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Systems Dynamics



Systems

Inputs (”causes”)

u(t) =


u1(t)
...

um(t)

 ∈ ℜm

Outputs (”effects”)

y(t) =


y1(t)
...

ym(t)

 ∈ ℜp

Su(t) y(t)

Definition of the
”system” entity to be

analysed
=⇒

Physical laws, a priori
knowledge, heuristic

considerations,
statistical evidence,

etc.

=⇒

Mathematical models:
algebraic and/or
differential and/or
difference equations
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Dynamic Systems Described by
State Equations



Dynamic Systems

Recalling from the Fundamentals in Control course

What is the meaning of ”Dynamic”?

t0 t1

t

u(t)

?
Can y(t) be determined
in a unique way?

t0 t1

t

y(t)

If the answer
is “NO”

The system is a
dynamic system.
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Dynamic Systems Described by
State Equations

Dynamic Systems



Dynamic Systems: Examples

R

y(t)

u(t)

y(t) = R · u(t)

The system is NOT dynamic

u(t)

RCy(t)

u(t), t ∈ [t0, t1]

y(t0)

}

=⇒ y(t), t ∈ [t0, t1]

The system is dynamic
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Dynamic Systems: Examples

M

y(t)

u(t)Fd(t)

Fs(t)

u(t), t ∈ [t0, t1]

y(t0)

ẏ(t0)

 =⇒ y(t), t ∈ [t0, t1]

The system is dynamic
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State Variables: a Qualitative Definition

State variables
Variables to be known at time t = t0 in order to be able to determine the output
y(t), t ≥ t0 from the knowledge of the input u(t), t ≥ t0:

xi(t), i = 1, 2, . . . , n (state variables)

· · · In more rigorous terms =⇒
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Dynamic Systems Described by
State Equations

Continuous-time State Equations



Continuous-time State Equations

State equations
(dynamic)

Output equations
(algebraic)


ẋ1(t) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)
...

ẋn(t) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)
y1(t) = g1(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)
...

yp(t) = gp(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)
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Continuous-time State Equations (cont.)

u(t) =


u1(t)
...

um(t)

 ∈ Rm , y(t) =


y1(t)
...

yp(t)

 ∈ Rp

x(t) =


x1(t)
...

xn(t)

 ∈ Rn

f(x, u, t) =


f1(x, u, t)

...
fn(x, u, t)

 ∈ Rn

g(x, u, t) =


g1(x, u, t)

...
gp(x, u, t)

 ∈ Rp

Compact form

 ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)
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Linear Dynamic Systems

Consider the continuous-time dynamic system state-space representation: ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

This state-space equation describes a linear system if and only if the functions f(·)
and g(·) are linear with respect to their state and input vector arguments:

∀α1, α2 ∈ R, ∀x1, x2 ∈ Rn, ∀u1, u2 ∈ Rm :

f(α1x1 + α2x2, α1u1 + α2u2, t) = α1f(x1, u1, t) + α2f(x2, u2, t)

g(α1x1 + α2x2, α1u1 + α2u2, t) = α1g(x1, u1, t) + α2g(x2, u2, t)

DIA@UniTS – 267MI –Fall 2023 TP GF – L1–p9



Linear Dynamic Systems: Matrix Form

Consider the state-space representation:{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

and suppose that the linearity assumption holds. Then:

f1(x, u, t) = a11(t)x1 + · · ·+ a1n(t)xn + b11(t)u1 + · · ·+ b1m(t)um

...
fn(x, u, t) = an1(t)x1 + · · ·+ ann(t)xn + bn1(t)u1 + · · ·+ bnm(t)um

y1 = c11(t)x1 + · · ·+ c1n(t)xn + d11(t)u1 + · · ·+ d1m(t)um

...
yp = cp1(t)x1 + · · ·+ cpn(t)xn + dp1(t)u1 + · · ·+ dpm(t)um

where aij(t), bij(t), cij(t), dij(t) are generic functions of the time instant t.
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Linear Dynamic Systems: Matrix Form (cont.)

Letting:

A(t) :=


a11(t) · · · a1n(t)

... . . . ...
an1(t) · · · ann(t)

 ; B(t) :=


b11(t) · · · b1m(t)
...

...
...

bn1(t) · · · bnm(t)



C(t) :=


c11(t) · · · c1n(t)
... . . . ...

cp1(t) · · · cpn(t)

 ; D(t) :=


d11(t) · · · d1m(t)

...
...

...
dp1(t) · · · dpm(t)


x(t) :=

[
x1(t) · · · xn(t)

]T
; u(t) :=

[
u1(t) · · · um(t)

]T
; y(t) :=

[
y1(t) · · · yp(t)

]T
One gets: 

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
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Time-Invariant Linear Dynamic Systems

In the time-invariant scenario, the matrices A(t), B(t), C(t), D(t) do not depend on the
time-index k, that is are constant matrices A,B,C,D :

A :=


a11 · · · a1n
... . . . ...

an1 · · · ann

 ; B :=


b11 · · · b1m
...

...
...

bn1 · · · bnm



C :=


c11 · · · c1n
... . . . ...

cp1 · · · cpn

 ; D :=


d11 · · · d1m
...

...
...

dp1 · · · dpm


and thus: 

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
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Dynamic Systems Described by
State Equations

Discrete-time State Equations



Discrete-time State Equations

State equations
(dynamic)

Output equations
(algebraic)


x1(k + 1) = f1(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)
...

xn(k + 1) = fn(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)
y1(k) = g1(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)
...

yp(k) = gp(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)
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Discrete-time State Equations (cont.)

u(k) =


u1(k)
...

um(k)

 ∈ Rm , y(k) =


y1(k)
...

yp(k)

 ∈ Rp

x(k) =


x1(k)
...

xn(k)

 ∈ Rn

f(x, u, k) =


f1(x, u, k)

...
fn(x, u, k)

 ∈ Rn

g(x, u, k) =


g1(x, u, k)

...
gp(x, u, k)

 ∈ Rp

Compact form

{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)
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Linear Dynamic Systems

Consider the discrete-time dynamic system state-space representation:{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

This state-space equation describes a linear system if and only if the functions f(·)
and g(·) are linear with respect to their state and input vector arguments:

∀α1, α2 ∈ R, ∀x1, x2 ∈ Rn, ∀u1, u2 ∈ Rm :

f(α1x1 + α2x2, α1u1 + α2u2, k) = α1f(x1, u1, k) + α2f(x2, u2, k)

g(α1x1 + α2x2, α1u1 + α2u2, k) = α1g(x1, u1, k) + α2g(x2, u2, k)
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Linear Dynamic Systems: Matrix Form

Consider the state-space representation:{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

and suppose that the linearity assumption holds. Then:

f1(x, u, k) = a11(k)x1 + · · ·+ a1n(k)xn + b11(k)u1 + · · ·+ b1m(k)um

...
fn(x, u, k) = an1(k)x1 + · · ·+ ann(k)xn + bn1(k)u1 + · · ·+ bnm(k)um

y1 = c11(k)x1 + · · ·+ c1n(k)xn + d11(k)u1 + · · ·+ d1m(k)um

...
yp = cp1(k)x1 + · · ·+ cpn(k)xn + dp1(k)u1 + · · ·+ dpm(k)um

where aij(k), bij(k), cij(k), dij(k) are generic functions of the discrete-time index k.
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Linear Dynamic Systems: Matrix Form (cont.)

Letting:

A(k) :=


a11(k) · · · a1n(k)

... . . . ...
an1(k) · · · ann(k)

 ; B(k) :=


b11(k) · · · b1m(k)

...
...

...
bn1(k) · · · bnm(k)



C(k) :=


c11(k) · · · c1n(k)

... . . . ...
cp1(k) · · · cpn(k)

 ; D(k) :=


d11(k) · · · d1m(k)

...
...

...
dp1(k) · · · dpm(k)


x(k) :=

[
x1(k) · · · xn(k)

]T
; u(k) :=

[
u1(k) · · · um(k)

]T
; y(k) :=

[
y1(k) · · · yp(k)

]T
One gets: 

x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)
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Time-Invariant Linear Dynamic Systems

In the time-invariant scenario, the matrices A(k), B(k), C(k), D(k) do not depend on
the time-index k, that is are constant matrices A,B,C,D :

A :=


a11 · · · a1n
... . . . ...

an1 · · · ann

 ; B :=


b11 · · · b1m
...

...
...

bn1 · · · bnm



C :=


c11 · · · c1n
... . . . ...

cp1 · · · cpn

 ; D :=


d11 · · · d1m
...

...
...

dp1 · · · dpm


and thus: 

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
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Dynamic Systems Described by
State Equations

An Example



Sampled Time Representations of Continuous-Time Dynamical Systems
Matlab live script
Do we obtain a valid discrete-time representation of a continuous-time
dynamical system for whatever possible choice of the sampling time?
A Matlab live script is available, illustrating what are the effects of sampling on
continuous-time dynamical systems.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named
”L1_Sampling_Effects_LTI_Systems,” available in the ”Class Materials” file area of
the MS Teams course team.

• Uncompress the archive into a preferred folder and add the chosen folder and
subfolders to the Matlab path.

• Open the live script using the Matlab command:

open ( ' sampling_effects_LTI_systems . mlx ' ) ;
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An Example: Continuous-Time Model of a Car Suspension

From a real vehicle …

to a simplified quarter-car model

quarter-car model hypotheses
• vehicle as assembly of four decoupled
parts

• each part consists of
• the sprung mass: a quarter of the
vehicle mass, supported by a
suspension actuator, placed between
the vehicle and the tyre

• the unsprung mass: the wheel/tyre
sub-assembly

• the model allows only for vertical
motion: the vehicle is moving forward
with an almost constant speed
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Continuous-Time Model of a Car Suspension (cont.)

• inputs:
• ground vertical position vs. the
steady-state

• active actuator force
• outputs:

• sprung mass vertical acceleration
• contact force between tyre and ground

• state variables:
• vertical positions of sprung and
unsprung masses vs. the
corresponding steady-state values

• vertical speeds of masses

x1(t) = zs(t)− z̄s
x2(t) = zu(t)− z̄u
x3(t) = ẋ1(t)

x4(t) = ẋ2(t)

u1(t) = zr(t)− z̄r
u2(t) = F (t)

y1(t) = ẍ1
y2(t) = ku (x2(t)− u1(t))
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Continuous-Time Model of a Car Suspension (cont.)




ẋ1

ẋ2

ẋ3

ẋ4

 =



0 0 1 0
0 0 0 1
ks
ms

ks
ms

− cs
ms

cs
ms

ks
mu

−ks + ku
mu

cs
mu

− cs
mu


·


x1

x2

x3

x4

+


0 0
0 0
0 1

ms
ks
mu

− 1
mu

 ·

[
u1

u2

]

[
y1

y2

]
=

− ks
ms

ks
ms

− cs
ms

cs
ms

0 ku 0 0

 ·


x1

x2

x3

x4

+


0 1

ms

−ku 0

 ·

[
u1

u2

]

DIA@UniTS – 267MI –Fall 2023 TP GF – L1–p22



Continuous-Time Car Suspension: an Example

Assuming

ms = 400.0 kg mu = 50.0 kg cs = 2.0 103 N sm−1

ks = 2.0 104 Nm−1 ku = 2.5 105 Nm−1

the car suspension model becomes


ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1.0 0
0 0 0 1.0

−50.0 50.0 −5.0 5.0
400.0 −5400.0 40.0 −40.0

 ·


x1

x2

x3

x4

+


0 0
0 0
0 2.5 10−3

5.0 103 −2.0 10−2

 ·

[
u1

u2

]

[
y1

y2

]
=

[
−50.0 50.0 −5.0 5.0
0 2.5 105 0 0

]
·


x1

x2

x3

x4

+

[
0 2.5 10−3

−2.5 105 0

]
·

[
u1

u2

]
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Sampled-Time Car Suspension Models

Let’s get a sampled-time description of the same dynamic system:

• How does the sampled-time description correlate with the continuous-time model?
• What happens if we increase or decrease the sampling rate? Does the
sampled-time model change with the sampling time?

• Does the sampled-time model describe the behaviour of the continuous-time
dynamic system for any possible choice of the sampling time value?
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Sampled-Time Car Suspension Models (cont.)

Using 400 samples per second (SPS) as sampling rate




x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


9.9985 · 10−1 8.6921 · 10−5 2.4848 · 10−3 1.5139 · 10−5

1.2010 · 10−3 9.8372 · 10−1 1.2111 · 10−4 2.3662 · 10−3

−1.1819 · 10−1 4.2490 · 10−2 9.8803 · 10−1 1.1905 · 10−2

9.4043 · 10−1 −1.2771 · 10−1 9.5244 · 10−2 8.8968 · 10−1

 ·


x1(k)

x2(k)

x3(k)

x4(k)



+


6.3604 · 10−5 7.5262 · 10−9

1.5076 · 10−2 −6.0051 · 10−8

7.5696 · 10−2 5.9093 · 10−6

1.1831 · 10+1 −4.7021 · 10−5

 ·

[
u1(k)

u2(k)

]

[
y1(k)

y2(k)

]
=

[
−50.0 50.0 −5.0 5.0
0 2.5 · 10+5 0 0

]
·


x1(k)

x2(k)

x3(k)

x4(k

+

[
0 2.5 · 10−3

−2.5 · 10+5 0

]
·

[
u1(k)

u2(k)

]
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Sampled-Time Car Suspension Models (cont.)

Instead, using 15 samples per second (SPS) as sampling rate




x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


9.2495 · 10−1 −2.5315 · 10−1 5.7487 · 10−2 1.2779 · 10−3

6.0514 · 10−2 −1.4515 · 10−1 1.0223 · 10−2 −3.6015 · 10−3

−2.3632 −4.0261 6.8863 · 10−1 −1.6833 · 10−2

−1.9518 1.9959 · 10+1 −1.3466 · 10−1 5.0026 · 10−2

 ·


x1(k)

x2(k)

x3(k)

x4(k)



+


3.2821 · 10−1 3.7527 · 10−6

1.0846 −3.0257 · 10−6

6.3893 1.1816 · 10−4

−1.8008 · 10+1 9.7588 · 10−5

 ·

[
u1(k)

u2(k)

]

[
y1(k)

y2(k)

]
=

[
−50.0 50.0 −5.0 5.0
0 2.5 · 10+5 0 0

]
·


x1(k)

x2(k)

x3(k)

x4(k

+

[
0 2.5 · 10−3

−2.5 · 10+5 0

]
·

[
u1(k)

u2(k)

]
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Sampled-Time Car Suspension Models (cont.)

0

2 ·
10
−2

4 ·
10
−2

6 ·
10
−2

8 ·
10
−2 0.1 0.1

2
0.1
4

0.1
6

0.1
8 0.2 0.2

2
0.2
4

0.2
6

0.2
8 0.3

−20

0

20

40

60

Time [s]

y 1
From u1 to y1

continuous-time system
sampling rate 400, SPS
sampling rate 15 SPS

Figure 10: Step responses comparison: from u1 to y1
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Sampled-Time Car Suspension Models (cont.)

0

2 ·
10
−2

4 ·
10
−2

6 ·
10
−2

8 ·
10
−2 0.1 0.1

2
0.1
4

0.1
6

0.1
8 0.2 0.2

2
0.2
4

0.2
6

0.2
8 0.3

−20

0
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40

Time [s]

y 1
From u2 to y1

continuous-time system
sampling rate 400, SPS
sampling rate 15 SPS

Figure 11: Step responses comparison: from u2 to y1
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Sampled-Time Car Suspension Models (cont.)

0

2 ·
10
−2

4 ·
10
−2

6 ·
10
−2

8 ·
10
−2 0.1 0.1

2
0.1
4

0.1
6

0.1
8 0.2 0.2

2
0.2
4
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continuous-time system
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sampling rate 15 SPS

Figure 12: Step responses comparison: from u1 to y2
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Sampled-Time Car Suspension Models (cont.)

0

2 ·
10
−2

4 ·
10
−2

6 ·
10
−2

8 ·
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From u2 to y2

continuous-time system
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sampling rate 15 SPS

Figure 13: Step responses comparison: from u2 to y2
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Sampled-Time Car Suspension Description (cont.)

Remarks
• by selecting different sampling rates we obtained different representations of the
same continuous-time dynamic system

• sampling may heavily distort the information, giving a completely wrong
discrete-time representation of the original continuous-time system: indeed the
model obtained using one sample per second as the sampling rate is wrong!
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Dynamic Systems Described by
State Equations

More Definitions and Properties



More Definitions and Properties

• Time-invariant Dynamic Systems{
ẋ(t) = f(x(t), u(t), t )

y(t) = g(x(t), u(t), t )
=⇒

{
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t)){
x(k + 1) = f(x(k), u(k), k )

y(k) = g(x(k), u(k), k )
=⇒

{
x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

• Strictly Proper Dynamic Systems{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t) , t)
=⇒

{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), t){
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k) , k)
=⇒

{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), k)
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More Definitions and Properties (cont.)

• Forced and Free Dynamic Systems ẋ(t) = f(x(t), u(t) , t)

y(t) = g(x(t), u(t) , t)
=⇒

{
ẋ(t) = f(x(t), t)

y(t) = g(x(t), t) x(k + 1) = f(x(k), u(k) , k)

y(k) = g(x(k), u(k) , k)
=⇒

{
x(k + 1) = f(x(k), k)

y(k) = g(x(k), k)

It is worth noting that in case the input function u(t), ∀ t or input sequence u(k), ∀ k
are known beforehand, the dynamic system can be re-written as a free one:{

ẋ(t) = f(x(t), u(t), t) = f̃(x(t), t)

y(t) = g(x(t), u(t), t) = g̃(x(t), t){
x(k + 1) = f(x(k), u(k), k) = f̃(x(k), k)

y(k) = g(x(k), u(k), k) = g̃(x(k), k)
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More Definitions and Properties (cont.)

• Free Movement

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

with:
x(t0) = x0 ; u(t) = 0 , ∀ t

=⇒ { (xl(t), t), t ∈ [t0, t1] }
free movement

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

with:
x(k0) = x0 ; u(k) = 0 , ∀ k

=⇒ { (xl(k), k), k ∈ [k0, k1] }
free movement
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More Definitions and Properties (cont.)

• Forced Movement

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

with:
x(t0) = 0

=⇒ { (xf (t), t), t ∈ [t0, t1] }
forced movement

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

with:
x(k0) = 0

=⇒ { (xf (k), k), k ∈ [k0, k1] }
forced movement
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Dynamic Systems Described by
State Equations

Discrete-time Systems



Discrete-time Systems

Consider:
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)
, k > k0, x(k0) = x0

Clearly, by iterating the state equations:

x(k0) = x0
x(k0 + 1) = f(x(k0), u(k0), k0)

x(k0 + 2) = f(x(k0 + 1), u(k0 + 1), k0 + 1)
= f(f(x(k0), u(k0), k0), u(k0 + 1), k0 + 1)

x(k0 + 3) = f(x(k0 + 2), u(k0 + 2), k0 + 2)
= f(f(f(x(k0), u(k0), k0), u(k0 + 1), k0 + 1), u(k0 + 2), k0 + 2)

and so on. Hence, the state transition function has the form

x(k) = φ(k, k0, x0, {u(k0), . . . , u(k − 1)})

thus enhancing the causality property.
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Time-invariant Discrete-time Systems
x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))
, x(k0) = x0, ua(k) = u(k), k ∈ {k0, . . . , k1}

yields the state sequence xa(k), k ∈ {k0, . . . , k1} . Let’s shift the initial time by k̄ and the
input sequence as well:

x(k0 + k̄) = x0
ub(k) = ua(k − k̄),

k ∈ {k0 + k̄, . . . , k1 + k̄}
=⇒ xb(k) = xa(k − k̄),

k ∈ {k0 + k̄, . . . , k1 + k̄}

Conventionally, we set k0 = 0 .
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Equilibrium Analysis: Equilibrium States and Outputs

• A state x̄ ∈ Rn is an equilibrium state if ∀ k0 , ∃ {ū(k) ∈ Rm, k ≥ k0} such that

x(k0) = x̄

u(k) = ū(k), ∀ k ≥ k0
=⇒ x(k) = x̄, ∀ k > k0

• An output ȳ ∈ Rp is an equilibrium output if ∀ k0 , ∃ {ū(k) ∈ Rm, k ≥ k0} such that

x(k0) = x̄

u(k) = ū(k), ∀ k ≥ k0
=⇒ y(k) = ȳ, ∀ k > k0

In general:

• The input sequence {ū(k) ∈ Rm, k ≥ k0} depends on the initial time k0

• The fact that the state is of equilibrium does not imply that the corresponding
output coincides with an equilibrium output
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Equilibrium Analysis in the Time-invariant Case

In the time-invariant case, all equilibrium states can be determined by imposing
constant input sequences.
A state x̄ ∈ Rn is an equilibrium state if ∃ ū ∈ Rm such that

x(k0) = x̄

u(k) = ū, ∀ k ≥ k0
=⇒ x(k) = x̄, ∀ k > k0

All equilibrium states x̄ ∈ Rn can thus be obtained by finding all solutions of the
algebraic equation

x̄ = f(x̄, ū) , ∀ ū ∈ Rm

The following sets are also introduced:

X̄ū = {x̄ ∈ Rn : x̄ = f(x̄, ū)}
X̄ = {x̄ ∈ Rn : ∃ ū ∈ Rm such that x̄ = f(x̄, ū)}
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Dynamic Systems Described by
State Equations

State Space Description: Criteria and
Examples



State Space Descriptions

But ... How to determine a state space description?

Recall:

State variables
Variables to be known at time t = t0 in order to be able to determine the output
y(t), t ≥ t0 from the knowledge of the input u(t), t ≥ t0:

xi(t), i = 1, 2, . . . , n (state variables)
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State Space Descriptions (cont.)

A ”physical” criterion
State variables can be defined as entities associated with storage of mass, energy, etc.
. . .

For example:

• Passive electrical systems: voltages on capacitors, currents on inductors
• Translational mechanical systems: linear displacements and velocities of each
independent mass

• Rotational mechanical systems: angular displacements and velocities of each
independent inertial rotating mass

• Hydraulic systems: pressure or level of fluids in tanks
• Thermal systems: temperatures
• . . .
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State Space Descriptions: Example 1 (continuous-time)

A mechanical system

mq̈ + βq̇ + kq = f

x1 := q

x2 := q̇
=⇒ x =

[
x1
x2

]
;

 ẋ1 = x2

ẋ2 = q̈ = − k

m
x1 −

β

m
x2 +

1
m
f
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State Space Descriptions: Example 2 (continuous-time)

Electrical systems

v

R L

iL

C vC

i

R L

iL

C vC

L
diL
dt

= v −RiL − vC

C
dvC
dt

= iL

C
dvC
dt

= i− 1
R
vC − iL

L
diL
dt

= vC
x1 := iL ; x2 := vC


ẋ1 = −R

L
x1 −

1
L
x2 +

1
L
v

ẋ2 =
1
C
x1


ẋ1 =

1
L
x2

ẋ2 = − 1
C
x1 −

1
RC

x2 +
1
C
iv

DIA@UniTS – 267MI –Fall 2023 TP GF – L1–p43



State Space Descriptions: Example 3 (discrete-time)

Student dynamics: 3-years undergraduate course
• percentages of students promoted, repeaters, and dropouts are roughly constant
• direct enrolment in 2nd and 3rd academic year is not allowed
• students cannot enrol for more than 3 years


x1(k + 1) = β1x1(k) + u(k)

x2(k + 1) = α1x1(k) + β2x2(k)

x3(k + 1) = α2x2(k) + β3x3(k)

y(k) = α3x3(k)

• xi(k): number of students enrolled in year i at
year k, i = 1, 2, 3

• u(k): number of freshmen at year k
• y(k): number of graduates at year k
• αi: promotion rate during year i, αi ∈ [0, 1]
• βi: failure rate during year i, βi ∈ [0, 1]
• γi: dropout rate during year i,
γi = 1− αi − βi ≥ 0
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State Space Descriptions: Example 4 (discrete-time)

Supply chain

• S purchases the quantity u(k) of raw material at each month k

• A fraction δ1 of raw material is discarded, a fraction α1 is shipped to producer P
• A fraction α2 of product is sold by P to retailer R, a fraction δ2 is discarded
• Retailer R returns a fraction β3 of defective products every month, and sells a
fraction γ3 to customers
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State Space Descriptions: Example 4 (discrete-time) (cont.)



x1(k + 1) = (1− α1 − δ1)x1(k) + u(k)

x2(k + 1) = α1x1(k) + (1− α2 − δ2)x2(k)

+β3x3(k)

x3(k + 1) = α2x2(k) + (1− β3 − γ3)x3(k)

y(k) = γ3x3(k)

• k: month counter
• x1(k): raw material in S

• x2(k): products in P

• x3(k): products in R

• y(k): products sold to
customers
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State Space Descriptions (cont.)

A ”mathematical” criterion
• Continuous-time case. An input-out differential equation model of the system is
available:

dny

dtn
= φ

(
dn−1y

dtn−1
, . . . ,

dy

dt
, y, u, t

)
• Discrete-time case. An input-out difference equation model of the system is
available:

y(k + n) = φ (y(k + n− 1), y(k + n− 2), . . . , y(k), u(k), k)

Suitable state variables – without necessarily a physical meaning – are defined to
represent ”mathematically” the differential equation or the difference equation
models of the dynamic system
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State Space Descriptions (cont.)

Continuous-time case:

dny

dtn
= φ

(
dn−1y

dtn−1
, . . . ,

dy

dt
, y, u, t

)

Letting:

x1(t) := y(t)

x2(t) :=
dy

dt...
xn(t) :=

dny

dtn

=⇒ x :=


x1
x2
. . .

xn



one gets: 

ẋ1 = x2
ẋ2 = x3
...
ẋn = φ(x, u, t)

y = x1
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State Space Descriptions (cont.)

Discrete-time case:

y(k + n) = φ (y(k + n− 1), y(k + n− 2), . . . , y(k), u(k), k)
Letting: 

x1(k) := y(k)

x2(k) := y(k + 1)
...
xn(k) := y(k + n− 1)

=⇒ x :=


x1
x2
. . .

xn


one gets: 

x1(k + 1) = x2(k)

x2(k + 1) = x3(k)
...
xn(k + 1) = φ(x, u, k)

y(k) = x1(k)
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State Space Descriptions (cont.)

Example (discrete-time):

w(k)− 3w(k − 1) + 2w(k − 2)− w(k − 3) = 6u(k)

Letting: 
x1(k) := w(k − 3)
x2(k) := w(k − 2)
x3(k) := w(k − 1)

=⇒ x :=

 x1
x2
x3


one gets: 

x1(k + 1) = x2(k)

x2(k + 1) = x3(k)

x3(k + 1) = 3x3(k)− 2x2(k) + x1(k) + 6u(k)
y(k) = 3x3(k)− 2x2(k) + x1(k) + 6u(k)
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State Space Descriptions (cont.)

The state space description is not unique
• The fact that physical and non-physical approaches can be followed to describe the
same dynamic system in state-space form clearly reveals the non-uniqueness of
this representation

• Later on some more details will be given concerning equivalent state space
descriptions
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State Space Descriptions (cont.)
Matlab live script
Given a state-space description for a dynamical system, how to
implement it in Matlab/Simulink? How to tune the model, run it, and
retrieve the resulting state and output movements?
A Matlab live script is available, illustrating how to implement a state space
description for a dynamical system.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named
”L1_StateSpaceDescriptionExamples,” available in the ”Class Materials” file area of
the MS Teams course team. and uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' StateSpaceDescr ipt ionExamples . mlx ' ) ;
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Linear Dynamic Systems



Linear Dynamic Systems

Consider the discrete-time dynamic system state-space representation:{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

This state-space equation describes a linear system if and only if the functions f(·)
and g(·) are linear with respect to their state and input vector arguments:

∀α1, α2 ∈ R, ∀x1, x2 ∈ Rn, ∀u1, u2 ∈ Rm :

f(α1x1 + α2x2, α1u1 + α2u2, k) = α1f(x1, u1, k) + α2f(x2, u2, k)

g(α1x1 + α2x2, α1u1 + α2u2, k) = α1g(x1, u1, k) + α2g(x2, u2, k)
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Linear Dynamic Systems: Matrix Form

Consider the state-space representation:{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

and suppose that the linearity assumption holds. Then:

f1(x, u, k) = a11(k)x1 + · · ·+ a1n(k)xn + b11(k)u1 + · · ·+ b1m(k)um

...
fn(x, u, k) = an1(k)x1 + · · ·+ ann(k)xn + bn1(k)u1 + · · ·+ bnm(k)um

y1 = c11(k)x1 + · · ·+ c1n(k)xn + d11(k)u1 + · · ·+ d1m(k)um

...
yp = cp1(k)x1 + · · ·+ cpn(k)xn + dp1(k)u1 + · · ·+ dpm(k)um

where aij(k), bij(k), cij(k), dij(k) are generic functions of the discrete-time index k.
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Linear Dynamic Systems: Matrix Form (cont.)

Letting:

A(k) :=


a11(k) · · · a1n(k)

... . . . ...
an1(k) · · · ann(k)

 ; B(k) :=


b11(k) · · · b1m(k)

...
...

...
bn1(k) · · · bnm(k)



C(k) :=


c11(k) · · · c1n(k)

... . . . ...
cp1(k) · · · cpn(k)

 ; D(k) :=


d11(k) · · · d1m(k)

...
...

...
dp1(k) · · · dpm(k)


x(k) :=

[
x1(k) · · · xn(k)

]T
; u(k) :=

[
u1(k) · · · um(k)

]T
; y(k) :=

[
y1(k) · · · yp(k)

]T
One gets: 

x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)
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Linear Dynamic Systems
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Time-Invariant Linear Dynamic Systems

In the time-invariant scenario, the matrices A(k), B(k), C(k), D(k) do not depend on
the time-index k, that is are constant matrices A,B,C,D :

A :=


a11 · · · a1n
... . . . ...

an1 · · · ann

 ; B :=


b11 · · · b1m
...

...
...

bn1 · · · bnm



C :=


c11 · · · c1n
... . . . ...

cp1 · · · cpn

 ; D :=


d11 · · · d1m
...

...
...

dp1 · · · dpm


and thus: 

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
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Time-Invariant Linear Dynamic Systems: Equilibrium States

Consider a linear time-invariant dynamic system:
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

and consider a constant input sequence u(k) = ū, k ≥ 0 . Hence, one has to solve the
following equation for x :

x = Ax+Bū =⇒ (I −A)x = Bū

The following two cases have to be considered:

• det (I −A) ̸= 0
• det (I −A) = 0
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Time-Invariant Linear Dynamic Systems: Equilibrium States

• det (I −A) ̸= 0 . In this case, one gets:

x̄ = (I −A)
−1

Bū =⇒ x̄ is unique ∀ ū ∈ Rm

Accordingly, the equilibrium output is given by:

ȳ = Cx̄+Dū =
[
C(I −A)

−1
B +D

]
ū

Matrix
[
C(I −A)

−1
B +D

]
is defined as static gain.

• det (I −A) = 0 . In this case, two different situations may occur:
• ∃∞ equilibrium states x̄, ∃∞ equilibrium outputs ȳ

• ̸ ∃ equilibrium states x̄, ̸ ∃ equilibrium outputs ȳ
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Time-Invariant Linear Dynamic Systems: Equilibrium States (cont.)
Matlab live script
How can we determine the equilibrium states for a discrete-time
dynamical LTI system in Matlab?

A Matlab live script is available, illustrating how to cope with all the possible cases
(there is either a single equilibrium state, or there are infinitely many, or none at all).

Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named
”L1_EqulibriumState_LTI_Systems,” available in the ”Class Materials” file area of the
MS Teams course team, and uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' equ i l i b r iumState sLTIsys . mlx ' ) ;
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Equivalent State-Space Representations: LTI

Consider the discrete-time linear time-invariant (LTI) dynamic system state-space
representation: {

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

Let x̂ := T−1x , where T ∈ Rn×n is a generic non-singular n× n matrix ( det(T ) ̸= 0 ).
Then, the equivalent state-space description is given by:{

x̂(k + 1) = T−1x(k + 1) = T−1ATx̂(k) + T−1Bu(k) = Âx̂(k) + B̂u(k)

y(k) = CT x̂(k) +Du(k) = Ĉx̂(k) +Du(k)

Hence: {
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
⇐⇒

{
x̂(k + 1) = Âx̂(k) + B̂u(k)

y(k) = Ĉx̂(k) +Du(k)
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Equivalent State-Space Representations: LTI (cont.)
Matlab live script
What does it mean in practice equivalent state-space representation?
How do we apply a state variable linear transformation in Matlab?

A Matlab live script is available, illustrating how to deal with state transformation for
LTI systems and what it means to have an equivalent state-space representation for a
given LTI system regarding state and output movements.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named
”L1_LTI_EquivStateSpaceForm,” in the ”Class Materials” file area of the MS Teams
course team and uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' LTI_Systems_EquivalentStateSpaceRepresentation . mlx ' ) ;
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END
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