2uv (8.2.3)

The buoyancy and resistance are balanced when B+ R =0.
From (8.2.1) and (8.2.3), this occurs when

v=—g- DdpaT /4 (8.2.4)

This expression for v also involves d. We can combine Equations
(8.2.2) and (8.2.4) to solve for the two unknowns v and d. The result

18
2/3
T
V= D(M) (8.2.5)
4u

Using D =3000km, p =4000 kg/m®, «a=2x107°/°C, T =
1400°C, «=10"° mz/s and pu= 10 Pas, this yields v =
2.8 x 107 m/s = 90mm/a. This is quite a good estimate of the
velocity of the faster plates.

Other quantities can be estimated from these results. From
Equation (8.2.2), the thickness of the lithosphere is 33 km. This is
of the same order of magnitude as the observed oceanic litho-
sphere, though about a factor of two too small. If we had used
the more accurate estimate of d = 2./(k?) that is obtained from the



8.3 SCALING AND THE RAYLEIGH NUMBER

error function solution for the cooling lithosphere (Equation
(7.3.3)), we would have obtained 66 km. Also our estimate of the
time the lithosphere spent cooling at the surface is a bit small,
because we assumed implicitly in Figure 8.1b that the plate is
only as wide as the mantle is deep, that is about 3000 km. At a
velocity of 90 mm/a = 90 km/Ma, the plate will be only 33 Ma old
when it subducts. Observed lithosphere of this age is about 60 km
thick. If the box were longer, the plate would be older and thicker.
This problem is left as an Exercise.

The surface heat flux, g, can also be estimated from the tem-
perature gradient through the boundary layer: ¢ = K7T'/d, where K
is the thermal conductivity. Using K =3W/mK, this gives
g = 130mW/m?>. This compares with an observed heat flux of
about 90mW/m? for lithosphere of this age, and a mean heat
flux of about 100 mW/m? for the whole sea floor.

The point of these estimates is not that they are not very accu-
rate, but that they are of the right order of magnitude. In the
absence of the simple theory developed above, one could not
make a sensible estimate even of the orders of magnitude to be
expected. Given the crudity of the approximations made, the agree-
ment within about a factor of two is very good, perhaps better than
is really justified.

The agreement of these estimates with observations suggests
that we have a viable theory for mantle convection that explains
why plates move at their observed velocities. Think about the sig-
nificance of that statement for a moment. Plate tectonics is recog-
nised as a fundamental mechanism driving geological processes.
Within a few pages, with some simple physics and simple approx-
imations, we have produced a theory that is consistent with some
primary observations of plate tectonics (their velocities, thicknesses
and heat fluxes). We thus have a candidate theory for the under-
lying mechanism for a very wide range of geological processes. We
will be further testing the viability (and sufficiency) of this theory
through much of the rest of this book.

8.3 Scaling and the Rayleigh number

The approximate theory just developed yields not only reasonable
numerical estimates of observed quantities, but also information on
how these quantities should scale. Thus, for example, according to
Equation (8.2.5), if the viscosity were a factor of 10 lower at some
carlier time in earth history, the plate velocities would not be 10
times greater, but 10%? = 4.6 times greater. Similarly, we can com-
bine Equations (8.2.2) and (8.2.5) and deduce that
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7) = (8.3.1)

dicpn

(0)3 gpaTD’

This implies that the boundary layer thickness would have been
2.15 times less (15km) and the heat flow 2.15 times higher
(275 mW/m?) with a viscosity 10 times lower.

Equation (8.3.1) is written in this particular form to make a
more general point. The left side involves a ratio of lengths, and it is
therefore dimensionless. One can work through the dimensions of
the right side and confirm that it is also dimensionless, as it should
be. This particular, rather arbitrary looking, collection of constants
actually encapsulates the scaling properties that we have just
looked at, and others besides. In fact it encapsulates many of the
scaling properties of convection in a fluid layer in general, not just
the mantle convection we are concerned with here. For this reason
it has been recognised by fluid dynamicists as having a fundamental
significance for all forms of thermal convection. It was Lord
Rayleigh who first demonstrated this, and this dimensionless com-
bination (without the numerical factor) is known as the Rayleigh
number in his honour. It is usually written

_ g,oozTD3
i

Ra (8.3.2)

For the mantle, using values used in the last section, we can esti-
mate that Ra ~ 3 x 10°.

We can see explicitly the way in which the Rayleigh number
encapsulates the scaling properties by rewriting the above results in
terms of Ra. Thus, from Equation (8.3.1),

d/D ~ Ra '3 (8.3.3)

where ‘~’ implies proportionality and ‘of the order of’. The ratio
d/D is obviously dimensionless also, and we can view this ratio as a
way of scaling d, relative to a length scale that is characteristic of
the problem, namely the depth of the fluid layer, D. Similarly, from
Equation (8.2.5)

u(D/k) =v/V ~ Ra*? (8.3.4)

The dimensions of « are (length®/time), so the ratio «/D has the
dimensions of velocity. We can thus regard V' = «/D as a velocity
scale characteristic of the problem. Then Equation (8.3.4) shows
how the actual flow velocity v relates to the velocity scale V" derived
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from the geometry of the problem and the properties of the
material.

Fluid dynamicists are enamoured of these dimensionless ratios,
for the very good reason that they encapsulate important scaling
information, and they have named lots of them after people. Thus
the combination vD/«k is called the Peclet number, written Pe:

Pe=vD/k=v/V (8.3.5)

Then Equation (8.2.5) reduces to Pe ~ Ra*”>. Using values from
the last section, we can estimate that for the mantle Pe =~ 9000.

I will not go through an exhaustive catalogue of these dimen-
sionless numbers here, but a couple of further examples are worth
noting. First, it is instructive to combine the scaling quantities V'
and D to define a characteristic time:

te=D/V =D/« (8.3.6)

From Chapter 7, this can be recognised as a diffusion time scale. It
is an estimate of the time it would take the fluid layer to cool
significantly by thermal diffusion, that is by conduction, in the
absence of convection. Compare this with a time scale that is
more characteristic of the convection process: 7, = D/v. This is
the time it takes the fluid to traverse the depth of the fluid layer
at the typical convective velocity, v, so it can be called the transit
time. From Equations (8.3.4) and (8.3.6),

t,=D/jv=tRa > (8.3.7)

If Ra =3 x 10°, then ¢, = 5 x 10~°¢,. Thus if Ra is large, 7, is much
smaller than ¢, reflecting the fact that, at high Rayleigh numbers,
convection is a much more efficient heat transport mechanism than
conduction.

Actually Equation (8.3.7) indicates that 7, is not a very useful
time scale for convection processes, since it is a measure of thermal
conduction. A better one would be that given by the second equal-
ity in Equation (8.3.7). Thus we can define a time scale character-
istic of convection as

t, = (D*/k)Ra > (8.3.8)
To complete this discussion of scaling for now, we will return

to the heat flux, estimated in the last section from ¢ = K7T'/d. Using
Equation (8.3.3), you can see that
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g = (KT/D)Rd'"? (8.3.9)

Again you can recognise (K7 /D) as a scaling quantity. In this case
it is the heat that would be conducted across the fluid layer (not the
boundary layer) if the base were held at the temperature 7" and the
surface at 7'= 0. In other words, it is the heat that would be con-
ducted in the steady state in the absence of convection. Denote this
as qg. The ratio ¢/qx is known as the Nusselt number, denoted as
Nu:

Nu=gq/qy = qD/KT (8.3.10)
Then Equation (8.3.9) reduces to
Nu~ Ra'? (8.3.11)

Thus the Nusselt number is a direct measure of the efficiency of
convection as a heat transport mechanism relative to conduction.
For the mantle, Nu ~ 100. In other words, mantle convection is
about two orders of magnitude more efficient at transporting heat
than conduction would be.

8.4 Marginal stability

Traditional treatments of convection often begin with an analysis
of marginal stability, which is the analysis of a fluid layer just at the
point when convection is about to begin. This approach reflects the
historical development of the topic, and the fact that the mathe-
matics of marginal stability has yielded analytical solutions. The
mantle is far from marginal stability, as we will see, and so I began
the topic of convection differently, with the more directly relevant
“finite amplitude’ convection problem.

Nevertheless the marginal stability problem gives us some
important physical insights into convection and the Rayleigh num-
ber. However, many treatments of it give long and intricate math-
ematical derivations and do not always make the physics clear. 1
will err in the other direction, keeping the mathematics as simple as
possible and endeavouring to clarify the physics.

The marginal stability problem arises from the fact that, for a
fluid layer heated uniformly on a lower horizontal boundary, there
is a minimum amount of heating below which convection does not
occur. If the temperature at the bottom is initially equal to the
temperature at the top, then of course there will be no convection.
Now if the bottom temperature is slowly increased, still there will
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be no convection, until some critical temperature difference is
reached, at which point slow convection will begin. At this point,
the fluid layer has just become unstable and begins to overturn. The
transition, just at the point of instability, is called marginal stabi-
lity. Lord Rayleigh [3] was the first to provide a mathematical
analysis of this. He showed that marginal stability occurs at a
critical value of the Rayleigh number. The critical value depends
on the particular boundary conditions and other geometric details,
but is usually of the order of 1000. The mathematical analysis of
marginal stability is reproduced by Chandrasekhar [4] and by
Turcotte and Schubert [2] (p. 274).

Consider the two layers of fluid sketched in Figure 8.2. The
lower layer is less dense, and the interface between them has a bulge
of height /2 and width w. Take / to be quite small. This bulge is
buoyant relative to the overlying fluid, and its buoyancy is approxi-
mately

B =gApwh

per unit length in the third dimension. Its buoyancy will make it
grow, so that its highest point rises with some velocity v = dk/0d¢,
and its growth will be resisted by viscous stresses.

The viscous resistance will have different forms, depending on
whether the width of the bulge is smaller or larger than the layer
depth D. If w <« D, the dominant shear resistance will be propor-
tional to the velocity gradient v/w. The resisting force is then

R, = p(v/w)w = pv = uoh/ot

where v/w is a characteristic strain rate and the subscript ‘s’ denotes
small w. Equating B and R, to balance the forces yields

/ A
onh g pwh

a u

(8.4.1)

which has the solution

D Ao

| I
w

Figure 8.2. Sketch of two layers of fluid with the denser fluid above and
with an undulating interface that is unstable.
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h = hygexp(t/t,) (8.4.2)
where /1, is a constant and

__ M
gApw

(8.4.3)

Ty

In other words, the bulge grows exponentially with a time constant
7., because the interface is unstable: the lighter fluid wants to rise to
the top. This kind of instability is called the Rayleigh-Taylor
instability. It occurs regardless of the reason for the density differ-
ence between the two fluids.

Notice that 7, gets smaller as w gets bigger. That is, broader
bulges grow more quickly. However, there is a limit to this: when
the width of the bulge is comparable to the depth, D, of the fluid
layer, the top boundary starts to interfere with the flow and to
increase the viscous resistance. If w is much larger than D, then
the dominant viscous resistance comes from horizontal shear flow
with velocity u along the layer. By conservation of mass, uD = vw.
The characteristic velocity gradient of this shear flow is then
u/D = vw/D?. The resulting shear stress acts across the width w
of the bulge, so the resisting force in this case is

R, = p(u/Dyw = pow*/D?

where subscript ‘I’ denotes large w. Balancing R; and B then yields

2
on _gAprD”, (8.4.4)
at uw

which has the same form as Equation (8.4.1) except for the con-
stants. It also has the same form of exponentially growing solution
(Equation (8.4.2)), but with a different time scale z;:

W

= 8.4.5
ZApD? (8.4.5)

T

Notice here that 1, gets bigger for larger w, whereas 7, gets
smaller, and their values are equal when w = D. We have consid-
ered the two extreme cases w < D and w 3> D. As w approaches D
from either side, the time scale of the growth of the instability gets
smaller. This implies that the time scale is a minimum near w = D.
In other words, a bulge whose horizontal scale is w =D 1is the
fastest growing bulge, and its growth time scale is
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"
= 8.4.6
TRT gApD ( )

where the subscript ‘RT’ connotes the Rayleigh—-Taylor time scale.
A more rigorous analysis that yields this result is given by Turcotte
and Schubert [2] (p. 251). The implication of this result is that if
there are random small deviations of the interface from being per-
fectly horizontal, deviations that have a width comparable to the
layer depth will grow exponentially with the shortest time scale and
will quickly come to dominate. As a result, the buoyant layer will
form into a series of rising blobs with a spacing of about 2w.

Now let us consider the particular situation in which the den-
sity difference is due to the lower layer having a higher temperature
because the bottom boundary of the fluid is hot. Then the density
difference would be Ap = pa AT, where AT is a measure of the
average difference in temperature between the layers. Suppose first
that the thermal conductivity of the fluid is high and the growth of
the bulge is negligibly slow: then temperature differences would be
quickly smeared out by thermal diffusion. In the process, the bulge
would be smeared out. After a time the temperature would
approach a uniform gradient between the bottom and top bound-
aries, and the bulge would have ceased to exist.

However, I showed above that the bulge grows because of its
buoyancy. Evidently there is a competition between the buoyancy
and the thermal diffusion. We can characterise this competition in
terms of the time scales of the two processes: tpt for the buoyant
growth and t, for the thermal diffusion, where

1. = D*/k (8.4.7)

We can use D as a measure of the distance that heat must diffuse in
order to wipe out the fastest growing bulge. In order for the bulge
to grow, tpr will need to be significantly less than t,. From
Equations (8.4.6) and (8.4.7), this condition is

=Ra>c (8.4.8)

where ¢ 1s a numerical constant and you can recognise the left-hand
side of Equation (8.4.8) as the Rayleigh number.

This result tells us that there is indeed a value of the Rayleigh
number that must be exceeded before the thermal boundary layer
can rise unstably in the presence of continuous heat loss by thermal
diffusion. If it cannot, there will be no thermal convection. Thus we
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have derived the essence of Rayleigh’s result. In this case, we do not
get a very good numerical estimate of the critical value of the
Rayleigh number, since a rigorous stability analysis yields
¢ ~ 1000, rather than ¢ ~ 1.

The quantitative value may not be very accurate, but we have
been able to see that the controlling physics is the competition
between the Rayleigh—Taylor instability and thermal diffusion
(the Rayleigh-Taylor instability involving an ever-changing bal-
ance between buoyancy and viscous resistance). In fact, you can
see now that the Rayleigh number is just the ratio of the time scales
of these two processes:

T,
« 8.4.9
— (8.4.9)

Ra =

The mantle Rayleigh number is at least 3 x 10°, well above the
critical value of about 1000. This indicates that the mantle is well
beyond the regime of marginal stability. One way to look at this,
using Equation (8.4.9), is that the thermal diffusion time scale is
very long, which means that heat does not diffuse very far in the
time it takes the fluid to become unstable and overturn. This means
that the thermal boundary layers will be thin compared with the
fluid layer thickness.

Thin boundary layers were assumed without comment in the
simple theory of convection given in Section 8.2. That theory actu-
ally is most appropriate with very thin boundary layers, that is at
very high Rayleigh numbers. For this reason it is known as the
boundary layer theory of convection. Thus the marginal stability
theory applies just above the critical Rayleigh number, while the
boundary layer theory applies at the other extreme of high
Rayleigh number.

8.5 Flow patterns

In a series of classic experiments, Benard [5] observed that, in a
liquid just above marginal stability, the convection flow formed a
system of hexagonal cells, like honeycomb, when viewed from
above. Considerable mathematical effort was devoted subsequently
to trying to explain this. It was presumed that it must imply that
hexagonal cells are the most efficient at convecting heat. It turned
out that the explanation for the hexagons lay in the effect of surface
tension in the experiments, and specifically on differences in surface
tension accompanying differences in temperature. Surface tension
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was important because Benard’s liquid layers were only 1 mm or
less in thickness.

There is an important lesson here. If a factor like the tempera-
ture-dependence of surface tension could so strongly influence the
horizontal pattern, or ‘planform’, of the convection, then the fluid
must not have a strong preference for a particular planform; that is,
different planforms must not have much influence on the efficiency
of the convection. The implication is that, in other situations, other
factors influencing the material properties of the fluid in the bound-
ary layers might also have a strong influence on planform.

Pursuing this logic, if the top and bottom thermal boundary
layers in a fluid layer should have material properties that are
distinctly different from each other, then each may tend to drive
a distinctive pattern of convection. What then will be the resulting
behaviour? The possibility of the different thermal boundary layers
tending to have different planforms is not made obvious in stan-
dard treatments of convection. Whether it occurs depends both on
the physical properties of the fluid and on the mode of heating,
which we will look at next.

In the mantle, a hot boundary layer does have distinctly differ-
ent mechanical properties from a cold boundary layer, and the two
seem to behave quite differently. As well, the cold boundary layer
in the earth is laterally heterogeneous, containing continents and so
on, and it develops other heterogeneities in response to deforma-
tion: it breaks along faults. The effects of material properties on
flow patterns are major themes of the next three chapters, which
focus on the particular case of the earth’s mantle.

8.6 Heating modes and thermal boundary layers

Textbook examples of convection often show the case of a layer of
fluid heated from below and cooled from above. In this case there is
a hot thermal boundary layer at the bottom and a cool thermal
boundary layer at the top (Figure 8.3a). If, as well, the Rayleigh
number is not very high, the resulting pattern of flow is such that
each of the thermal boundary layers reinforces the flow driven by
the other one. In other words the buoyant upwellings rise between
the cool downwellings, so that a series of rotating ‘cells’ is formed
which are driven in the same sense of rotation from both sides. This
cooperation between the upwellings and downwellings disguises the
fact that the boundary layers are dynamically separate entities. It is
possible that they might drive different flow patterns, as I intimated
in the last section. It is also possible that one of the thermal bound-
ary layers is weak or absent.
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Figure 8.3. Sketches illustrating how the existence and strength of a lower
thermal boundary layer depend on the way in which the fluid layer is
heated.

For example, a fluid layer might be heated from within by
radioactivity. If there is no heat entering the base, perhaps because
it is insulating, then there will be no hot thermal boundary at the
bottom. If the fluid layer is still cooled from the top, the only
thermal boundary layer will be the cool one at the top (Figure
8.3b). In fact this was assumed, without comment, in the simple
theory of convection presented in Section 8.2. In this case, the cool
fluid sinking from the top boundary layer still drives circulation,
but the upwelling is passive. By this I mean that although the fluid
flows upwards between the downwellings (Figure 8.3b), it is not
buoyant relative to the well-mixed interior fluid. It is merely
being displaced to make way for the actively sinking cold fluid.

Although this may seem to be a trivial point here, it has been
very commonly assumed, for example, that because there is clearly
upwelling occurring under midocean ridges, the upwelling mantle
material is hotter than normal and thus buoyant and ‘actively’
upwelling. We will see evidence in Chapter 10 that this is usually
not true. A lot of confusion about the relationship between mantle
convection and continental drift and plate tectonics can be avoided
by keeping this simple point clearly in mind.
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More generally, the heat input to the fluid layer might be a
combination of heat entering from below and heat generated within
(by radioactivity, in the case of the mantle), and states intermediate
between those of Figures 8.3a and 8.3b will result (Figure 8.3c).
Suppose, as implied in Figure 8.3a, that the temperature of the
lower boundary is fixed. If there is no internal heating, then the
temperature profile will be like that shown to the right of Figure
8.3a. If there is no heating from below, the internal temperature
will be the same as the bottom boundary, as shown to the right of
Figure 8.3b. If there is some internal heating, then the internal
temperature will be intermediate, as in Figure 8.3c. As a result,
the top thermal boundary layer will be stronger (having a larger
temperature jump across it) and the lower thermal boundary layer
will be correspondingly weaker. The mantle seems to be in such an
intermediate state, as we will see.

The point is illustrated by numerical models in Figure 8.4. The
left three panels are frames from a model with a prescribed bottom
temperature and no internal heating. You can see both cool sinking
columns and hot rising columns. The right three panels are from an
internally heated model, and only the upper boundary layer exists.
Downwellings are active, as in the bottom-heated model, but the
upwellings are passive, broad and slow. Away from downwellings,
isotherms are nearly horizontal, and the fluid is stably stratified.
This is because the coolest fluid sinks to the bottom, and is then

218.3 Ma 349.6 Ma

587.0 Ma

738.7 Ma

0.0 Temperature 2840. 0.0 Temperature 2840.

Figure 8.4. Frames from numerical models, illustrating the differences
between convection in a layer heated from below (left-hand panels) and in a
layer heated internally (right-hand panels). (Technical specifications of these
models are given in Appendix 2.)
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slowly displaced upwards by later cool fluid as it slowly warms by
internal heating.

Figure 8.4 illustrates two other important points. First, the flow
is unsteady. This is characteristic of convection at high Rayleigh
numbers in constant-viscosity fluids. It is because the heating is so
strong that the boundary layers become unstable before they have
travelled a distance comparable to the depth of the fluid, which is
the width of cells that allows the most vertical limbs while also
minimising the viscous dissipation. Incipient instabilities in the
top boundary layer are visible in the middle right panel of Figure
8.4. By the last panel they have developed into full downwellings.

Second, the two thermal boundary layers in the left sequence
are behaving somewhat independently, especially on the left side of
the panels. In fact in the bottom panel an upwelling and a down-
welling are colliding. This illustrates the point made earlier that
each boundary layer is an independent source of buoyancy, and
they may interact only weakly. This becomes more pronounced at
higher Rayleigh numbers.

8.6.1 Other Rayleigh numbers [Advanced |

We have so far specified the thermal state of the convecting fluid in
terms of temperatures prescribed for each boundary. However, in
Figures 8.3b and 8.4 (right panels) the bottom boundary is specified
as insulating, that is as having zero heat flux through it, and the
heating is specified as being internal. The temperature is not speci-
fied ahead of time. It is evident that this model is specified in terms
of heat input, rather than in terms of a temperature difference
between the boundaries. How then can the Rayleigh number be
defined?

The philosophy of the dimensional estimates used in this chap-
ter is that representative quantities are used. With appropriate
choices, order-of-magnitude estimates will (usually) result. The
Rayleigh number defined by Equation (8.3.2) is defined in terms
of such representative quantities. This suggests that we look for
representative and convenient measures in different situations.

We lack a representative temperature difference for the situa-
tion in Figure 8.3b, but we can assume that a heat flux, ¢, is spe-
cified. One way to proceed is to derive a quantity from ¢ that has
the dimensions of temperature; for example, we can use the tem-
perature difference, AT, across the layer that would be required to
conduct the specified heat flux, ¢:
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AT, =gD/K
We can then define a new Rayleigh number as

g,oozD3 AT, _ g,oan4
Kl Kk

g (8.6.1)

This Rayleigh number is useful in any situation in which it is the
heat input rather than a temperature difference that is specified.
It is possible in principle that some heat, say ¢y, is specified at
the base, and some is specified to be generated internally. If the
internal heating is uniform, and generated at the rate H per unit
volume of fluid, then the rate of internal heat generation per unit
area of the layer surface is HD. The total heat input will then be

q=q,+ HD

Although in a laboratory setting it is not easy to prescribe a heat
flux, it is easy in numerical experiments and it is useful to make the
conceptual distinction between the two kinds of bottom thermal
boundary layer: prescribed temperature and prescribed heat flux.

The Rayleigh numbers R, (Equation (8.6.1)) and Ra (Equation
(8.3.2)) are distinct quantities with different numerical values, as we
will see, and this is why different symbols are used here for them.
However they are also related. Recall that the Nusselt number, Nu,
was defined as the ratio of actual heat flux, ¢, to the heat flux, g,
that would be conducted with the same temperature difference
across the layer (Equation (8.3.10)). In the case considered earlier,
it was gg that was specified ahead of time and ¢ that was deter-
mined by the behaviour of the fluid layer. Here it is the reverse.
However we can still use this definition of Nu. Thus, if the actual
temperature difference across the layer that results from the con-
vection process is AT, then gy = KAT/D and

Nu=q/qx = AT, /AT (8.6.2)

Thus here the Nusselt number gives the ratio of the temperature
difference, AT, that would be required to conduct the heat flux ¢
through the layer, to the actual temperature difference in the pre-
sence of convection.

Similarly, although AT is not known ahead of time here, it can
still be used conceptually to define the Rayleigh number Ra
(Equation (8.3.2)). It is then easy to see the relationship between
Ra and R;:
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Ry Ly _y (8.6.3)
Ra AT " >

In the earlier discussion of scaling, we found that Nu ~ R4 3, SO

R, ~ Rd*?. Thus if Ra has the value 3 x 10° estimated earlier, for
example, then R, will be about 4.3 x 10%. Thus R, 1s numerically
larger than Ra. Nevertheless it is a convenient way to characterise
cases where it is the heat flux that is specified, rather than the
temperature difference. You must of course be careful about
which definition of Rayleigh number is being used in a given con-
text, as they have different scaling properties as well as different
numerical values.

This discussion illustrates the general point that different
Rayleigh numbers may be defined in different contexts. There is
nothing profound about this, it is merely a matter of adopting a
definition that is convenient and relevant for the context, so that it
encapsulates the scaling properties of the particular situation.

For the earth’s mantle, however, there is a complication. An
appropriate way of specifying the heat input into models of the
mantle is through a combination of internal heating from radio-
activity and a prescribed temperature at the base. Although the
value of the temperature at the base of the mantle is not well
known, the liquid core is believed to have a low viscosity, so that
it would keep the temperature quite homogeneous. This means the
core can be viewed as a heat bath imposing a uniform temperature
on the base of the mantle. This combination of a heating rate and a
prescribed uniform bottom temperature is not covered by either of
the Rayleigh numbers Ra or R/, so there is not a convenient a
priori thermal prescription of mantle models. In the mantle it is
the heat output, at the top surface that is well-constrained. This
means that some trial and error may be necessary to obtain models
that match the observed heat output of the mantle.

8.7 Dimensionless equations [Advanced|

The equations governing convection are often put into dimension-
less form, that is they are expressed in terms of dimensionless vari-
ables. This is done to take advantage of the kind of scaling
properties that we have been looking at, because one solution
can then be scaled to a variety of contexts. There are different
ways in which this can be done. We have seen an example of this
already, in the different Rayleigh numbers that can be defined,
depending on the way the fluid is heated. Other alternatives are
more arbitrary. For example, two different time scales are com-
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monly invoked, and others are possible. Since these alternatives are
not usually presented systematically, I will do so here.

The equations governing the flow of a viscous incompressible
fluid were developed in Chapter 6 (Equation (6.6.3)), and the equa-
tion governing heat flow with advection, diffusion and internal heat
generation was developed in Chapter 7 (Equation (7.8.2)). The
following dimensional forms of these equations are convenient
here.

S g 8.7.1
o, o, i = pg; ( )

DT ar aT 2 A
—=—+v—=«kVT+— 8.7.2
D:r ot v ax; * +pCP ( )

In Equation (8.7.1), the buoyancy force B; (positive upwards), is
written in terms of the density and the gravity vector g; (positive
downwards). In Equation (8.7.2), the first derivative, D7/Dz, is
known as the total derivative, and its definition is implicit in the
first identity of that equation. 4 is the internal heat production per
unit time, per unit volume.

Three scaling quantities suffice to express these equations in
dimensionless form: a length, a temperature difference and a
time. For length, an appropriate choice is usually D, the depth of
the convection fluid layer. Using this, we can define dimensionless
position coordinates, x;, for example, such that

.xl' — D.xl'

where 1 have changed notation: the prime denotes a dimensional
quantity and unprimed quantities are dimensionless, unless specifi-
cally identified as a dimensional scaling quantity, like D.

For temperature, we have seen in the last section two possible
choices:

AT = ATy =(T, — T) (8.7.3)

AT = AT, = gD/K (8.7.4)

For the moment, I will retain the general notation AT to cover
both of these possibilities.

A time scale that is often used is the thermal diffusion time
scale of Equation (8.3.6): 7, = D?/«k. Another one sometimes used is
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t./Ra. A third possibility emerged from the earlier discussion of
scaling, namely the transit time 7, = 7, /Ra*> (Equations (8.3.7),
(8.3.8)). Here I will carry all three possibilities by using a general
time scale ¢,,, where

th=t, =D/«
ty = t./Ra (8.7.5)
t; =1, =1t./Ra*"?

Dimensional scales can be derived from D, AT and ¢, for
viscous stress, buoyancy and heat generation rate as follows.
Viscous stress is viscosity times velocity gradient, so an appropriate
scale is u(D/t,)/D = pu/t,. Buoyancy per unit volume is
gAp = gpoaAT. Using these scales in Equation (8.7.1) yields

V7 ) — oA .
D1, ( o, o, gAp(pg:)
that is
8Tl" JP
a—j — - = Rp(pg) (8.7.6)
xX;  Ox;

where Ry denotes a dimensionless combination of constants in the
force balance equations:

_ gApDt,
I

Ry (8.7.7)

Similarly, for Equation (8.7.2) we need a scale for heat genera-
tion. The heat flux scale identified ecarlier (Equations (8.3.9) and
(8.3.10)) is gk, the heat flux that would be conducted with the same
temperature difference. The heat generation rate per unit volume
that corresponds to this is gx/D = KAT/D?. Then Equation
(8.7.2) becomes

AT (DT AT KAT
=) = (VP T) + (s )4
t, \ Dt D? pCpD?

Remembering that K/pCp = «, this can be written

DT
E:RH(VZTJFA) (8.7.8)
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where Ry denotes a dimensionless combination in the heat
equation:

ki,

Ry="%

(8.7.9)

Equations (8.7.6) and (8.7.8) are dimensionless versions of the
flow and heat equations, and they involve the two dimensionless
ratios Ry and Ry. The three choices of time scale proposed in
Equations (8.7.5) then yield

tn = tl : RF = Ra RH =1 (87103)
1, =13: Rp = Rd"® Ry =1/Rd*> (8.7.10¢)

The choice of time scale is mainly a matter of convenience. With
the choice 73, one dimensionless time unit will correspond approxi-
mately with a transit time, regardless of the Rayleigh number, and
it will be easier to judge the progress of a numerical calculation. On
the other hand, the choice between AT and AT, depends on the
mode of heating of the fluid. The notation thus refers to a more
substantial difference in the model than convenience, and more
care must be taken to ensure the proper interpretation of results
of calculations.

8.8 Topography generated by convection

The topography generated by convection is of crucial importance
to understanding mantle convection, since the earth’s topography
provides some of the most important constraints on mantle con-
vection. Here 1 present the general principle qualitatively. The
particular features of topography to be expected for mantle
convection, and their quantification and comparison with observa-
tions, will be given in following Chapters. We have already covered
one important example in Chapter 7, the subsidence of the sca
floor.

The central idea is that buoyancy does two things: it drives
convective flow and it vertically deflects the horizontal surfaces of
the fluid layer. Because the buoyancy is (in the thermal convection
of most interest here) of thermal origin, there are intimate relation-
ships between topography, fluid flow rates and heat transport rates.
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The principle is illustrated in Figure 8.5. This shows a fluid
layer with three buoyant blobs, labelled (a), (b) and (c). Blob (a)
is close to the top surface and has lifted the surface. The surface
uplift is required by Newton’s laws of motion. If there were no
force opposing the buoyancy of the blob, the blob would continu-
ously accelerate. Of course there are viscous stresses opposing the
blob locally, but these only shift the problem. The fluid adjacent to
the blob opposes the blob, but then this fluid exerts a force on fluid
further out. In other words, the viscous stresses transmit the force
through the fluid, but do not result in any net opposing force. This
comes from the deflected surface.

There is, in Figure 8.5, blob (a), a simple force balance: the
weight of the topography balances the buoyancy of the blob.
Geologists might recognise this as an isostatic balance. Another
way to think of it is that the topography has negative buoyancy,
due to its higher density than the material it has displaced (air or
water, in the case of the mantle). Recalling the definition of
buoyancy given earlier (Equation (8.1.1)), this implies that the
excess mass of the topography equals the mass deficiency of the
blob.

As I have already stressed, there is in this very viscous system
an instantaneous force balance, even though the blob is moving.
Such topography has sometimes been referred to as ‘dynamic topo-
graphy’, but this terminology may be confusing, because it may
suggest that momentum is involved. It is not. The balance is a static
(strictly, a quasi-static), instantaneous balance. The ‘dynamic’ ter-
minology derives from the term ‘dynamic stresses’, which means
the stresses due to the motion, which are the viscous stresses. While
this terminology may be technically correct, it is not very helpful,
because it may obscure the fact that there is a simple force balance

Figure 8.5. Sketch of the effects of buoyant blobs on the surfaces of a fluid
layer. The layer surfaces are assumed to be free to deflect vertically, with a
less dense fluid (e.g. air or water) above, and a more dense fluid (e.g. the
core) below.
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involved, and it may make the problem seem more complicated
than it really is.

Blob (b) in Figure 8.5 is near the bottom of the fluid layer.
It causes the bottom surface of the fluid to deflect. This is
because the viscous stresses caused by the blob are larger close
to the blob than far away, so the main effect is on the nearby
bottom surface. I have implicitly assumed in Figure 8.5 that
there is a denser fluid below the bottom surface, such as the
core under the mantle. In this case, the topography causes denser
(core) material to replace less dense (mantle) material. Thus it
generates a downward compensating force, or negative buoy-
ancy, just as does topography on the top surface. This force
balances the buoyancy of blob (b).

Does blob (b) cause any deflection of the top surface? Yes,
there will be a small deflection over a wide area of the surface.
Blob (c) makes this point more explicitly: it is near the middle of
the layer, and it deflects both the top and the bottom surfaces by
similar amounts. In this case, we can see that the force balance is
actually between the positive buoyancy of the blob and the two
deflected surfaces. In fact this will always be true, even for blobs
(a) and (b), but I depicted them close to one surface or the other to
simplify the initial discussion, since this makes the deflection of one
surface negligible.

To summarise the principle, buoyancy in a fluid layer deflects
both the top and the bottom surfaces of the fluid (supposing they are
deformable), and the combined weight of the topographies balances
the internal buoyancy. The amount of deflection of each surface
depends on the magnitude of the viscous stresses transmitted to
each surface. This depends on the distance from the buoyancy to
the surface. It also depends on the viscosity of the intervening fluid,
a point that will be significant in following chapters.

Now apply these ideas to the thermal boundary layers we were
considering above. The top thermal boundary layer is cooler and
denser than the ambient interior fluid, so it is negatively buoyant
and pulls the surfaces down. Because it is adjacent to the top fluid
surface, it is this surface that is deflected the most. There will be, to
a good approximation, an isostatic balance between the mass
excess of the thermal boundary layer and the mass deficiency of
the depression it causes. The result is sketched in Figure 8.6 in a
form that is like that of the mantle. The topography on the left is
highest where the boundary layer is thinnest. Away from this in
both directions, the surface is depressed by the thicker boundary
layer.
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Figure 8.6. Sketch of two types of topography on the top surface of a
convecting fluid layer. The top thermal boundary layer cools, thickens and
subsides by thermal contraction as it moves away from the spreading centre
at left, leaving a topographic high where it is thin. The bottom thermal
boundary layer generates no topography on the top surface until material
from it rises to the top, where it raises the top surface (upwelling on right).

On the other hand, the bottom thermal boundary layer is
adjacent to the bottom surface of the fluid, and generates topo-
graphy there (Figure 8.6). It does not generate significant
topography on the top surface except where a buoyant column
has risen to the top of the fluid layer. There the top surface is
lifted. Thus it is possible for the bottom thermal boundary layer
to generate topography on the top surface, but only after material
from it has risen to the top.

There is an important difference between the two topographic
highs in Figure 8.6. The high on the left has no ‘active’ upwelling
beneath it: it is high because the surface on either side of it has
subsided, because of the negative buoyancy of the top thermal
boundary layer. In contrast, the high on the right does have an
‘active’, positively buoyant upwelling beneath it that has lifted it up.

You will see in the following chapters that the forms of con-
vection driven by the two mantle boundary layers are different. As
a result, the forms of topography they generate are recognisably
different. Because buoyancy is directly involved both in the topo-
graphy and in the convection, the observed topography of the earth
contains important information about the forms of convection
present in the mantle.

Even better, the topography contains quantitative information
about the fluxes of buoyancy and heat involved. This is most read-
ily brought out in the mantle context, where the topographic forms
are distinct and lend themselves to extracting this information.
However, it should by now be no surprise to you that such infor-
mation is present, given the intimate involvement of buoyancy,
convection and topography.
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8.10 Exercises

1.

Use Equations (8.1.1) and (8.1.2) to evaluate the buoyancy
of the following. These are meant to be rough estimates, so
do not calculate results to more than one or two significant
figures.

(a) A ball bearing 1 cm in diameter and with density
7.7Mg/m’® in mantle of density 3.3 Mg/m".

(b) A plume head with a radius of 500 km and temperature
excess of 300 °C in a mantle of density 3.3 Mg/m® and
thermal expansion coefficient 3 x 107°/°C.

(c) A sheet of subducted lithosphere 100 km thick extending
to a depth of (i) 600 km, (ii) 3000 km. Calculate a buoyancy
per metre in the horizontal direction of the oceanic trench.
Assume the slab temperature varies linearly through its
thickness from 0 °C to the mantle temperature of 1300 °C;
you need only consider its mean temperature deficit.
Assume other parameters as above.

(d) Suppose part of the slab just considered included
oceanic crust 7 km thick with a density in the mantle of 3.2
Mg/m?. Calculate its contribution to the slab buoyancy.

Repeat the derivation of the approximate formula (8.2.5)
for the convection velocity in the model of Figure 8.1, but
this time assume that the cell length, L, is not the same as
its depth, D. You will need to consider the horizontal and
vertical velocities, # and v, to be different, and to relate
them using conservation of mass. You will also need to
include two terms in the viscous resistance, one
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proportional to the velocity gradient 2u/D and one
proportional to 2v/L. The answer can be expressed in the
form of Equation (8.2.5) with the addition of a factor
involving (L/D). Using values from the text, compare the
velocity when L = D = 3000km and when L = 14000 km,
the maximum width of the Pacific plate.



