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Systems Dynamics



Inputs ("causes”)

uy (1)
u(t) = : e R™

U'm(t)
u(t) S y(t)
Physical laws, a priori
Definition of the knowledge, heuristic

"system” entity to be = considerations,

analysed statistical evidence,
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etc.

Outputs ("effects”)

y(t) = : € RP

Mathematical models:
algebraic and/or
differential and/or
difference equations
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Dynamic Systems Described by
State Equations



Dynamic Systems

Recalling from the Fundamentals in Control course

What is the meaning of "Dynamic”?
u(t) y(t)
?

t — ¢

to t

Can y(t) be determined
in a unique way?

The system is a
dynamic system.

If the answer >

iS “No"
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Dynamic Systems Described by
State Equations

Dynamic Systems



Dynamic Systems: Examples

u(t)
R y(t) = R-u(t)
) '\I\M/ ) The system is NOT dynamic
y(t)
o—
u(?) u(t), t € [to, t1] }
W [ o==  Zr )
= y(t), t € [to, t1]
o The system is dynamic
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Dynamic Systems: Examples

DIA@UNITS -

267MI -Fall 2023

u(t), t e [to,tl]
y(to) = y(t), t € [to, t1]
y(to)

The system is dynamic
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State Variables: a Qualitative Definition

State variables

Variables to be known at time ¢ = ¢, in order to be able to determine the output
y(t), t > to from the knowledge of the input u(t), t > to:

xi(t),i=1,2,...,mn (state variables)

In more rigorous terms —>
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Dynamic Systems Described by
State Equations

Continuous-time State Equations



Continuous-time State Equations

State equations
(dynamic)

Output equations
(algebraic)
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—

&1 (t) = fi(x1(t),. ..

En(t) = frl(z1(2),. ..

yi(t) = g1(z1(t), ...

ypkt) = gp(x1(t),. ..

axn(t),ul(f), .

azn(t),ul(t), .

7$Cn(t),u1(t), A

T (), uy (8), ...

yi(t), .-, yp(t) €R
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Continuous-time State Equations (cont.)

flzyu,t) =

g(z,u,t) =

DIA@UniTS -  267MI -Fall 2023

z1(t)
e R"
T (1)
f](.’l?,u,t)
eR"”
i Sz, u,t) |
[ gl(xvuvt) ]
: € RP
L gp(fauyt) |

u(t) S y(t)
Compact form
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Linear Dynamic Systems

Consider the continuous-time dynamic system state-space representation:

This state-space equation describes a linear system if and only if the functions f(-)
and g(-) are linear with respect to their state and input vector arguments:

Var,oa €R, Vo, z, € R”, Vu,u, € R™ :

flonzy + aoxs, ayur + aun, t) = o f(xr, i, t) + o f (@2, u, t)

glarzy + army, aruy + apup, t) = arg(zy, ur, t) + gz, ug, t)
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Linear Dynamic Systems: Matrix Form

Consider the state-space representation:

and suppose that the linearity assumption holds. Then:

fl (I,U,t) = all(t)xl SP 000 F aln(t)zn ale bll(t)ul SF 000 IF blm(t)um

fn(:c,u,t) - anl(t)l'l P ooogF ann(t)xn + bnl(t)ul P ooogF bnm(t)um.

Yy = Cll(ﬁ)l’] SF 900 SF Cln(t).%‘n + dll(t)ul SFocedF dlm(t)um

Yp = Ccp1(t)z1 + - - + cpn(E)xn + dp1 (B)ur + - -+ + dpm (B um

where a;;(t), bi;(t),ci;(t), di;(t) are generic functions of the time instant ¢.
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Linear Dynamic Systems: Matrix Form (cont.)

Letting:
all(t) aln(t) b]l(t) b]m(t)
A(t) == ; B(t) =
anl(t) Ann (t) bnl(t) bnm (t)
cii(t) cin(t) dii(t) dim(t)
o) = D(t) = :
cpi(t) cpn(t) dp1(t) dpm (1)
T T T
x(t) :== [ i (t) - wp(t) } ;u(t) = [ wr(t) -0 um(%) } s y(t) = [ yi(t) - yp(t)
One gets:
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Time-Invariant Linear Dynamic Systems

In the time-invariant scenario, the matrices A(t), B(t),C(t), D(t) do not depend on the
time-index k, that is are constant matrices A, B,C, D:

aiq Tt Qin bll blm
A= ;. B:=

Api =+ Gpp bnl T bnm

C11 0 Cin dll dlm
O = s D= :

Cpl 0 Cpn dpl e dpm

and thus:
#(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
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Dynamic Systems Described by
State Equations

Discrete-time State Equations



Discrete-time State Equations
z1(k),...,zn(k) ER
/

uy(k),...,um(k) € R yi1(k),...,yp(k) €R
— S >

zi(k+1) = filxi(k),...,xn(k),ui(k), ..., um(k), k)

State equations :
(dynamic) T (k+ 1) = fulzi(k), ..., o0 (k),ur(k), ..., um(k), k)

y1(k) = gi(xy(k), ..., xn(k),ur(k), ... um(k), k)

Output equations :
(algebraic) Up(k) = gp(@1(k), ...,z (k), ur(k), ..., um(k), k)
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Discrete-time State Equations (cont.)

u(k) = eR™, y(k) = : € RP

U, (k) yp (k) /:Cf(/f)
z1(k) u(k) y(k)
xz(k) = c R" — S —

[ fi(z,u, k) 1
flz,u, k) = cR"® Compact form

| fal(z,u,k) |

[ gi(z,u,k) ] z(k+1) = f(z(k), u(k), k)
g(x,u, k) = : c RP y(k) = g(z(k), u(k), k)

gp(z,u, k)
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Linear Dynamic Systems

Consider the discrete-time dynamic system state-space representation:

This state-space equation describes a linear system if and only if the functions f(-)
and g(-) are linear with respect to their state and input vector arguments:

Va,a € R, Vo, z, € R", Vu,up; € R™ :

flonz) + aoxs, ajur + o, k) = an f(x1,ui, k) + co f(22, up, k)
gl + ary, cquy + opup, k) = ag(xy, ur, k) + ang(z2, us, k)
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Linear Dynamic Systems: Matrix Form

Consider the state-space representation:

w(k+1) = f(z(k), u(k), k)
y(k) = g(z(k), u(k), k)

and suppose that the linearity assumption holds. Then:
f] (1‘7 u, k) = all(k)xl R a]n(k)xn ale bll(k)ul QP e0° qF blm,(k)um
fn(wvuv k) = anl(k)l'l qFooogF ann(k)xn + bnl(k)ul P ooo P bnm(k)um

y1 =cu(k)zr + -+ cin(k)zn, + di(k)u + - - + dig (k) um,

Yp = cp1(k)x1 + - + cpn(k)Tn + dpi (k)ur + - - - + dpm (k)um

where a;;(k),b;;(k), ci;(k),d;;(k) are generic functions of the discrete-time index k.
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Linear Dynamic Systems: Matrix Form (cont.)

Letting:
all(k) aln(k) bll(k) blm(k)
A(k) = ; B(k) =
Cll(k) Cm(k) dll(k) dlm(k)
C(k) := : .o D(k) := E
cp1(k) - cpn(k) dpi1 (k) dpm (k)
T T T
2(k) = [ @ak) - wak) |5 ulk) = [ k) k) | u®) = | k) - (k) |
One gets:
{ ok + 1) = A(k)a(k) + B(k)u(k)
y(k) = C(k)a(k) + D(k)u(k)
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Time-Invariant Linear Dynamic Systems

In the time-invariant scenario, the matrices A(k), B(k),C(k), D(k) do not depend on
the time-index k, that is are constant matrices A, B,C, D

aiq Tt Qin bll blm
A= ; Bi=

QAn] Ann bnl bnm

C11 0 Cin dll dlm
C:= ;. D=

Cpl o Cpn dpl e dpm

and thus:
x(k+1) = Az(k) + Bu(k)

y(k) = Cz(k) + Du(k)
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Dynamic Systems Described by
State Equations

An Example



Sampled Time Representations of Continuous-Time Dynamical Systems

Matlab live script
Do we obtain a valid discrete-time representation of a continuous-time ‘

dynamical system for whatever possible choice of the sampling time?

A Matlab live script is available, illustrating what are the effects of sampling on
continuous-time dynamical systems.
Steps to retrieve the live script:

- Download as a ZIP archive the whole contents of the folder named
"L1_Sampling_Effects_LTI_Systems,” available in the "Class Materials” file area of
the MS Teams course team.

+ Uncompress the archive into a preferred folder and add the chosen folder and
subfolders to the Matlab path.

« Open the live script using the Matlab command:

open( 'sampling effects LTI systems.mlx');
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An Example: Continuous-Time Model of a Car Suspension

quarter-car model hypotheses

« vehicle as assembly of four decoupled
parts

« each part consists of

 the sprung mass: a quarter of the
vehicle mass, supported by a
suspension actuator, placed between
the vehicle and the tyre

+ the unsprung mass: the wheel/tyre
sub-assembly

« the model allows only for vertical
motion: the vehicle is moving forward

. . with an almost constant speed
to a simplified quarter-car model
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Continuous-Time Model of a Car Suspension (cont.)

e + " « state variables:
\ é L mn « vertical positions of sprung and
‘ ITJ unsprung masses vs. the
- + M corresponding steady-state values

vertical speeds of masses

x1(t) zs(t) — Zs
a(t) = zu(t) — Zy
* inputs: x3(t) = #1(t)
- ground vertical position vs. the za(t) = d2(t)
steady-state
. activeyactuator force () 2 0] 2
us(t) F(t)
* outputs:
+ sprung mass vertical acceleration yi(t) = &
« contact force between tyre and ground n(t) = ky(z2(t) —w(t))
DIA@UnITS -  267MI -Fall 2023
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Continuous-Time Model of a Car Suspension (cont.)

. 0 0 1 0 0 0
o 0 0 0 1 o 0 0
T = ks ke eoo [P+ [u‘}
x'3 ms ms ms ms 3 k mls e
T4 15 B ks + ku @ _ Cs T4 = -
m Moy My, Tom My Moy
T 1
T ks ke cs s 1 0
Y1 - - — ) ms [
- ms ms ms ms | - + .
Lz] 0 ko 0 0 T3 [uz]
5 T4 —ky O

TPGF - L1-p22
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Continuous-Time Car Suspension: an Example

Assuming
ms = 400.0 kg my = 50.0 kg cs =2.010° Nsm™!
ks =2.010* Nm™! ky =2.510° Nm™!

the car suspension model becomes

i 0 0 1.0 0 1 0 0
il | o 0 0 1.0 2 0 0 uy
o] =500 500 -50 50 | || 7| o0 25107 | |ue
4 400.0 —5400.0 40.0 —40.0| |4 50100 —2.01072

x1
wl [-500 500 —50 50] |a 0 25107 [w
|:y2:| - { 0 25100 0 0] | T {2.5 10° 0 ] ' [m]

T4
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Sampled-Time Car Suspension Models

Let's get a sampled-time description of the same dynamic system:

» How does the sampled-time description correlate with the continuous-time model?

« What happens if we increase or decrease the sampling rate? Does the
sampled-time model change with the sampling time?

+ Does the sampled-time model describe the behaviour of the continuous-time
dynamic system for any possible choice of the sampling time value?
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Sampled-Time Car Suspension Models (cont.)

Using 400 samples per second (SPS) as sampling rate

xi (k4 1) 9.9985-10""  8.6921-107° 2.4848-107° 1.5139-10°| [ (k)
zo(k+1)| | 1.2010-107°  9.8372-107"  1.2111-107* 23662107 | |za(k)
z3(k+1)|  |—1.1819-107"  4.2490-10"% 9.8803-10~" 1.1905-107 2| |z3(k)
xa(k 4 1) 9.4043-107"  —1.2771-107" 9.5244-10"> 8.8968-10""| |za(k)

6.3604-107°  7.5262-107° ]
1.5076 - 107> —6.0051-10"%| |w (k)
* 17,5696 1072 5.9093.107° | ua (k)
1.1831- 107" —4.7021-107°|

)
[yl(k)} B [—50.0 500  —5.0 5.0] |z2(k)
a )

N 0 251077 |wi(k)
0 25-10° 0 0 —2.5.10™ 0 ua (k)
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Sampled-Time Car Suspension Models (cont.)

Instead, using 15 samples per second (SPS) as sampling rate

zi(k+1) 9.2495-107" —2.5315-10"" 5.7487-107%  1.2779-10° z1 (k)
za(k+ 1) 6.0514-107> —1.4515-10"" 1.0223-107% —3.6015-10"| |za(k)
z3(k + 1) —2.3632 —4.0261 6.8863-107"  —1.6833-107%| | z3(k)
z4(k + 1) —1.9518 1.9959- 107" —1.3466-10""  5.0026- 10> z4(k)
3.2821-107"  3.7527-10°°
1.0846 —3.0257-107°%  |wi(k)
6.3893 11816 - 107* | | ua(k)

—1.8008 - 10" 9.7588-107°

)
[yl(k)} B [—50.0 500  —5.0 5.0] |za(k)
a )

N 0 25-107° | |wi(k)
0 25-10° 0 o0 —2.5.10™ 0 ua (k)
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Sampled-Time Car Suspension Models (cont.)

Fromu; toy,
60 T T T T T T T T L .‘ L - L L
—— continuous-time system
40 | ¢ sampling rate 400, SPS
m sampling rate 15 SPS

Time [s]

Figure 10: Step responses comparison: from u; to y;
DIA@UniTS -  267MI —Fall 2023 TPGF -  L-p27



Sampled-Time Car Suspension Models (cont.)

Fromu; toy,

=== continuous-time system
¢ sampling rate 400, SPS
m sampling rate 15 SPS

40

20

Y4

—20
N R R S S S VY SRS, VRN PR VU S SN
Y % / % N o Q'\ Q'\ Q Q"_\/ Q'} Q('» Q(} Q

Time [s]

Figure 11: Step responses comparison: from u, to y;
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Sampled-Time Car Suspension Models (cont.)

Fromu;toy,

-10*
2
0 [
= e
=2 === continuous-time system | |
¢ sampling rate 400, SPS
—4 m sampling rate 15 SPS a
| | | | | | | | T T T T T T

Q Yooy Ny 22N O X b B Y A D
\5\6\5\600.\0 QY oY O VY VY o

Time [s]

Figure 12: Step responses comparison: from wu; to 1,
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Sampled-Time Car Suspension Models (cont.)

Fromu, toy,

=== continuous-time system
¢ sampling rate 400, SPS
B sampling rate 15 SPS 7

T

\ I O S T S

Time [s]

Figure 13: Step responses comparison: from wu;, to 3,

DIA@UNITS -  267MI -Fall 2023 TPGF - L1-p30



Sampled-Time Car Suspension Description (cont.)

Remarks
+ by selecting different sampling rates we obtained different representations of the
same continuous-time dynamic system

- sampling may heavily distort the information, giving a completely wrong
discrete-time representation of the original continuous-time system: indeed the
model obtained using one sample per second as the sampling rate is wrong!
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Dynamic Systems Described by
State Equations

More Definitions and Properties
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+ Time-invariant Dynamic Systems

« Strictly Proper Dynamic Systems

11-p32
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More Definitions and Properties (cont.)

+ Forced and Free Dynamic Systems

i) = f), B0 [ a0 = fal),0)

y(t) = gl (t), W) y(t) = g(a(t),)

e +1) = fak), LR [ alk 1) = fah),R)
y(k) = g (k), BEL k) y(k) = g(x(k), k)

It is worth noting that in case the input function u(¢), V¢ or input sequence u(k), Vk
are known beforehand, the dynamic system can be re-written as a free one:
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More Definitions and Properties (cont.)

* Free Movement

i(t) = f(a(t), ult), )
y(t) = g(z(t),u(t),t) — {({El(t),t), le [to’tl]}
with: free movement

x(to) = xo; u(t) =0, Vt
x(k+1) = f(x(k),u(k), k)
y(k) = g(x(k), u(k), k) _, (zlk),k), k € [ko, k1] }
with: free movement
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More Definitions and Properties (cont.)

 Forced Movement

&(t) = fz(t), u(t),?)

y(t) = g(x(t), u(t), 1) {(z£(),2), t € [to, t1] }

with: — forced movement
.r(f,o) =0

z(k+1) = f(z(k), u(k), k)

y(k) = g(z(k), u(k), k) {(zs(k), k), k € [ko, k1] }

with: — forced movement
x(ko) =1()
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Dynamic Systems Described by
State Equations

Discrete-time Systems



Discrete-time Systems

Consider:
z(k+1) = f(z(k),u(k), k)
y(k) = g(x(k:), u(k>7 k)
Clearly, by iterating the state equations:

5 k > ko, $(k‘0) = Xy

(ko) = Zo
x(ko +1) = f(z(ko), u(ko), ko)
vlho +2) = f(alko+ 1), ulko + 1), ko + 1)
= f(f(x(ko), u(ko), ko), u(ko + 1), ko + 1)
x(ko +3) = f(x(ko+2),u(ko +2),ko +2)
= f(f(f(x(ko),u(ko), ko), u(ko + 1), ko + 1), u(ko +2), ko + 2)

and so on. Hence, the state transition function has the form
l(k) = @(k, k07 Zo, {U(ko), cee 7’[1,(]{ — 1)})

thus enhancing the causality property.
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Time-invariant Discrete-time Systems

z(k+1) = f(z(k),u(k))
y(k) = g(x(k), u(k)) ’
yields the state sequence z,(k), k € {ko,. ..,k }. Let's shift the initial time by k and the
input sequence as well:
l‘(k‘o + ];‘) = X
up(k) = uq(k — k),
ke{ko+k,....k +k}

x(ko) = xo, uq(k) = u(k), k € {ko,..., k1}

zp(k) = zq(k — k),
ke{k0+E,...,k1+E}

g
'lLa.. Ub . .xb [ ] Y
Iy | el
ko ko-f—l?: ko ko-f—];

Conventionally, we set &, = 0.
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Equilibrium Analysis: Equilibrium States and Outputs

- Astate 7 € R" is an equilibrium state if V &y, 3 {u(k) € R™, k > ko} such that

In general:

« The input sequence {u(k) € R™, k > ky} depends on the initial time k

« The fact that the state is of equilibrium does not imply that the corresponding
output coincides with an equilibrium output
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Equilibrium Analysis in the Time-invariant Case

In the time-invariant case, all equilibrium states can be determined by imposing
constant input sequences.

A state 7 € R™ is an equilibrium state if 34 € R™ such that

LE(,Z{J()) =K

wk) =@, VE>k a(k) =2, Vk > ko

All equilibrium states z € R™ can thus be obtained by finding all solutions of the

algebraic equation
z=f(z,u), YaueR™

The following sets are also introduced:

a={ZeR: 7= f(z,0)
X ={z € R": Ju € R™ such that = = f(z,a)}
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Dynamic Systems Described by
State Equations

State Space Description: Criteria and
Examples



State Space Descriptions

But ... How to determine a state space description?
Recall:

State variables

Variables to be known at time ¢ = ¢, in order to be able to determine the output
y(t), t > to from the knowledge of the input u(t), ¢ > to:

zi(t),1=1,2,...,n (state variables)
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State Space Descriptions (cont.)

A "physical” criterion
State variables can be defined as entities associated with storage of mass, energy, etc.

For example:

- Passive electrical systems: voltages on capacitors, currents on inductors

- Translational mechanical systems: linear displacements and velocities of each
independent mass

+ Rotational mechanical systems: angular displacements and velocities of each
independent inertial rotating mass

« Hydraulic systems: pressure or level of fluids in tanks
- Thermal systems: temperatures
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State Space Descriptions: Example 1 (continuous-time)

A mechanical system

a)

» mii+ B + ka = f

Ty = Ty

B

. . k 1
IEzzq:*E$1*E$2+5f
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State Space Descriptions: Example 2 (continuous-time)

Electrical systems
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State Space Descriptions: Example 3 (discrete-time)

Student dynamics: 3-years undergraduate course
- percentages of students promoted, repeaters, and dropouts are roughly constant

« direct enrolment in 2nd and 3rd academic year is not allowed

« students cannot enrol for more than 3 years

« z;(k): number of students enrolled in year i at
yeark,t=1,2,3

 u(k): number of freshmen at year k&

zy(k+1) = i1 (k) + u(k)

22k + 1) = a1z (k) + Boma (k) * y(k): number of graduates at year k

w3k + 1) = auza (k) + Bizs(k) * «a;: promotion rate during year i, a; € [0, 1]
y(k) = azzs(k « f3;: failure rate during year i, 5; € [0, 1]

* ~;: dropout rate during year i,
Yi=1l—a;— ;>0
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State Space Descriptions: Example 4 (discrete-time)

Supply chain

21 (k) 2 (k) z3(k)

« S purchases the quantity u(k) of raw material at each month &
« Afraction §; of raw material is discarded, a fraction «; is shipped to producer P
« Afraction s of product is sold by P to retailer R, a fraction 4, is discarded

« Retailer R returns a fraction 3; of defective products every month, and sells a
fraction ~; to customers
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State Space Descriptions: Example 4 (discrete-time) (cont.)

« k: month counter
l‘](k’ + 1) = (1 — ] — 51)1’1(](1) —|—U(/€)

22k + 1) = arz1(k) + (1 — @z — 6)z2(k) « x1(k): raw material in S
+B323(k)  x»(k): productsin P
z3(k + 1) = apxa(k) + (1 — B3 — 73)z3(k) - 23(k): products in R
y(k) = vs23(k) « y(k): products sold to
customers
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State Space Descriptions (cont.)

A "mathematical” criterion

- Continuous-time case. An input-out differential equation model of the system is

available:
dny (dn—ly dy )
= o, =Y, Ut

dtn den=17""" dt’

- Discrete-time case. An input-out difference equation model of the system is
available:

ylk+n)=pyk+n—1),y(k+n-2),...,y(k),u(k),k)

Suitable state variables — without necessarily a physical meaning — are defined to
represent "mathematically” the differential equation or the difference equation
models of the dynamic system
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State Space Descriptions (cont.)

Continuous-time case:

dny dnfly dy ;
dtn (/9 dt”_l ) ) dt’y, b

Letting: one gets:
z1(t) == y(t) T =X
d T Py =
zy(t) == d%j . 2=
— X .= 2
' dry . En = @(z,u,t)
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State Space Descriptions (cont.)

Discrete-time case:

y(k+n) =k +n—1),y(k+n-2),...,y(k),u(k),k)

Letting:
1 (k) == y(k) o
22(k) = y(k+1) T
= @=
(k) =ylk+n—1) Tn
one gets:
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State Space Descriptions (cont.)

Example (discrete-time):

w(k) = 3wk — 1) + 2wk — 2) — w(k — 3) = 6u(k)

Letting:
x1(k) :=w(k —3) x
x2(k) == w(k —2) = z:=| x
{x;(kj):wk’l [m]
one gets:
x1(k+ 1) = x(k)
(k4 1) = 2;3(k)
x3(k 4+ 1) = 3z3(k) — 222 (k) + 21 (k) + 6u(k)
y(k) = 3x3(k) — 2a2(k) + 21 (k) + 6u(k)
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State Space Descriptions (cont.)

The state space description is not unique

+ The fact that physical and non-physical approaches can be followed to describe the
same dynamic system in state-space form clearly reveals the non-uniqueness of
this representation

- Later on some more details will be given concerning equivalent state space
descriptions
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State Space Descriptions (cont.)

Matlab live script
Given a state-space description for a dynamical system, how to

implement it in Matlab/Simulink? How to tune the model, run it, and ‘
retrieve the resulting state and output movements?

A Matlab live script is available, illustrating how to implement a state space
description for a dynamical system.
Steps to retrieve the live script:

- Download as a ZIP archive the whole contents of the folder named
"L1_StateSpaceDescriptionExamples,” available in the "Class Materials” file area of
the MS Teams course team. and uncompress it in a preferred folder.

- Add the chosen folder and subfolders to the Matlab path.
+ Open the live script using the Matlab command:

open( 'StateSpaceDescriptionExamples.mlx ") ;
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Linear Dynamic Systems

Consider the discrete-time dynamic system state-space representation:

This state-space equation describes a linear system if and only if the functions f(-)
and g(-) are linear with respect to their state and input vector arguments:

Va,a € R, Vo, z, € R", Vu,up; € R™ :

flonz) + aoxs, ajur + o, k) = an f(x1,ui, k) + co f(22, up, k)
gl + ary, cquy + opup, k) = ag(xy, ur, k) + ang(z2, us, k)
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Linear Dynamic Systems: Matrix Form

Consider the state-space representation:

w(k+1) = f(z(k), u(k), k)
y(k) = g(z(k), u(k), k)

and suppose that the linearity assumption holds. Then:
f] (1‘7 u, k) = all(k)xl R a]n(k)xn ale bll(k)ul QP e0° qF blm,(k)um
fn(wvuv k) = anl(k)l'l qFooogF ann(k)xn + bnl(k)ul P ooo P bnm(k)um

y1 =cu(k)zr + -+ cin(k)zn, + di(k)u + - - + dig (k) um,

Yp = cp1(k)x1 + - + cpn(k)Tn + dpi (k)ur + - - - + dpm (k)um

where a;;(k),b;;(k), ci;(k),d;;(k) are generic functions of the discrete-time index k.
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Linear Dynamic Systems: Matrix Form (cont.)

Letting:
all(k) aln(k) bll(k) blm(k)
A(k) = ; B(k) =
Cll(k) Cm(k) dll(k) dlm(k)
C(k) := : . : D(k) := E
cp1(k) - cpn(k) dpi1 (k) dpm (k)
T T T
2(k) = | @i(k) - wn(®) | 5 ulk) = | wi®) e um®) |y = | i) - k) |
One gets:
{ ok +1) = A(k)z(k) + B(k)u(k)
y(k) = C(k)a(k) + D(k)u(k)
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Time-Invariant Linear Dynamic Systems

In the time-invariant scenario, the matrices A(k), B(k),C(k), D(k) do not depend on
the time-index k, that is are constant matrices A, B,C, D

aiq Tt Qin bll blm
A= ; Bi=

QAn] Ann bnl bnm

C11 0 Cin dll dlm
C:= ;. D=

Cpl o Cpn dpl e dpm

and thus:
x(k+1) = Az(k) + Bu(k)

y(k) = Cz(k) + Du(k)
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Time-Invariant Linear Dynamic Systems: Equilibrium States

Consider a linear time-invariant dynamic system:

x(k+1) = Az(k) + Bu(k)

y(k) = Cx(k) + Du(k)

and consider a constant input sequence u(k) = u, k > 0. Hence, one has to solve the
following equation for z:

x=Ar+ Bu = (I — A)z = Bu
The following two cases have to be considered:

s det (I —A)#0
s det(I—A)=0
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Time-Invariant Linear Dynamic Systems: Equilibrium States

« det (I — A) # 0. In this case, one gets:
z=(I—-A"'Bu = 1z is unique YuecR"
Accordingly, the equilibrium output is given by:
§=Cz+Du= |C(I-A)~'B+D|a

Matrix [O(I — A)7'B+ D| is defined as static gain.

« det (I — A) = 0. In this case, two different situations may occur:

* Joo equilibrium states z, 3 0o equilibrium outputs g
* A equilibrium states Z, A equilibrium outputs g
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Time-Invariant Linear Dynamic Systems: Equilibrium States (cont.)

Matlab live script
How can we determine the equilibrium states for a discrete-time ‘
dynamical LTI system in Matlab?

A Matlab live script is available, illustrating how to cope with all the possible cases
(there is either a single equilibrium state, or there are infinitely many, or none at all).

Steps to retrieve the live script:

- Download as a ZIP archive the whole contents of the folder named
"L1_EqulibriumState_LTI_Systems,” available in the "Class Materials” file area of the
MS Teams course team, and uncompress it in a preferred folder.

+ Add the chosen folder and subfolders to the Matlab path.
- Open the live script using the Matlab command:

open( 'equilibriumStatesLTIsys . mlx ') ;
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Equivalent State-Space Representations: LTI

Consider the discrete-time linear time-invariant (LTl) dynamic system state-space

representation:
x(k+1) = Az(k) + Bu(k)
y(k) = Cx(k) + Du(k)

Let #:= T 'z, where T € R™*" is a generic non-singular n x n matrix (det(T) #0).
Then, the equivalent state-space description is given by:

E(k4+1) =T 'z(k+1) = T'AT&(k) + T~'Bu(k) = Az (k) + Bu(k)
y(k) = CT#(k) + Du(k) = Ci(k) + Du(k)

Hence:

z(k+1) = Az(k) + Bu(k) Bk +1)
{ y(k) = Cx(k) + Du(k) = {
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Equivalent State-Space Representations: LTI (cont.)

Matlab live script
What does it mean in practice equivalent state-space representation? ‘
How do we apply a state variable linear transformation in Matlab?

A Matlab live script is available, illustrating how to deal with state transformation for
LTI systems and what it means to have an equivalent state-space representation for a
given LTI system regarding state and output movements.

Steps to retrieve the live script:

DIA@UNITS

Download as a ZIP archive the whole contents of the folder named
"L1_LTI_EquivStateSpaceForm,” in the "Class Materials” file area of the MS Teams
course team and uncompress it in a preferred folder.

Add the chosen folder and subfolders to the Matlab path.
Open the live script using the Matlab command:
open('LTI_Systems_EquivalentStateSpaceRepresentation.mlx');
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