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ABSTRACT

This paper is the third and final iteration of a several year effort by the authors to
reveal the essential simplicity of probabilistic seismic hazard analysis (PSHA) in more-
or-less plain English, a simplicity customarily veiled by user-hostile notation, antonymous
jargon, and proprietary software. As PSHA proponents press their case for primacy of
PSHA over DSHA (deterministic seismic hazard analysis) in developing seismic design
criteria for a broad band of structural types and functions, including nuclear facilities,
some resistance has arisen from the defenders of “engineering determinism.” In large
part, this resistance is born of the inability of PHSA proponents to communicate clearly
and directly to anyone but themselves just what it is that they are doing. Important recent
developments in PSHA (or any other form of natural hazard analysis) include the consistent
treatment of uncertainties and the use of expert judgment. The quantitative expression of
both data/knowledge uncertainties and diverse expert opinion is likely to evolve for some
time to come. Nevertheless, PSHA and DSHA have far more in common than they do
in differences, and only one fundamental difference separates the two approaches: PSHA
carries units of time and DSHA doesn’t. Even so, it is generally possible to associate
recurrence interval information with plausible deterministic earthquakes, and when this is
the case they can always be found in hazard space.

INTRODUCTION

Every once in a while, something bad happens as a result of an earthquake, and
probabilistic seismic hazard analysis (PSHA) is the basis on which one reckons how often
bad happens at some place of interest. Similarly, bad things happen as a result of volcanoes,
landslides, river floods, hurricanes, tornadoes, wildfires, and other natural events, and the
hazards arising from them can be portrayed in the same format.

The essence of PSHA (or any other form of probabilistic hazards analysis) is that
bad happens at a calculable rate. For scientists and engineers who deal with natural or

manmade disasters on a regular basis, whether on the prevention or mitigation side of the
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fence, this proposition is little more than a truism. Ordinary folks, even well-educated ones,
however, are only dimly aware that bad can and will happen to them, given enough time.
The protective logic at work here is naive and wrong: Bad things don’t happen to nice
people. Bad things happen to someone else. Bad things don’t happen in our engineering
firm, they happen in yours (see, we gbt this logic, too). Bad things can’t happen at NASA.
And so on.

Nevertheless, there is some empirical basis to this “logic.” Not counting various social
realities such as poverty, child abuse, wife beating, and unenlightened superiors, bad things
simply don’t happen to most people. How many people do you know who got hurt in an
earthquake, or who suffered losses in a hurricane, or who died in an airplane mishap, or
who endured the 1993 floods in the Missouri/Mississippi River drainage? Already in our
lifetimes, a couple of million Americans have died in automobile accidents. How many of
these people do you know?

Our audience is large enough, we hope, that some of you will have had first-hand
experience with one or more of the hazards above, and the two questions above are not
intended to make light of any personal tragedy involved. The point is simply that the
chances of any one American losing his life in an airplane or her house to a flood, or even
of dying in an automobile are pretty small. Numbers like 107¢/yr or 1075 /yr or even
10~*/yr are so small, in fact, that most people behave as if they were zero. While there 1s
a certain practical reality in not wringing one’s hands too hard over low-probability events,
it is nevertheless a big mistake to equate “low” with zero in probability-land.

Would that life were this simple, even if incorrectly so. Do people regard the 107¢ to
10~7 /event chance of winning the California lottery as zero? No way, otherwise they never
would have put their money down. Similarly, a radioactive release at Yucca Mountain,
the proposed site of an underground repository for the nation’s nuclear waste, may be
down at the 1077 /yr level, perhaps even smaller. Do most people consider this number
zero? No way squared, in part because the health consequences of this hazard merit careful
consideration.

In a technologically uninformed democracy such as ours, people are perfectly free to

believe whatever they want to believe, whether or not their beliefs have a close association
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with objective reality. This presents an unusual challenge to scientists and engineers,
because communicating hazard and risk to the American public will be a far more difficult
task than calculating it. Communicating hazard and risk in plain language, however,
requires an understanding of hazard and risk in plain language, and that is the point of
this paper, for the special case of the hazard and risk attendant to earthquakes.

The heart of the PSHA format involves some very simple concepts, but as is often
the case in science and engineering, the technical definition of a word or phrase may
not make sense in terms of its household definition. So before we can really start, we
need some vocabulary. First of all, things like earthquakes, volcanoes, and floods are
not hazards, at least not in this business, so we will speak of them as events, natural
events in these cases. Because of these events, things like strong ground motion, ashfalls,
and river overbanks occur, but they aren’t hazards either. Hazard is the mean rate of
exceedance (MROE) of some chosen ground-motion amplitude, ashfall depth, or overbank
height. MROE is almost always expressed numerically on a per-year basis. In the existing
literature, one will mostly see hazard labeled probability of exceedance (hence PSHA)
or less frequently, frequency of exceedance. But we will use MROE here because
“frequency” and “probability” have other important usages in PSHA. Seismologists, for
example, need frequencies (Hz) for ground-motion estimation purposes. And in the past
decade, much effort has been directed to carrying uncertainty analysis along with the basic
P5HA calculations, leaving novices in the field uncertain as to whether “probabilistic”
refers to MROE, to the uncertainty in MROE, or to both. But the semantics are a side
issue; the important matter here is that hazards are just small numbers with units of
(vear)~™!.

Risk is the mean annual loss in dollars, property, or lives that results from the
occurrence of the events, perhaps for a single structure at a single place or perhaps for a
whole region that is seismically active. Risk has units of dollars/year or perhaps lives/year.
While risk will always depend on hazard, risk is a very different thing from hazard, and
each will be different functions of place. Seismic hazard can be high where the risk is low,
on the Carrizo Plain adjacent to the San Andreas fault in California, and seismic risk can

be high where the hazard is low, in Washington, D.C., for example.
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Finally we should define bad, without getting too close to the precious gems of haz-
ard, risk, and loss. So to keep things loose and sensible, we will use bad in this paper
to mean one or more undesirable things, usually arising as consegences of natural events.
Similarly, we will continue to use PSHA as a convenient shorthand, but what we really

mean is MROE seismic hazards analysis.

PSHA: THE BASICS AND SOME EXAMPLES

Figure 1 shows you everything you’ll ever want to know about PSHA—which is pre-
cisely the problem. The only people who comprehend Figure 1 are the few hundred people
in the world who know so much about PSHA that they don’t need Figure 1 anyway. If
Figure 1 makes you think you've been taken prisoner, intellectually speaking, that’s O.K.;
it’s just the set-up for a plain-English treatment of PSHA.

Figure 2 is a back-of-the-envelope PSHA calculation that points to several issues im-
plicit in the full-blown PSHA formalism. First, we need a seismic source zone (SSZ),
fancy talk for a place where earthquakes occur. So Figure 2 begins with an SSZ quadri-
lateral of area A = 5 x 10° km?, which grossly approximates the United States east of the
Rocky Mountains (EUS). Second, we need to know the seismicity rate for our EUS SSZ.

Ordinarily, this is expressed as

logN =a—bM , (1)

the Gutenberg—Richter magnitude-distribution relation. N looks like it should denote the
number of earthquakes, but it really stands for the number of earthquakes per unit time
per unit area with moment magnitude (M) greater than or equal to M. This is far too
busy for sensible people (and it gets a lot worse when one tries to account for truncation of
equation (1) at some maximum magnitude, Mpmax); to keep things simple, we will assume
that earthquakes can occur anywhere within our EUS SSZ with equal likelihood and will
do so at a mean rate of one M = 5 event per year, one M = 6 event per decade, and one
M = 7 event per century.

Finally we need what’s known in the trade as a ground-motion attenuation relation.

This technojive means that we need to determine horizontal distances from the earthquake
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source within which some ground motion measure—and we’ll use peak ground acceleration
(PGA) here—is achieved or exceeded for the earthquake sizes of interest. This is what is
given in the matrix of numbers beneath “Horizontal Distances (km)...” in Figure 2. These
numbers come from the WUS peak acceleration-magnitude relation of Joyner and Boore
(1988), and they are not appropriate for hazard estimation in the EUS. The R = 0 entries
at 0.4 g for M = 5 and 6, however, underscore a point we shall return to later. It is worth
emphasizing that within each distance R, the PGA will be greater than or equal to the
given value of PGA, and that’s why “exceedance” shows up in the prose.

We're just about home. We need to (1) convert each R to an area by forming = R?:
(2) divide each mR? by the total area A = 5 x 10% km?, this ratio being the likelihood
that the place of interest will be in the action zone of some level of PGA given that an
earthquake occurs somewhere in our EUS SSZ; and (3) multiply the elements of each
column by the occurrence rate of each size earthquake. The results of this arithmetic are
shown in the next matrix of numbers, the one entitled “MROE...”, of course. Each entry
is the number of times per year that one expects to be hit at any place in our EUS SSZ
with PGA greater than or equal to 0.1 g, 0.2 g, and 0.4 g as a result of M = 5, 6 or 7
earthquakes. The column labeled ¥ is the addition of the results for M = 5, 6, and 7.
What we're really doing here, of course, is numerically integrating over our seismicity rate
data (or the magnitude-distribution relation, equation (1)) with AM = 1.

We’re talking pretty small numbers here (bottom of Figure 2), on the order of 10~ to
107 per year. This is a source of endless confusion to PSHA beginners, including almost
all Earth scientists who instinctively feel defining the 10™*/yr to 10~%/yr event requires
having at least 10,000 to 1,000,000 years worth of data about such events. What makes
these numbers small, however, is not the seismicity rate; it is the area ratio 7R?/5 x 10°
which is somewhere between 107% and 0 for the R’s listed in Figure 2. The earthquakes,
in fact, are occurring at the rate of 1/yr at M =5 to 1072 /yr at M = 7.

Figure 3 illustrates how important this matter of area is and also reminds us that some
parts of the EUS are more seismically active than others, that is, our assumption in Figure
2 that our EUS SSZ is uniformly active with the given seismicity rate is pretty crude. How

does this work? Figure 3 is a blow-up of our first pass at the EUS SSZ but includes two
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sub-regions that are more active than EUS SSZ as a whole. We have placed 0.5 of our
seismicity rate data in Region 1 and 0.3 of it in Region 2 and assigned the remainder of
our EUS SSZ the remaining 0.2 of our seismicity rate, so that as a whole our EUS SS7
has the same seismicity rate as in our back-of-the-envelope calculation (Figure 2). You
also want to note that Regions 1 and 2 have areas 100 times smaller than the whole EUS
SSZ. Thus, In Region 1 our seismicity rate is down by 0.5 but the (area)™! term is up by
a factor of 100 with respect to the numbers in Figure 2. Thus, for a site within Region 1
not close to the edges, all of the exceedance rates are up by a factor of 50 with respect to
the Figure 2 calculations. What matters here is not so much the seismicity rate in Region
1 but its very small area. So you want to pay attention to how seismic source zones are
drawn in the vicinity of your backyard.

Figure 4 shows a set of hazard curves for two different sites, one at the San Francisco
abutment of the San Francisco-Oakland Bay Bridge (Fgure 4a) and the other for a site
in Wa,shington, D.C. (Figure 4b). They plot PGA on the abscissa and the MROE for it
(the hazard) on the ordinate, referred to as “Annual Frequency” in Figure 4a and “Annual
Exceedance Probability” in Figure 4b. In both cases, uncertainty bands are also associated
with the mean hazard curves. At potentially damaging PGA’s, say 2 0.2 g, the hazard is
much lower in Washington, D.C., than at the San Francisco abutment, by factors of 100
to 1000. This is no surprise: earthquakes causing these levels of ground motion (MR 5)
occur far more frequently in the Bay Area than they do in and around Washington. The
uncertainty in these hazard estimates, however, is much greater for Washington than for
San Francisco, a matter we shall return to in a later section, but this makes sense, too: much
less is known about the causes and effects of seismogenesis in the vicinity of Washington,
D.C., than for the active faults in the Bay Area. Finally, one should note the consequences
of arithmetically averaging quantities that have highly skewed distribution functions. This
is expressed in Figure 4a by a mean hazard curve that sits closer to the 95" percentile
curve than to the 5" percentile curve and in Figure 4b by a mean hazard curve that sits
above the median hazard curve.

For the fun of it, we plotted the hazard values we computed in Figure 2 as open circles

in Figure 4b. Our estimates are a bit on the low side, but for folks horsing around on the
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back of an envelope, we didn’t do bad at all, especially in view of our continental-scale
seismicity rate approximation and our use of a WUS ground motion attenuation relation.
So you don’t have to be a statistiwizard to get in the right PSHA ballpark.

Nevertheless, there are other reasons, we think, why our back-of-the envelope calcu-
lations are low with respect to the seismic hazard curves in Figure 4b and why they decay
more steeply with increasing peak acceleration. The essential matter here is that for a
given magnitude and distance, you're not going to get the same value of PGA every time,
you’re going to get a range of them distributed about a median value. The data in Figure 2
tell us, for example, that for M = 6 and R = 12 km, the anticipated or median value of
PGA is 0.2 g. About 10 to 20% of the time, however, we expect to catch 0.4 or larger for
M = 6 and R = 12 km. This matters a lot when we want to estimate exceedance rates
at 0.4 g. Figure 2 says that we only expect to get a contribution from M = 7 events, but
in fact we get important contributions from M = 6 events. Figure 5 shows, in the case of
the Northridge, California, earthquake (Jan. 17, 1994; M = 6.7) that PGA’s of > 40% g
occurred routinely out to distances of 30 km, even though the median value at R = 30 km,
as estimated by Boore et al. (1993) is only ~ 0.15 g. Figure 5 also shows us that the scatter
of the results for any one earthquake is substantial and also that any one earthquake data
set can stand well away from expected values.

To see how this dispersion of data about the median value affects hazard calculations,
let’s say that 15% of the time ground-motion amplitudes will exceed the median by a factor
of 2 or more and that another 15% of the time they will be 1/2 or less of the median value.
Returning to the MROE matrix at the bottom of Figure 2 we now want to take 15% of
the numbers in the 0.1 g row and kick them up to the 0.2 g row. Similarly we want to take
15% of the numbers in the 0.2 g row and bounce them down to the 0.1 g row, and another
15% goes up to the 0.4 g row. Finally, we take 15% of the 0.4 g row and drop it down
to the 0.2 g row. We could do this for every element of the MROE matrix, but for our
purposes here, it suffices to work just with the ¥ column, and the resulting modifications
are shown in the X7 column. The £7 numbers are shown as solid circles in Figure 4b.

The hazard at 0.1 g has gone down a bit from 1.73 to 1.47 x 10™*/yr, the artificial

consequence in this exercise of gettng no “distribution contributions” from peak accelera-
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tions less than 0.1 g. The hazard at 0.2 g has increased by a factor of 2.3, and the hazard
at 0.4 g has increased by more than a factor of 5. So these “distribution contributions,”
which is to say random variations in PGA data in this case, really matter, and they matter
the most in the low-hazard, high PGA states. (It is worth noting the classic abuse of the
English language that is going on here. Relatively speaking, ground motions that aren’t
really hazardous (~ 0.1 g) are said to have high hazard, while ground motions that can
be very hazardous (~ 0.4 g) are said to have low hazard. You gotta keep your eye out for
this kind of probabibabble. For us, of course, hazard is another way of saying MROE.)

A final matter worthy of note in Figure 2 is that the hazard computed for various
ground-motion levels arises from a range of earthquake sizes, not just one. This will make
for a problem when we try to associate a specific earthquake at a specific distance (a
deterministic earthquake, for example) with a specific hazard level, a matter we will take
up in a later section. But before we get too far adrift in the sea of PSHA details, we should
return to more basic questions, things like: Why do people use PSHA | and how do they

use it, and who are they?

FAILURE PROBABILITY AS AN EXAMPLE OF RISK

PSHA or any other imaginable form of seismic hazard analysis, is performed by one set
of people because another set of people is worried about what earthquakes and attendant
phenomena might do to something they want to build or have already built. Geologists,
seismologists, and other Earth scientists figure prominently in the first set of people, but not
exclusively so. Risk analysis and in particular the special case of PSHA are developments
of the engineering sciences, not the Earth sciences. Most people imagine that the second
set of people is entirely populated by engineers, but they just work for the people who
really count, those very few—at the highest level of action—who have put or will put a
billion dollars or so on the table to get something built, a nuclear reactor, say, or a Trans—
Alaskan pipeline. We don’t know people with money like that to spend, but it seems safe
to say that one of the reasons these people have so much money is because they are pretty
careful with what they do with it. At the same time, there is no way one can pile up that

kind of money without taking some risks. So these people must know about risk, and they
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must be prepared to take risks. They just like to keep their risk really small, because when
these people lose, they lose big. When it comes to building stuff, they hire engineers to
keep the risk small for them.

More generally, of course, all of us face, both individually and collectively, a panoply
of hazards and risks from both natural and human causes. In a sensible and very readable
book, Lewis (1990) discusses a number of these, from air travel to toxic chemicals, helps
you wade through them, and reminds us again that societal perceptions of hazards and
risks may or may not be the same as the results of quantitative analysis.

But let’s get back to earthquakes and buildings falling down. Everything starts with
Py, the failure probability per year or mean rate of failure of some structure of interest.
(P is also known as the performance goal (DOE-STD-1020, 1994), although why anyone
would want to identify a failure probability as a performance goal escapes us.) Anyway,
Py is set by economic considerations or life-safety concerns or perhaps political fiat. Py
could be anything, but let’s agree it is 10™* /year. What this means is that a one-in-ten-
thousand chance per year of failure of the structure is tolerable to the people who fixed
this number. This explicit tolerance of failure is why PSHA is now ascendant over what
is known in the seismic-hazard business as deterministic seismic hazard analysis (DSHA),
a subject we will take up in the next section; PSHA admits that bad can happen, and so
do the bankers, but DSHA doesn’t (see, for example, Hamburger (1996)).

How does Py condition the design and construction of the structure? We need two
things for this work, the first being a hazard curve H(a) appropriate to the construction
site, like those in Figure 4. The second thing we need is something called the fragility
function, F(a). F(a) tells you about the probability of structural failure, given some
acceleration a. The top of Figure 6 shows such a fragility function, together with a hazard
curve at the bottom. At low levels of a, F(a) = 0, and the structure just goes along
with the ground-motion ride. At larger a, F(a) climbs from zero, which is to say that the
probability of structural failure is increasing. At still larger a, F(a) goes to 1 at which
point you are pretty sure your structure is on the ground—or maybe at the angle of repose.
Because H(a) is the probability (per year) of getting a or greater, we multiply F'(a), the

derivative of F'(a), times H(a) and integrate over all a to get Py:
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Py

Il

/H(a) - F'(a)da (2)

F(a) (and F'(a), of course) depends on the type and amount of the materials you
build with and how well you put the structure together. The better, or stronger, you
build the structure, the more the F'(a) bubble in the center of Figure 6 moves to the right,
because such a structure can withstand stronger loads or forces, which arise in the structure
because of the ground accelerations. The width of the F’(a) bubble, however, depends on
life’s little disconcertainties (new word), that nominally the same concrete pours or steel
reinforcing rods do not break/yield at exactly the same tensile force, and that the actual
response of a column-beam connection will be different for different ground-motion records
even if they all have the same PGA, and stuff like that.

So what are we going to do with Equation (1)? People don’t know so much about
F'(a) as they would like, so it is idealized as a logarithmically normal distribution function,
of course. H(a) is generally pretty close to a power-law function, so the integral in equation
(1) is hard to do for people who have better things to do than learn this much calculus.
Besides, nice people aren’t going to wallow in that mathematical slop when they can guess
the right answer, and we can guess the right answer pretty accurately if that F'(a) bubble
is narrow enough and has unit area under the bubble, which it does.

The idea is that, if the F'(a) bubble is narrow enough, the only contribution to the
integral in equation (1) comes from the immediate vicinity of H(aso), the hazard level

corresponding to the center, asg, of the bubble, so

Pfl’H(ds,o). (3)

While our evaluation of the integral in equation (2) is surely an approximation for
any real structure, the important point is that performance goals as specified by Py lead
naturally to PSHA as specified by H(a). There may be—and generally are—intermediate
design considerations other than the shape of F'(a), our favorite being R, (DOE-STD-
1020, 1994), the risk-reduction rascal which does nothing at all to reduce the risk as

expressed by Py. But the essence of this design process remains the same, that is, dealing
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with some hazard level and the ground motions that contribute to it. It would seem that
we would be home free with such a performance-based approach to design, but we’re not;

it turns out that we are a prisoner of our own history.

DSHA AND THE KRINITZSKY FACTOR

The deterministic approach to seismic hazards analysis, DSHA for brevity, seems to
be a very different animal from PSHA. Even though PSHA isn’t exactly a puppy, its basics
having been laid out almost 30 years ago (Cornell, 1968), most cogniscenti regard DSHA
as the old-fashioned way of trying to make sense of one’s exposure to real or imagined
seismic hazards. It deals with fascinating things like “maximum credible earthquake” or
MCE, “safe-shutdown earthquake” or SSE, and “operating-basis earthquake” or OBE,
terminology plied in the large-dams and nuclear-reactor trades. In the heyday of DSHA,
back in the 1960’s and 1970’s when there were still acknowledged wise men in the Earth
and Engineering Sciences related to earthquakes, one or maybe a few of these people would
decide the MCE/SSE/OBE’s and where they would be likely to occur. A little cook-book
ground-motion estimation would then ensue and—bingo!-—seismic design criteria. This
doesn’t sound like much for serious things like nuclear reactors, and people have been on
the lookout for something better ever since. This, of course, is PSHA, essentially the only
other game in town.

(SSE and OBE, just like DBE (Design Basis Earthquake) aren’t really earthquakes,
but rather some specified levels of ground motion or their response spectrum facsimiles.
MCE used to be an earthquake until Clarence Allen pointed out that “maximum credible”
is semantically synonymous with “minimum incredible.” No one has wanted to touch this
one since. Nevertheless, the acronym is presently being resurrected as the “maximum
considered earthquake” (NEHRP, 1997)).

There has been considerable heat and smoke—but very little light—shed on the real
and imagined differences between PSHA and DSHA. Because DSHA and PSHA both
purport to perform seismic hazard analysis, they must have a lot of things in common, and
they do. In béth methodologies, one needs to know where earthquakes do and might occur

and how to estimate ground motion across the frequency band of interest for one or more
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source-site combinations. Also common to both DSHA and PSHA are the same incomplete
and inadequate seismicity and ground-motion data bases, with which practitioners of either
art must work.

Nevertheless, there are some substantive differences between the two approaches.
DSHA generally makes do with one or just a few earthquakes at specified locations, whereas
PSHA integrates across a wide range of possible earthquake magnitudes and source-site dis-
tances. When it comes to presenting and justifying design basis ground motions (DBGM),
DSHA has an important advantage in transparency in getting from deterministic earth-
quake(s) to DBGM. In PSHA land, this is a more sophisticated exercise, as we indicated
earlier and will discuss in more detail in a following section, because a range of magnitudes
and distances contribute to the calculated hazard. One benefit of the extra cost here,
however, is having DBGM that can be tied to structural performance criteria, Ps.

A second important—but not fundamental—difference between DSHA and PSHA is
the latter’s use of uncertainty analysis and expert opinion, at least in the past ten years
or so. DSHA commonly proceeds without uncertainty analysis and the systematic input
of diverse expert opinion, but there is no reason why DSHA could not incorporate them.

The fundamental difference, both philosophically and practically we belive, is that
PSHA carries units of time and DSHA does not. The important aspect of DSHA, then, is
not that it is “deterministic” (whatever this means in view of all the guesswork) but that
it 1s a time-independent statement of what you're dealing with. The idea is that, if the
guesswork is good, you're safe now, you're safe later, and you're safe when the earthquake
occurs. This feels good, no doubt about it. The essence of PSHA, on the other hand, has
nothing to do with the inclusion of uncertainty and probability and all the distribution
functions for the guesswork. What PSHA is really telling you is how often bad happens
at place per year.

So, a very important aspect of PSHA is that bad happens, whereas DSHA is trying
to tell us that bad can’t happen, if we do our MCE, ground-motion, site-response, design
and construction...homework right. A second important feature of PSHA is that bad
happens at a calculable rate. As we noted in the Introduction, PSHA really is mean rate

of exceedance seismic hazard analysis (MROESHA). If MROESHA goes on to include
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weighted multiple choices, distribution functions, and uncertainty analysis, we might want
to call it MROESHA with uncertainty analysis (MROESHAWUA).

In more specific—and more gruesome—terms, let’s go for something really bad, an
earthquake right underneath—or within 10 km of—some EUS nuclear reactor, M = 7, say,
or whatever it takes to cause catastrophic failure of the facility, core melt, and massive
radioactive release. Who has what to say about this? The DSHA people say this can’t
happen, even though it just did for the purpose of this paragraph. The MROESHA folks
are more informative: sure, this can happen, but it has less than one in a million per year
chance of happening at any one site (at M = 7, even less if M >7 is required for this work).
The MROESHAWUA folks tell us even more: while concurring with the best estimate of
< 1079 /year at M = 7, they state it is uncertain to a factor of 72, or thereabouts. Here,
we think are the essential differences between DSHA and PSHA.

No discussion of the pros and cons of DSHA wvis ¢ vis PSHA would be complete
without taking note of how Ellis Krinitzsky has enlivened the debate. Ellis works for the
U.S. Army Corps of Engineers, out of the Waterways Experiment Station in Vicksburg,
Mississippi, and has had a long and distinguished career in geotechnical matters pertaining
to the seismic safety of dams, especially along the Mississippi-Missouri Rivers drainage.
When he is not taking himself too seriously, Ellis is quite the droll fellow and a hellluva
good conversation. But he gets very serious about PSHA (Krinitzsky, 1993a, b, and c).

These sermons, of considerable bulk in aggregate, make for fascinating, if not especially
informative reading. Their basic message is that DSHA is the only true faith in the seismic
hazard business, but there are only two matters of substance here: the use and abuse of
expert opinion, the basic theme of Krinitzsky (1993a) and the reliability of b-values for
estimating M 2 5 earthquakes via equation (1), the principal concern of Krinitzsky (1993c).

The use of multiple-expert opinion is a fairly recent development in Earth Sciences
circles and, at least at first encounter, a faintly repugnant one, suggesting as it does a
sort of “science-through-consensus” solution to the problem at hand. Few scientists in this
country are trained to think along these lines. Even worse, the aggregation of multiple-
expert opinion implies the dilution of “right” information from the “right” experts with

“wrong” information from the “wrong” experts. All too frequently, of course, it is not easy
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to identify who is “right” and who is “wrong,” but such dilution must nevertheless occur.
Our view is that this glass is half full: while the output of a well-executed aggregation of
expert opinion is unlikely to be “more right” than the “right” experts, it is quite unlikely

to be really wrong, as individual “experts” have, occasionally, been known to be.

These matters will be discussed in more detail in the following section, but it is worth
noting here that the use of multiple-expert opinion is here to stay for two important rea-
sons, Krinitzsky (1993a) notwithstanding. First, diverse expert opinion is an inescapable
fact of life in the regulatory arena. If you don’t deal with some expert/model/opinion
in advance, you can bet that expert/model/opinion will show up somewhere else in the
regulatory process, almost always, it seems, in places where they are harder to deal with,
intravenor proceedings for example. Second, diverse expert opinion is in itself a measure of
uncertainty, a measure of confidence (or lack thereof) in the intermediate and final answers.
For large, low-seismcity areas like the EUS, the uncertainty in either DSHA or PSHA is
considerable, and having quantitative measures of this uncertainty is essential to rational
decision-making.

Krinitzsky(1993b) is a piece entitled “The Hazard in Using Probabilistic Seismic Haz-
ard Analysis,” positioned prominently in the November, 1993, issue of Civil Engineering.
Over the ensuing several months, Civil Engineering published eight or ten letters to the
editor, most of which approved and applauded Ellis” improbable stand against the proba-
ble establishment. While Krinitzsky (1993b) is mostly an extended abstract for Krinitzsky
(1993c), it does make the classic mistake of PSHA beginners: inferring from performance
goals (of DOE in this case) of 1072 /yr to 107° /yr that “probabilistic estimates are required
to hundreds of thousands of years.” With these performance goals, all DOE is saying is
that they want the mean rate of failure Py < 1073 /yr to 107°/yr, depending on the func-
tion of the facility. As we saw earlier, we can determine the corresponding H(aso) if we
know something about F(a) for each class of facilities. And as we saw even earlier than
that, you don’t need 10,000 years of earthquake data and ground-motion records to define
a hazard estimate of 10™*/yr. This is because of the area-ratio matter we described earlier.
More precisely, it is because N in equation (1) is not just some number of earthquakes; it

is the number of earthquakes per unit area per unit time with magnitude > M.
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This brings us to Krinitzsky (1993c), the principal concern of which is the b-value in
equation (1), the Gutenberg—Richter frequency-of-occurrence relation. In blunt-instrument
prose, Krinitzsky (1993c) tells us “Gutenberg-Richter b-values are dysfunctional for site-
specific applications in the engineering of critical structures,” nuclear reactors in the EUS
for example.

An enormous literature on seismicity statistics now exists on global, regional, and
local scales; b-values of 1.0 + 0.2 are very much the rule when sufficient data are available
to determine b in the first place. Over the past 15 years, a number of theoretical studies
have moreover argued that b should be equal to 1 (e.g., Rundle (1989) and Hanks (1992)
and numerous references therein). Even in the relatively aseismic EUS (east of the New
Madrid seismic zone in this case), Seeber and Armbruster (1991) found, for the regions
both east and west of the Appalachian crystalline front, that the b-values are identical at
1.05 £ 0.05. While it is certainly true that there are many smaller-scale regions in the
EUS that are so aseismic that b is poorly determined, so is every other seismicity measure,
including the deterministic earthquake. So while Krinitzsky (1993c¢) correctly notes that
there are a number of exceptions to the rule, they hardly suffice to prove the anti-rule.

Lost in all of the DSHA-vs-PSHA posturing of the Krinitzsky chronicles, however,
is the fact that DSHA and PSHA have much more in common than they do in differ-
ences, as we mentioned earlier in this section. Moreover, when deterministic earthquakes
can be associated with recurrence intervals, no matter how uncertain, they can always be
found in hazard space, and we shall illustrate how for Yucca Mountain in a later section.
Finally, variations on both the DSHA and PSHA themes now exist. Scenario earthquake
ground-motion modeling is a worthwhile exercise for significant earthquakes that can recur
on time scales comparable to the expected lifetime of the facility of interest, perhaps 100
years or so in the case of the San Andreas fault and its principal branches and 10,000
years or so in the case of Yucca Mountain. Finally considerable attention is now being
directed to time-dependent hazards in those areas where the near-term, impending haz-
ard may be considerably larger than the long-term, mean hazard, in the coastal areas of

northern California, Oregon, and Washington adjacent to the Cascadia subduction zone,

for example.
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UNCERTAINTY, DIVERSITY, AND EXPERTS

The matters of this section have arisen earlier in this paper, in several different places,
and here we shall try to bring them together and to emphasize their importance in hazard
analysis of any type. In the hazard assessment business, uncertainty is important for three
reasons. The first is typical of any science. Scientific results are always produced with some
uncertainty, and reporting that uncertainty is an essential feature of scientific knowledge.
Second, because of the strong non-linearities inherent in the construction of hazard curves,
the uncertainty distribution function describing a family of calculated hazard curves is
highly skewed. As a result, the important mean hazard curve depends a lot on the few
largest hazard curves—and the uncertainty they represent. Finally, careful tracking of
uncertainties and their propagation throughout the hazard analysis provides a sharp focus
on where further research can be most beneficial in improving hazard-analysis products.

Let’s return to Figure 2, our back-of-the-envelope calculation to see how uncertain
input information projects through to uncertainties in the resulting hazard numbers. If we
were to double all the seismicity rate numbers, for example, it should be obvious that we
will double all the hazard numbers at the bottom of the figure. More generally, rewriting

equation (1) in exponential form

N = p107"M (1)

where \g = 10%, if we were to say that Ao is uncertain to + a factor of 2, then we would
say these hazard numbers are also uncertain to a factor of 2. There are also, of course,
uncertainties in the choices of b and Mpax, especially in the EUS, that will lead to further
uncertainties in the resulting hazard numbers.

In our back-of-the-envelope calculation, we also used the ground-motion attenuation
relation of Joyner and Boore (1988), explicitly noting that it is not appropriate for use
in the EUS. How much uncertainty does this introduce? In their simplest forms, these

relations are generally written as

In PGA=c+dM —elnR te (4)
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where ¢, d, and e are constants and e represents random variability from the mean re-
lationship. What we did earlier was to fix PGA (at 0.1, 0.2 and 0.4 g) and M (at 5.0,
6.0, and 7.0) and invert (4) for R, ignoring e. Then we went on to explore the affects of
€, assuming that 15% of the time PGA’s would be a factor of 2 greater than the median
value and 15% of the PGA’s would be a factor of 2 less.

A ground-motion attenuation relation different from Joyner and Boore (1988) will
have different ¢, d, and e and thus will give rise to different average R’s for the same fixed
choices of PGA and M. This, in turn, will lead to different hazard numbers or, if you prefer
as do we, uncertainty in the resulting hazard numbers.

One can keep track of all the different possibilities for A, b, Mpax, ¢, d, and e (and
different choices of SSZ’s as we indicated in Figure 3 and other stuff as well) in things
called “logic trees” (e.g., Power et al., 1993; Wong et al., 1996). Each choice for each
essential property is entered with a relative weight, which allows you to calculate zillions
of hazard curves if you want to. And from all of these you can calculate the mean, median,
and 15th, 85th, 5th, and 95th percentile hazard curves shown in Figure 4, for example.

Although we have mentioned them before, two important messages of Figure 4 are
worth repeating here. First, while the hazard in San Francisco is much greater than in
Washington, D.C. for any PGA, the uncertainty in the hazard is much greater in Wash-
ington, D.C., than for San Francisco. This is true for most sites in the EUS relative to
WUS and is a straightforward consequence of the sparse seismicity and ground-motion
data bases available for EUS, which in turn are consequent to the relative aseismicity of
the EUS. Second, insofar as the mean hazard curve is different from the median hazard
curve, uncertainty analysis really does matter in fixing the mean hazard curve, the hazard
curve of choice in cost/benefit and risk/loss analyses; this difference is a function of the
level of uncertainty.

Nowveau uncertainty analysis involves the distinction between aleatory uncertainty
and epistemic uncertainty. Epistemic uncertainty pertains to those things we don’t
know but are nevertheless knowable, the average earthquake stress drop in California, for
example, or in EUS. As more and more determinations become available, we will know

these quantities more and more accurately. Aleatory uncertainty pertains to the variability
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of random happenings, the natural variations in earthquake stress drops, for example, no
matter how well we know the average value.

An individual hazard curve, like our back-of-the-envelope calculation, or our modi-
fication of it to account for the “distribution contributions” of variable PGA at any M
and R, reflect aleatory uncertainty in the number, sizes, locations, and ground motions of
future earthquakes. The epistemic uncertainty bands about the median or mean hazard
curves in Figure 4 reflect the limited information we have about various parameters we
need in the calculations, such as Ao, b, and Mpax.

In the ground-motion part of the problem, equation (4) for example, the +e represents
the aleatory uncertainty or variability in what future In PGA values will be from a suite of
events of the same M and R. Epistemic uncertainty is lurking around equation (4) in two
ways. First, there is uncertainty in the model parameters ¢, d, and e, which fix the expected
or average value of In PGA, given M and R. Second, the model itself is incomplete; it
makes no allowance for such systematic factors as local site response, crustal structure, or
whole path anelastic attenuation of the form e="/ R/QB.

Simple, physically based models are more interesting than the empirical models insofar
as they point more directly to what we do and do not know about the Earth. Hanks and
McGuire (1981) developed the following relation for PGA on a single horizontal component

at the surface of a halfspace of density p

PGA_032——— f’“‘“\/:zl zf“”‘" : (5)

Here Ao is the earthquake stress drop, R is hypocentral distance (again), fo is the earth-
quake corner frequency fixed by M and Ao, and frmax is the high-fequency band limitation
of the record (Hanks, 1982). As for equation (4), equation (5) makes no provison for local
site response, crustal structure, or whole-path anelastic attenuation. By limiting ourselves
to hardrock sites at close distances, say R < 60 km, we can fix finax, thereby concentrating
all uncertainty in PGA to uncertainty in Ao, because we have included no € term in equa-
tion (5). This is sort of a dumb thing to do; any site-to-site variation in PGA implying a

site-to-site variation in Ao for the same earthquake would belie this simplicity, but we’ll
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ignore that for the moment.

Our aleatory uncertainty in PGA, then, is a direct and nearly linear consequence
of the real or imagined aleatory variations in Aco. The epistemic uncertainty in PGA
arises from epistemic uncertainty in the average earthquake stress drop Ac and model
imperfections, just as in the case for equation (4). But what if we were now to include the
wave-propagation effects particular to local site response and crustal structure? Surely,
we would find that both the epistemic and aleatory uncertainties attributed to Ao would
decrease, being translated in part to the epistemic and aleatory uncertainties associated
with local site response and crustal structure. And what if we were to find in the not-so-
distant future that earthquake stress drops were different in compressional regimes than in
extensional regimes, a result we anticipate even now? This would allow the population of
earthquake stress drops to be partitioned into two groups (at least), each presumably with
significantly smaller epistemic and aleatory uncertainties than exist for the population as
a whole.

The point here is that epistemic and aleatory uncertainties are fixed neither in space
(across a range of models existing in 1997, say) nor in time. What is aleatory uncertainty
in one model can be epistemic uncertainty in another model, at least in part. And what
appears to be aleatory uncertainty at the present time may be cast, at least in part, into
epistemic uncertainty at a later date. As a matter of practical reality, the trick is to make
sure that uncertainties are neither ignored nor double counted. The possibilities of doing
so with parametrically complex models are large.

When data are plentiful, all this aleatory/epistemic jive and uncertainty decomposition
is of not much consequence. Determining ground-motion amplitude mean values and
uncertainties as a function of M and R in coastal California is a pretty straightforward
matter, requiring fairly little in the way of models, experts, and classical-language skills.
All too frequently, however, the available data are incomplete or nonexistent, as in the
EUS. Then we have to compute the answers, both what we want and its likely uncertainty,
which is why we need to keep track of all that stuff we were talking about in the previous
paragraphs. To make life worse, we also know that there are several different ground-

motion estimation models out there and that they are not the same, not in their physical
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bases, not in their computational apparatus, and not in the resulting answers. But these
models are different only because different knowledge has been imparted to them by the
experts responsible for them, but knowledge itself resides with the experts. Thus there
must be uncertainty in our individual and collective knowledge. A distressing corollary of
this is that some experts must be more knowledgeable than other experts, but we don’t
know which from which. So how does one deal with diverse expert knowledge?

Let’s say, for example, that we need to know about PGA’s for M = 6 earthquakes at
R = 10 km for one or more sites in the EUS, both the mean value under these conditions
as well as the distribution of PGA’s about the mean. There are no instrumental recordings
of earthquake ground motions under these conditions, so we assemble a team of experts to
provide it for us. In this case, diverse expert opinion will become surrogate data, and such
a mapping of experts into data is a novel and still suspect notion in this country. Most
scientists prefer their data from well calibrated instruments, not from poorly calibrated
other scientists who are easily identified as such because they never seem to have read your
papers.

But there are still no data, and we still need the answer, so we press on, asking each
member of our team for his or her best estimate of the mean PGA, @. Each expert may use
one or more ground-motion models to calculate the answer; or perhaps read up on what
other EUS ground-motion data are available; or go check out foreign data sets in similar
circumstances; or do a back-of-the-envelope calculation—or maybe all of the above and
more, too. We also ask each expert for his or her estimate of the epistemic uncertainty in
his or her estimate of @, as well as their estimates of the aleatory distribution of PGA’s
about @. And if we're really cool-—and one of us is—we’ll ask them for their estimate of
the uncertainty in their aleatory-uncertainty estimate. From all this, we can construct a
team distribution of PGA for M = 6 and R = 10 km with mean value A and standard
deviation o, reflecting both the uncertainties in every expert’s estimates and expert-to-
expert variability or diversity. What is this worth?

Scientifically, we would say that the team distribution function is robust if it represents
the body and range of informed scientific opinion, in this case on what peak accelerations

at R = 10 km for M = 6 earthquakes should be in the EUS. It may not be true to the
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Earth, but in the absence of any data to the contrary (or any data at all, in this case),
there is no way to falsify it, if it indeed represents the full range of differing opinion.
The cost of this robustness is a larger uncertainty for the team distribution than any one
expert would alone supply. (Experts almost always think they know their stuff with greater
accuracy than they really do, at least if other, equally well-qualified experts are judges of
the matter.) But this is a small price to pay for hedging your bets against being out on
one tail or another of the team distribution, where any one expert can always be. Put
another way, experts are not resolving, let alone reducing uncertainty in an exercise of this
sort; indeed, in their differing assessments, they are the source of it.

Defining the body and range of informed opinion in explicit ways amenable to quan-
titative analysis from a team or teams of experts holding diverse views is the trick, of
course, and this has been a rapidly evolving subject in the 1990’s. Interested readers
may wish to explore the appropriate sections of the report of the Senior Seismic Hazard
Analysis Committee (SSHAC, 1997), the review of the SSHAC Report by the National
Research Council Panel of the National Academy of Sciences (Panel, 1997), and the prob-
abilistic volcanic hazard analysis (PVHA) at Yucca Mountain recently conducted for DoE
(Geomatrix/TRW, 1996).

SSHAC (1997) finds that strong and extensive but directed and facilitated interaction
among the experts is an essential feature of eliciting the most meaningful information from
them. Experts often do not understand each other’s work and model in sufficient detail
for the work at hand, and thorough discussion of such misunderstandings is an essential
prelude to the elicitation and aggregation processes. Experts often bring very different
experiences to their common field of expertise, and differences in opinion naturally arise
from these different experiences. All of the relevant data and information must be made
uniformly available to all of the experts. Experts are commonly distracted by interesting
scientific questions that are irrelevant to the problem at hand. Perhaps most importantly,
the experts need to know that they have been convened to represent and quantify the
current body and range of scientific opinion on the matter at hand, not to decide who is
“right” and who is “wrong” about this matter. Using experts successively in the roles of

proponents, evaluators, and integrators of models/knowledge shows promise for achieving
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this goal. The SSHAC (1997) recommendations on the principles and procedures of expert
elicitation and aggregation may be found in Appendix J (64 pages). Practical application
and implementation of these principles and procedures to ground-motion estimation in the
EUS may be found in Appendix A (72 pages) and Appendix B (511 pages).

FROM HAZARD TO GROUND MOTION: BARRY BONDS,
DE-AGGREGATION, AND UHS

Four sections ago, we noted how a range of earthquake sizes contributed to the hazard,
which is to say the MROE, of 0.2 g (Figure 2). To fix this idea in mind, we offer the
following analogy, born in part of our baseball deprivation in the summer and fall of 1994.
While we realize that some of our audience may not appreciate the mysteries of baseball,
it just has to be true that most Americans know a lot more about baseball than PSHA.
So here we go. There are two men on base when Barry Bonds comes to the plate. You slip
off to the fridge for a beer, and when you return, two runs have scored. What magnitude
of hit (single, double, or triple) did Barry deliver? (We know it is not a home run because
then three runs would have scored.)

A little more information goes a long way. Let’s say the runners were on second and
third, “close distance” to home. In this case, we can be pretty sure that Barry hit a single.
This is because Barry, like every other ballplayer, hits a lot more singles than doubles and
a lot more doubles than triples, sort of like earthquakes. But a double or a triple will do the
job, too, even if their rates of occurrence, or probability, are less and even less respectively.

But what if runners were on first and second, “far distance” from home? For this
situation, we need a larger magnitude hit, because a runner on first will only rarely score
on a single. A double does the job some of the time but not all of the time. If we could
reduce the “uncertainty” here, by knowing how fast the first-base runner was, for example,
or whether there were two out, we could get a better fix on whether a double would have
sufficed to drive in the runner from first. Even if only half of Barry’s doubles drive in a
runner from first, however, that is still a lot more than the number of triples he hits. So
we're pretty sure Barry scorched out a double. But we’re not perfectly sure: the infrequent
triple certainly does the job, and very infrequently a single does it, too.

So far, so good with seismological baseball: to get the same action at home plate, or
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the same ground-motion level in your backyard, Barry needs a larger magnitude hit when
the runners are at far distance than when they are at close distances. Not counting home
runs, so characteristic of Barry, his distribution of singles, doubles, and triples reminds
us of the distribution of small, medium, and large earthquakes. But what if we hadn’t
known whether the runners were on first and second or on second and third? There are
probabilities associated with each of these configurations as well; it is considerably more

likely that the runners are on first and second than on second and third.

Working through all the combinations of earthquake-magnitude and epicentral-distance
ranges that contribute to a chosen hazard level is what is known as de-aggregation. To
see how this stuff works, we return to Figure 2, yet again, to de-aggregate the hazard of
0.18 x 107*/yr for 0.2 g, working with the original numbers unmodified by the disper-
sion considerations giving rise to the L7 column. The contribution of 0.06 (leaving the
10~*/yr as implicit for the remainder of this paragraph) for M = 5 and R < 3.2 km is easy
enough to deal with; it says that 1/3 of the total hazard comes from M = 5 earthquakes
at R < 3.2 km. The M = 6 contribution of 0.09 for R < 12 km is a little trickier because
part of this (0.09 x 3.22/12%) comes from R < 3.2 km and the rest from 3.2 < R < 12
km. Similarly, the contribution of 0.03 from M = 7 earthquakes must be divided into 3
parts, 0.03 x 3.22/22% for R < 3.2 km, 0.03(122/22? - 3.22/222) for 3.2 < R < 12 km, and
the remainder for 12 < R < 2.2 km. If we now divide all of these numbers by the total
hazard of 0.18, we can plot the fractional contribution to the total hazard for each pair of
magnitude and distance ranges.

Rather than do this for the back-of-the-envelope data, we show two, more formal de-
aggreations in Figure 7 for a site in South Carolina. (De-aggregation of the seismic hazard
at numerous EUS sites may be found at http://gldage.cr.usgs.gov/eq) Figure 7a is for the
case of a hazard of 5 x 107° /year for a PGA of 0.23 g, and Figure 7b is for the case of
a hazard of 1 x 107*/yr for a 1 Hz spectral acceleration of 18.8 cm/sec. In the former
case, the most likely combination to cause PGA > 0.23 g, is a very close magnitude 5 to
5.5. This would be a logical DBE for a PGA-sensitive structure if the performance criteria
called for a Py in the 5x 107° /yr range. On the other hand, a magnitude 6 to 6.5 at 100 to

150 km is more appropriate—but hardly uniquely so—for a longer period structure (1 Hz)
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with a 107*/yr performance goal. There is certainly no single (deterministic) earthquake
(i.e., magnitude-distance pair) that captures all these factors.

These two figures reveal an additional seismological feature for which Barry Bonds
does not provide us with an analogy, namely that both the source-excitation and distance-
attentuation of ground motion are strong functions of frequency. To deal with these period-
dependent phenomena, PSHA cogniscenti work with what’s called the uniform hazard
spectrum (UHS) which is an ensemble of response spectrum ordinates as a function of
period, each calculated for the same MROE, that is to say, hazard. Just as was the
case in Figure 7, UHS (Figure 8a) at short periods depends on the more frequent, small
earthquakes at close distances, but at longer periods, the greater source excitation of less
frequent, large earthquakes even at considerable distance wins out. Figure 8b shows how
UHS varies according to choice of MROE.

The problem here, which should come as no surprise at this point, is that UHS does
not correspond to a single ground-motion time history arising from a single earthquake at
a specific distance, a deterministic earthquake, say. But from a first-order design point
of view, say for a single-degree-of-freedom elastic oscillator, what difference does it make
whether the UHS (or its ground-motion, time-history equivalent) corresponds to a M ~
5 earthquake at close distance that is enriched in long-period motion, or to a M ~ 7
earthquake at far distance that is enriched in high-frequency motion, or to a M ~ 6
earthquake at intermediate distance that is slightly enriched in both? With respect to
second-order issues, of course, UHS—or any other form of elastic response spectra—have
many limitations when applied to real structures, especially in the post-elastic regime.

In the EUS, the great difficulty in making sense of real and imagined seismic hazards
relates to the fact that, with the possible exception of the New Madrid seismic zone,
throughgoing, seismogenically active, crustal fault zones evidently do not exist. While this
inference arises from an earthquake history that is, perhaps, as yet too short to draw it,
it is nevertheless strongly reinforced by the nearly complete absence of surface faulting in
the EUS. While SSZ’s of greater and lesser seismicity can be grossly defined, their smaller
dimension is rarely less than 100 km. Only in very restricted areas of the EUS can one

say with confidence that a magnitude z, y, or z earthquake will occur here, where “here”
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has a location uncertainty of £ 100 km (if not more), almost always because one or more
earthquakes occurred at “here” in the historical record. And even these very few positive
identifications (assuming they are correct) hardly preclude the occurrence of M = z, v,
or z earthquakes elsewhere. Thus, for most of the EUS, the deterministic earthquake is
poorly defined with respect to either size or location. But no matter how arbitrary the size
and location of the deterministic earthquake may be, we can always find it in hazard space,
so long as we know something about its frequency of occurrence or recurrence interval.
In the WUS, we are on less shaky ground, at least with respect to defining deterministic
earthquakes. Not only is the earthquake data base far richer, if even shorter in years than
for the EUS, but in many areas paleoseismic investigations have extended the earthquake
history back many thousands of years. And in numerous places, recurrent earthquakes of
about the same size have occurred along the same fault segment. From such observations
was born the concept of characteristic earthquakes (Schwartz and Coppersmith, 1984), that
the same fault segment is visited by the same maximum-size earthquakes that dominate
that segment’s slip rate. And, just as importantly, these same paleoseismic investigations
often as not provide estimates of their recurrence intervals. Characteristic earthquakes
with known recurrence intervals will figure prominently as deterministic earthquakes at
Yucca Mountain, the next great playing field for PSHA vs. DSHA. But here they are
one and the same: one simply reckons the hazard of any level of ground motion for any

deterministic earthquake of interest.

YUCCA MOUNTAIN AND ELLIS IN WONDERLAND

Yucca Mountain is the site proposed for an underground repository for the nation’s
nuclear waste. It straddles the western boundary of the Nevada Test Site 100 or so miles
northwest of Las Vegas, in the southern Basin and Range province. When the sun stands
tall on Yucca Mountain, a numbing whiteness, the output of our principal source of nuclear
energy, dilutes the place. The sky turns the thinnest of blues and the sagebrush the palest
of greens. The landscapes lose form as if one of the spatial dimensions got lost, and time
just bumps along, with no clear direction in mind. You feel flat and blank and abandoned,

and you keep an eye on your shadow which would just as soon evaporate on you. All in
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all, not a bad spot for a nuclear waste repository, so long as this is O.K. with the desert

tortoises.

In the cool of the morning, though, or when the afternoon stretches into evening, the
shapes and shades slip back in with the shadows. Apart from a few young cinder cones
off to the west in Crater Flat and the recent incision of Forty-Mile Wash, the impression
that lasts is the smoothness of the landforms and their topography. The rocks exposed
on Yucca Mountain are late-Tertiary volcanic ashes and tuffs, uplifted along the Solitario
Canyon fault and back-tilted to the east. The surface expression of the Solitario Canyon
fault, which sits at the base of the western flank of Yucca Mountain, is almost invisible
except when the shadows are long in the early morning, and the ridges between the modern
drainages are all evenly rounded off. Even the cliff-formers on the exposed western face of
Yucca Mountain are smooth in their second spatial derivatives. Maybe there has been a
meter or so of displacement along the Solitario Canyon fault in the past 50,000 to 100,000
years, but no more than that, which is pretty much the same story that the trenches across
the fault tell.

There are, however, a number of Quaternary faults within walking distance of the
proposed site for handling radioactive waste on the east flank of Yucca Mountain (Figure
9). With the exception of the Ghost Dance fault, all of these have ruptured 2 to 3 times
in the last 100,000 years or so, with individual events having displacements as large as
1.0 to 1.2 m on the Solitario Canyon and Paintbrush Canyon faults (Menges et al., 1994).
Altogether, these faults have produced four or five M ~ 6, earthquakes in the past 100,000
years, one or two of which may have been a bit bigger,rif the Paintbrush Canyon/Stagecoach
Road faults ruptured simultaneously. M =~ 6%, earthquakes at such close distances make
for a helluva ground-motion ride, and peak accelerations in excess of Y, g are a common
occurrence in these circumstances (Figure 5). It is easy to see how these earthquakes and
their ground motions could figure into DSHA for Yucca Mountain, should one wish to
proceed on this basis.

But these earthquakes and the ground motion that arise from them are very well
defined in hazard space as well. Without the benefit of a formal analysis, we can hazard a

guess that the hazard or MROE of %, g or greater ground acceleration will be something
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like 3 or 4 or 5 x 107%/yr for any site in or around Yucca Mountain. As usual, larger
MROE’s will be associated with lower PGA’s and smaller MROE’s will be associated with
higher PGA’s. The choice of design basis ground motions then comes down to the choice
of performance goal, what we were calling Py earlier, and attendant seismic design criteria.
But it’s not hard to figure out where the action will be on the DSHA-vs-PSHA playing
field. At a design hazard level of 2 x 107° /yr, the deterministic earthquakes will figure
prominently in fixing the design ground motions and dominate the de-aggregation at this
hazard level. For a design hazard level of 2 x 107 /yr, the deterministic earthquakes will
contribute hardly at all. This is just what happened (Wong et al., 1996).

Hazard space, then, is a fascinating seismological Wonderland of earthquake sizes,
epicentral distances, recurrence intervals, ground-motion attenuation relationships (often
as a function of period), and the hazard numbers themselves. For proponents of DSHA and
PSHA alike, the important matter is that any deterministic earthquake, when specified by
its size, location, and recurrence interval, and the ground motion arising from it can always
be found in Wonderland. In the case of Yucca Mountain, this is easy to see. In the EUS,
specifying a deterministic earthquake with respect to size, place, and recurrence interval
is, in general, problematic and arbitrary. Even worse—or even better, depending on your
position on DSHA—any deterministic earthquake has a zero probability of occurrence when
cast in the framework of areally distributed seismicity. But this mathematical glitch can
be overcome by choosing magnitude and distance ranges for our deterministic event(s).
Indeed, Figure 7, which we used earlier to illustrate de-aggregation, can also be viewed as
a suite of deterministic earthquake choices, specified in terms of half-magnitude units and
the indicated distance ranges. And, as we also saw earlier, we know the hazard contribution
for each and every one of these choices. So we know you're out there somewhere, Ellis,

and we can calculate your hazard anytime we want to.
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FIGURE CAPTIONS
PSHA: Snippets of the fur.
PSHA: A back-of-the-envelope calculation.

PSHA: Inhomogeneous seismicity.

PSHA: Seismic hazard curves for (a) a site in San Francisco (Power et al., 1993)
and (b) a site in Washington, D.C. (SSHAC, 1997). See text for explanation

of open and solid circles, which overlap at 0.1 g.

Peak acceleration for the Northridge, California, earthquake (Jan. 17, 1994;
M = 6.7) with the regression curves (median and +0) of Boore et al. (1993).
Courtesy of D. M. Boore.

Forming Py: The fragility and hazard curves.
De-aggregation: peak acceleration (Kimball and Bieniawski, 1994).
De-aggregation: 1 Hz spectral acceleration (Kimball and Bieniawski, 1994).

The Uniform Hazard Spectrum, from Reiter (1990). (a) as a function of period
for a hazard of 107 /yr (b) as a function of hazard level and period for the

Vogtle site.

Principal faults of the Yucca Mountain area. Courtesy of J. W. Whitney.
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Finally, under the assumption that events between zones are independent, the

seismic hazard in t years at a site can be evaluated by

Weight for sth seismicity expert

A discussion of the background for evaluating a single weight

for each seismicity expert i{s given in Section C.3.4. The

weight for the sth seismicity expert, Wg, is the weighted

average of the self weights {n the four regions, i.e. N
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