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Some terminology
Hazard: A dangerous phenomenon, substance, human activity or 
condition that may cause loss of life injury, or other health impacts, 

property damage, loss of livelihoods and services, social and 
economic disruption, or environmental damage (UNISDR, 2009).

Exposure: People, property, systems or other elements present in 
hazard zones that are thereby subject to potential losses 

(UNISDR, 2009). 

Vulnerability: Characteristics and circumstances of a community, 
system or asset that make it susceptible to the damaging effects of a 

hazard  (UNISDR, 2009). 

Risk: The combination of the consequences of an event (hazard) and 

the associated likelihood/probability of its occurrence 

(ISO 31010, 2009).



Global Seismic Hazard Assessment Program (1)

The Global Seismic Hazard Assessment Program
(GSHAP) was completed in 1999.

Of the continental land masses, it was found that

● ca. 70% have low hazard, 0-8% of g being exceeded;

● ca. 22% have moderate hazard, 8-24%;

● ca. 6% have high hazard, 24-40%;

● ca. 2% have very high hazard, >40%.

HOWEVER . . Remember that while plate boundaries 
make up only 15% of the Earth’s surface, 40% of the 

human population is located in their vicinity. 



Seismic hazard maps (1)

Evaluating seismic hazard requires characterising 

seismic cycles, where the recurrence times range 

from 10 to  103 years (active areas) to 103 to 105 years 

(low deformation).

Seismic hazard maps describe the probability

(e.g., 2, 5 or 10%)  that a given ground motion

(e.g., peak horizontal acceleration) will be exceeded 

over a certain period (e.g., 50 years).

The generation of seismic hazard maps may employ a 

group of methodologies under the general term 

probabilistic seismic hazard assessment (PSHA).









Response spectra



Relative displacement

Pseudo Velocity and 

Pseudo accelerations



Since PSV and

PSA are obtained

by SD simply

multiplying for a

factor

The 3 spectra can

be diplayed on the

same plot



Response spectra

La risposta

dell‘oscillatore

dipende dalla

sua frequenza e 

dallo

smorzamento!



Scheme of intensity estimation for scenario earthquakes

2. Site intensity from 

attenuation relationships

1. Epicentral intensity 

as a function of magnitude 

and depth



1. Source Spectrum –

function of magnitude 

and stress parameter

2. Modification of the 

Spectrum – distance 

attenuation 

4. Estimation of site 

intensity from the 

Spectrum

3. Modification of the 

Spectrum – Local 

Site Amplification 

Typical site classes (A1 – C3) 

that correspond to particular 

locations are estimated from 

correspondent geology maps

Scheme of intensity estimation for scenario earthquakes





Seismic Zonation

Ground Motion  

Prediction

Equations - GMPEs

Seismic Catalogs



Random events

Sample Space

Baker, Bradley and Stafford (2021), “Seismic Hazard and Risk

Analysis.” These images are provided for instructional and research

use, with attribution. Not for commercial use.
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Random events

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Conditional Probability

S

E2

E1

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.

Independence
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Conditional Probability

Total Probabilty Theorem
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∩
Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Conditional Probability

Bayes’ Rule

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Random Variables

A random variable is a numerical variable whose specific

value cannot be predicted with certainty before the occurrence

of an event

x1,x2,x3 …denote possible outcome of X

P(X=x1) is the probability of X of assuming the value x1

Random variable can be discrete (e.g. number of

earthquakes occurring in a region in a certain amount of time)

or continuous

The probabilty distribution of a discrete random variable is

quantified by the probability mass function (PMF):
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Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Random Variables

The cumulative distribution function (CDF) is defined as the

probability of the event that the random variable takes a value

less than or equal to the value of the argument:

PMF and CDF are related by:
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In many cass (see equation on the top right) we are

interested in the probability of X ≥ x:

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Random Variables

In the case of a continuous variable the Probability Density

Function (PDF) is defined:

represents the probability of the random

variable X taking values between x and

x+dx

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Random Variables

Probability that the outcome of X is in the interval between and b

For discrete random 

variables

Relation between PDF and CDF

CDF

CDF

PDF
Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Common Probability Distributions

Normal Distribution

PDF

Baker, Bradley and Stafford (2021), “Seismic Hazard and Risk Analysis.”

These images are provided for instructional and research use, with

attribution. Not for commercial use.



Common Probability Distributions

Normal Distribution

The CDF for general normal random variable can be written as:

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Common Probability Distributions

Bivariate Normal Distribution

Normal distribution

of 2 random

variables

Baker, Bradley and Stafford (2021), “Seismic Hazard and Risk Analysis.” These images

are provided for instructional and research use, with attribution. Not for commercial use.



Common Probability Distributions

Lognormal Distribution

A random variable Y has a

lognormal distribution if its

logarithm, X=ln Y has a normal

distribution

Relation to the mean and standard

deviation of Y

Baker, Bradley and Stafford (2021), “Seismic Hazard and Risk Analysis.” These images

are provided for instructional and research use, with attribution. Not for commercial use.

E.H. Field notes



Common Probability Distributions

The poisson process

The number of events observed in time t

froma poisson process has a Poisson

distribution.

X is the number of success in time t

The process has a mean rate of events 

Poisson PMF

Mean

Standard deviation

Poissonian probability of exceeding each

ground motion level in the next T years from

the annual rate

E.H. Field notes

Modified from Probabilistic Seismic Hazard Analysis (PSHA)

A Primer Written by Edward (Ned) H. Field

Baker, Bradley and Stafford (2021), “Seismic Hazard and Risk Analysis.” These images

are provided for instructional and research use, with attribution. Not for commercial use.



Basic of Probabilistic Seismic Hazard Assessment (1) 

Hazard is the mean rate of exceedence of a certain ground motion measure (PGA, SA,

PGV) etc UNIT is (years)-1

Risk is the mean annual loss (dollars, properties, lives) UNITS dollars/years lives/years

SSZ

Sesimic Source Zone 

(SSZ) =5X106 km2

3000 km

2
0
0
0
 k

m

2000 km

One M=5 per year

One M=6 per decade

One M=7 per century

M=5 M=6 M=7

0.1 g 14 25 41

0.2 g 3.2 12 22

0.4 g 0 0 10

Horizontal distance (km) within which the given pga’s

are achieved or exceeded for the given magnitudes

M=5 M=6 M=7

0.1 g 1.23 0.39 0.11 1.73 1.47

0.2 g 0.06 0.09 0.03 0.18 0.41

0.4 g 0 0 0.006 0.006 0.034

෍
s

෍

Mean rate of exceedance (MROES) x 10-4 per year,

for given pga’s for the given magnitudes

Modified from probabilistic seismic hazard analysis: a beginner’s guide T.C Hanks, C.A. Cornell



Basic of Probabilistic Seismic Hazard Assessment (1) 

One M=5 per year

One M=6 per decade

One M=7 per century

M=5 M=6 M=7

0.1 g 14 25 41

0.2 g 3.2 12 22

0.4 g 0 0 10

Horizontal distance R (km) within which the given

pga’s are achieved or exceeded for the given

magnitudes

M=5 M=6 M=7

0.1 g 1.23 0.39 0.11 1.73 1.47

0.2 g 0.06 0.09 0.03 0.18 0.41

0.4 g 0 0 0.006 0.006 0.034

Mean rate of exceedance (MROES) x 10-4 per year,

for given pga’s for the given magnitudes
MROE=((p142) km2/(5X106) km2)*1/year = 1.23x10-4

Example for MROE

M=5

Pga=0.1

The PGA will be greater than or equal to

the given value of PGA within each

distance R

That is where exceedance comes!

Likelihood that the place of interest

will be affected by the level of pga

or higher

Occurrence rate of each Magnitude

෍ ෍
s

Numerical

integration with 

DM=1

Modified from probabilistic seismic hazard analysis: a beginner’s guide T.C Hanks, C.A. Cornell



Basic of Probabilistic Seismic Hazard Assessment (1) 

One M=5 per year

One M=6 per decade

One M=7 per century

M=5 M=6 M=7

0.1 g 14 25 41

0.2 g 3.2 12 22

0.4 g 0 0 10

Horizontal distance R (km) within which the given

pga’s are achieved or exceeded for the given

magnitudes

M=5 M=6 M=7

0.1 g 1.23 0.39 0.11 1.73 1.47

0.2 g 0.06 0.09 0.03 0.18 0.41

0.4 g 0 0 0.006 0.006 0.034

Mean rate of exceedance (MROES) x 10-4 per year,

for given pga’s for the given magnitudes

Example for MROE

M=5

Pga=0.1

The mean rate in the order of 10-4 /year

does not mean that we need data for 10.000

year.

The small value is not due to the seismicity

rate but to the ratio of the area!

The earthquakes are occurring at the rate

of 1/year for M=5 and 10-2 year for M=7

෍ ෍
s

Numerical

integration with 

DM=1

Modified from probabilistic seismic hazard analysis: a beginner’s guide T.C Hanks, C.A. Cornell



Basic of Probabilistic Seismic Hazard Assessment (1) 

SSZ

2
0
0
0
 k

m

3000 km

2000 km

Region 2

Region 1

0.3

0.5

0.2

Consider that two subregions are more 

active than the rest

Three different seismicty rate but with whole region

with the same value as in the previous case

In Region 1 the seismicity rate is dow by 0.5 but the

(area)-1 is up (for example) of a factor 100

Therefore, for this region the exceedence rate is 50

time larger with respect to the previous case

Modified from probabilistic seismic hazard analysis: a beginner’s guide T.C Hanks, C.A. Cornell



Basic of Probabilistic Seismic Hazard Assessment (2) 

SSZ

3000 km

2
0
0
0
 k

m

2000 km

Consider that the source model is made by N

earthquake scenarion En, each one with its

magnitude (mn,) location (Ln) and rate (rn )

rn represents the annual rate of the earthquake

scenario

The probability of the scenario over some specified

time period should be given; this would allow the

implementation of time-dependent models.

Time dependent models are usually implemented

by converting the conditional probability into an

equivalent Poissonian time-dependent rate

Example

An average repeat time of an earthquake ona fault is 147

years r=0.007 events per year

The Poissonian probability of having more than one event

over T years is:

The Poissonian probability for an event in the next 30 years is

19%

Modified from Probabilistic Seismic Hazard Analysis (PSHA)

A Primer Written by Edward (Ned) H. Field



Basic of Probabilistic Seismic Hazard Assessment (2) 

The target is to calculate the PSHA at a certain site

The Seismic source model provide the N

earthquake scenarios En, each one with its

magnitude (mn,) location (Ln) and rate (rn )

From the scenario Ln we can calculate the distance

Dn to the target site.

E1

E2

E3

En

Target site

Dn

Given mn and Dn and using a Ground Motion

Prediction equation.

Modified from Probabilistic Seismic Hazard Analysis (PSHA)

A Primer Written by Edward (Ned) H. Field



Basic of Probabilistic Seismic Hazard Assessment (2) 

Probabiliy of exceeding a certain lnPGA

Modified from Probabilistic Seismic Hazard Analysis (PSHA)

A Primer Written by Edward (Ned) H. Field



Basic of Probabilistic Seismic Hazard Assessment (2) 

Multiplying for the annual rate rn one get annual rate Rn at

which a certain lnPGA will be exceeded for that specific M

and Location scenario at the considered site

Summing over the N scenarios (all considered Magnitudes and

locations, and rates) one get the

Total annual rate of exceeding a certain ln PGA

Modified from Probabilistic Seismic Hazard Analysis (PSHA)

A Primer Written by Edward (Ned) H. Field



Basic of Probabilistic Seismic Hazard Assessment (2) 

Considering the Poissonian distribution one can compute the

Probability of exceeding each ground motion level in T years

using the total annual rate

If Ppois=10% in 50 years

T= 50 years

Rtot=(-ln(1-0.1))/T=0.00210721

From which one get a return period of 475 years

Modified from Probabilistic Seismic Hazard Analysis (PSHA)

A Primer Written by Edward (Ned) H. Field



Basic of Probabilistic Seismic Hazard Assessment (2) 

Example

Two scenarios only

R1=M=6 every 22 years

R2=M= 7.8 every 300 years

Both at 10 km from the target site

0.19 g

0.5 g

s (lnpga)= 0.52 

Modified from Probabilistic Seismic Hazard Analysis (PSHA)

A Primer Written by Edward (Ned) H. Field



Basic of Probabilistic Seismic Hazard Assessment (2) 

R1 R2

For small PGA (e.g. 0.1 g)

although the probability of

exceedence is larger for the

M6, the annual rate of

exceedence of R1 is larger than

that of R2 because the annual

rate of R1, r1=1/22 is much

larger than the annual rate of

R2, r2=1/300!

Modified from Probabilistic Seismic Hazard Analysis (PSHA)

A Primer Written by Edward (Ned) H. Field



Basic of Probabilistic Seismic Hazard Assessment (2) 

R1 R2

For large PGA (e.g. 1 g) the

probability of exceedence is

larger for the M7.8, although

the annual rate of R1 is larger

than that of R2, because

probability of exceedence of

R1 is very small

Modified from Probabilistic Seismic Hazard Analysis (PSHA)

A Primer Written by Edward (Ned) H. Field



Basic of Probabilistic Seismic Hazard Assessment (2) 

Rtot=sum of the two scenario is dominated at low PGA by the

small but frequent events and for high pga by the strong but rare

events

Modified from Probabilistic Seismic Hazard Analysis (PSHA)

A Primer Written by Edward (Ned) H. Field



Basic of Probabilistic Seismic Hazard Assessment (2) 

Extending this analysis for several sites we obtain the seismic

hazard maps

Modified from Probabilistic Seismic Hazard Analysis (PSHA)

A Primer Written by Edward (Ned) H. Field



Hazard Inputs

Earthquake Magnitude

The original Richter scale was 

based on the observation that 

the amplitude of seismic 

waves systematically 

decreases with epicentral

distance.

Data from local earthquakes in 

California

The concept of magnitude was introduced by Richter (1935) to provide an objective 

instrumental measure of the size of earthquakes. Contrary to seismic intensity, I, which is 

based on the assessment and classification of shaking damage and human perceptions 

of shaking, the magnitude M uses instrumental measurements of earth ground motion 

adjusted for epicentral distance and source depth.

The relative size of events is calculated by comparison to a reference event, with ML=0, 

such that A0 was 1 μm at an epicentral distance, Δ, of 100 km with a Wood-Anderson 

instrument: 

ML=log(A/A0)=logA-2.48+2.76Δ.



“I found a paper by Professor K. Wadati of Japan in which he compared large earthquakes by plotting the

maximum ground motion against distance to the epicenter. I tried a similar procedure for our stations, but

the range between the largest and smallest magnitudes seemed unmanageably large. Dr. Beno Gutenberg

then made the natural suggestion to plot the amplitudes logarithmically. I was lucky because logarithmic

plots are a device of the devil. I saw that I could now rank the earthquakes one above the other. Also,

quite unexpectedly the attenuation curves were roughly parallel on the plot. By moving them vertically, a

representative mean curve could be formed, and individual events were then characterized by individual

logarithmic differences from the standard curve. This set of logarithmic differences thus became the

numbers on a new instrumental scale. Very perceptively, Mr. Wood insisted that this new quantity should be

given a distinctive name to contrast it with the intensity scale. My amateur interest in astronomy brought out

the term "magnitude," which is used for the brightness of a star.”

Charles F. Richter - An Interview by Henry Spall, Earthquake Information Bulletin. Vol. 12, No. 1, January - February, 1980

Hazard Inputs



Hazard Inputs



Richter also tied his formula to 

a specific seismic instrument.

Wood-Anderson Seismometer

Hazard Inputs

ML=log(A/A0)=logA-2.48+2.76Δ.



Magnitude Scales 

M seismic magnitude 

A amplitude

T period

f correction for distance and 

depth

Cs correction for site

Cr correction for source region

The original ML is suitable for the classification of local shocks in Southern California only

since it used data from the standardized short-period Wood-Anderson seismometer

network. The magnitude concept has then been extended so as to be applicable also to

ground motion measurements from medium- and long-period seismographic recordings of

both surface waves (Ms) and different types of body waves (mb) in the teleseismic

distance range.

The general form of all magnitude scales based on measurements of ground

displacement amplitudes A and periods T is:

ML Local magnitude

mb body-wave magnitude (1s)

Ms surface wave magnitude (20s)

Hazard Inputs



The two most common modern magnitude 

scales are:

MS, Surface-wave magnitude (Rayleigh 

Wave, 20s)

mb, Body-wave magnitude (P-wave)

Teleseismic MS and mb

Hazard Inputs



mb seldom gives values

above 6.7 - it “saturates”.

mb must be measured in the

first 5 seconds - that’s the

rule.

Example: mb “Saturation”

Hazard Inputs



Saturation

Hazard Inputs



Magnitude saturation

Nature limits the maximum size of tectonic earthquakes which is
controlled by the maximum size of a brittle fracture in the
lithosphere. A simple seismic shear source with linear rupture
propagation has a typical "source spectrum”.

Ms is not linearly scaled with M0 for
Ms > 6 due to the beginning of the so-
called saturation effect for spectral
amplitudes with frequencies f > fc.

This saturation occurs already much
earlier for mb which are determined
from amplitude measurements around
1 Hz.

Hazard Inputs



Moment magnitude

Empirical  studies  (Gutenberg & Richter, 
1956; Kanamori & Anderson, 1975) lead to a 
formula for the released seismic energy (in 

Joule), and for moment, with magnitude:

logE=4.8+1.5Ms logM0=9.1+1.5Ms

resulting in 

Mw=2/3logM0-6.07

when the Moment is measured in N·m
(otherwise the intercept becomes 10.73);

it is related to the final static displacement 
after an earthquake and consequently to the 

tectonic effects of an earthquake.

Hazard Inputs



Remember . . . the displacement equation for the P and S wave radiation patterns:

 φαrtM
rπα

=ru
3

cos2θsin/
4

1












 

Amplitude 
term

Source time
function

Describes
the pattern

Seismic moment (1)

e.g. P waves

Considering the seismic moment rate function

or source time function






  vrtM /

     tStμD=tMwhich is the time derivative of the 

seismic moment function

where m is rigidity, and D(t) and S(t) are the slip and fault area histories, 

respectively.

(Lay & Wallace, 1995; Stein & Wysession, 2003)

Hazard Inputs



which in turn gives the moment magnitude M
w

where M
o

is in dyn-cm.

and which we will discuss again with respect to other magnitude 
scales.

(Lay & Wallace, 1995; Stein & Wysession), 2003)

Seismic moment (2)

This leads to the best measure of an earthquake's size and energy,

the seismic moment, where D
av

is the 
average slip or dislocation and S is the 

fault area. 

10.73
1.5

log
o

w

M
=M

  SμD=tM
av

Hazard Inputs



Importance of comparing Mw and Me

Mw(GCMT) = 7.0
Me(GFZ) = 7.1

The locations differ by about 250 km and the 

moment magnitudes Mw and the fault plane 

solutions are very similar. 

Mw(GCMT) = 6.8
Me(GFZ) = 6.4

However, the high frequency 

content observed in the 

seismograms is significantly 

different and cannot be 

explained by Mw only.

Di Giacomo and Bindi (2009)

Hazard Inputs



Importance of comparing Mw and Me

Mw(GCMT) = 7.6, Me(GFZ) = 7.19 Mw(GCMT) = 7.6, Me(GFZ) = 6.75

The locations differ by about 500 km and the moment magnitudes Mw are nearly identical, therefore 

the differences in the high frequency content observed in the seismograms can be attributed to 

different source characteristics. 

Di Giacomo and Bindi (2009)

Hazard Inputs
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<2 Micro Not felt 8000/day

2 to 2.9 Minor Generally not felt but recorded 1000/day

3 to 3.9 Minor Often felt, but rarely cause damage. 49000/year

4 to 4.9 Light Noticeable shaking, damage unlikely. 6200/year

5 to 5.9 Moderate Can cause damage to poor quality buildings 800/year

6 to 6.9 Strong Destructive in areas up to ca.160 km. 120/year

7 to 7.9 Major Serious damage over larger areas. 18/year

8 to 8.9 Great Serious damage over areas of 100's km. 1/year

9 to 9.9 Great Serious damage over areas of 1000' s km. 1/20 years

Hazard Inputs

M



Hazard Inputs

Estimation of rupture rates

Seismicity

based

approaches

Geological

approaches

The rate of occurrence of

the scenario is obtained by

partitioning the total rate

of occurrence of the

given magnitude over all

plausible rupture

geometries that can exist

for the respective source.

For each geometric rupture, a

magnitude can be obtained

from a source-scaling relation

or from the definition of the

seismic moment (if an

associated estimate of the

average slip for the rupture is

available). Each scenario’s

rate of occurrence is then

constrained by the overall slip

rate for the fault.

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Hazard Inputs

Gutenberg-Richter distribution

N is the total number of events

with magnitude M greater or

equal to m

b 1 in the original study

The number of earthquakes of a given size decreases by about an order of magnitude per magnitude
unit increase.

Stein & Wysession, 2003

Modern equivalent Gutenberg-Richter in a double

bounded exponential distribution



Hazard Inputs

Gutenberg-Richter distribution

CDF

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Gutenberg-Richter distribution

Hazard Inputs

CDF

PDF

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Gutenberg-Richter distribution

Hazard Inputs

CDF

PDF

If an upper limit of M=mmax

can be defined

Since in PSHA we consider a discrete set of magnitude

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Gutenberg-Richter distribution

Hazard Inputs

Since in PSHA we consider a discrete set of magnitude

Continuous Probability 

Density function
Discrete Probabilities

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Empirical ground motion models

Also Attenuation relationships or Ground Motion Prediction

Equation(GMPEs) in Literature

GMM can be empirical or physics-based

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Empirical ground motion models

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Empirical ground motion models

Fourier SpectrumBracket and Uniform Duration

Significant Duration

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Empirical ground motion models (GMM)

Magnitude – Distance

distribution
Maximum usable response

spectral period

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Empirical ground motion models (GMM)

Effect of site conditions

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Disaggregation

Which earthquake rupture is most likely to cause IM>x?
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(SA(1 s) > 0.2 g) = 0.00566

(SA(1 s) > 0.5 g) = 0.00103

Total hazard
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2

Example of two ruptures influencing the site

Baker, Bradley and Stafford (2021),

“Seismic Hazard and Risk Analysis.” These

images are provided for instructional and

research use, with attribution. Not for

commercial use.



Disaggregation

Which earthquake rupture is most likely to cause IM>x?

10 -1 100

Spectral Acceleration, SA(1 s) [g]
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(SA(1 s) > 0.2 g) = 0.00566

(SA(1 s) > 0.5 g) = 0.00103

Total hazard

rup
1

rup
2

Example of two ruptures influencing the site

If we consider SA(1s)>0.5 g

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Disaggregation

10 -1 100

Spectral Acceleration, SA(1 s) [g]
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(SA(1 s) > 0.2 g) = 0.00566

(SA(1 s) > 0.5 g) = 0.00103

Total hazard

rup
1

rup
2

For the relatively lower SA(1s) value

of 0.2 g, the more active source 1

has a high probability of being the

causal rupture

At larger SA(1s) (0.5 g) the less

acitive source 2 has the greater

contribution to the exceedance of

the SA(1s)

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Disaggregation calculation

Annual rate of

observing ground

motion at a given

site with Im>im,

caused by the

rupture rupi

Rate of ground

with Im>im

Probability that

the ground

motion comes

from rupture rupi

OR

The equations show that the probability of rupi causing IM > im is 

equal to the rate of rupi earthquakes that cause IM > x, divided by the 

rate of all earthquakes that cause IM > x. The left-hand side of these 

equations always produces a valid probability distribution; that is, the 

sum over i of P(rupi |IM > im) always equals 1.

NOTE: This is site! specific

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Disaggregation

Let’s consider that the disaggregation over

magnitude correspond to the

disaggregragation on rupture rupi

The rate of M=5.1 causing SA(1s) >0.2 g

1.59X10-5

The rate of all ruptures causing SA(1s) >0.2

g 0.00212

The probability that ground motion SA(1s)

>0.2 g is caused by a M=5.1 event is

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Disaggregation

Repeating this for other magnitudes

5 6 7 8

Magnitude, M

0

0.05

0.1

0.15

0.2

P
(m

 |
 S

A
(1

 s
) 

>
 0

.2
 g

)

5 6 7 8

Magnitude, M

0

0.05

0.1

0.15

0.2

P
(m

 |
 S

A
(1

 s
) 

>
 0

.5
 g

)

Smaller magnitude (i.e., M 6) earthquakes are likely to

cause exceedances of SA(1 s) > 0.2 g, but are quite

unlikely to cause exceedances of SA(1 s) > 0.5 g. This

is because M 6 ruptures are relatively likely compared

with larger-magnitude ruptures, and also likely to cause

smaller-intensity ground motions. However, these M 6

ruptures are very unlikely to cause SA(1 s) > 0.5 g

ground motions, so they contribute little at that higher

intensityBaker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Disaggregation

The disaggregation is also carried out to find probabilities of

combination of Magnitude, Distance etc..

To find the conditional distribution of distance the equations above is

modified to have summation over magnitude

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Disaggregation

The conditional JOINT distribution of Magnitude and Distance is given by:

WITH

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Basic of Probabilistic Seismic Hazard Assessment (1) 

One M=5 per year

One M=6 per decade

One M=7 per century

M=5 M=6 M=7

0.1 g 14 25 41

0.2 g 3.2 12 22

0.4 g 0 0 10

Horizontal distance R (km) within which the given

pga’s are achieved or exceeded for the given

magnitudes

M=5 M=6 M=7

0.1 g 1.23 0.39 0.11 1.73 1.47

0.2 g 0.06 0.09 0.03 0.18 0.41

0.4 g 0 0 0.006 0.006 0.034

Mean rate of exceedance (MROES) x 10-4 per year,

for given pga’s for the given magnitudes

Disaggregation for  hazard of

0.18x10-4/yr for Pga=0.2 g

෍ ෍
s

M=5 and distance <3.2 Km contribute

for 0.06x10-4/year that is nearly 1/3

M=6 contribution for distance <12 km

(0.09x10-4/year)

Part from distance <3.2 km (0.09x10-

4/year x 3.22/122) and the rest between

3.2 and 12 km (0.09x10-4/year X(122/122-

3.22/122)

M=7 contribution from distance <22 km

must be divided in 3 contributions

If all numbers are divided by the total

of 0.18X10-4/year one get the fractional

contribution to the total hazard of each

magnitude and distance range
Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Uniform Hazard Spectrum
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It is developed by:

- performing the PSHA calculation for spectral accelerations at a range of

(oscillator) periods.

- Identifying the spectral acceleration value having the target rate or

exceedance at each period.

- Plotting those spectral acceleration values versus their periods.

Since the spectrum ordinates all have the same exceedance rate (i.e., “hazard”

level), it is called a uniform hazard spectrum.
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Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Seismic Risk

A fragility function provides a prediction of a binary outcome, F (failure 

or nonfailure), as a function of ground-motion intensity.
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where P(F | IM = x) is the probability that a ground motion with IM = x will cause failure to

occur, Φ() is the standard normal cumulative distribution function, θ is the median of the

fragility function (the IM level with a 50% probability of failure), and β is the standard deviation

of the ln IM level at which failure will occur

Fragility functions

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Seismic Risk

Generally one considers discrete set of damage states (DS), and specify fragility 

functions for the probability of a structure reaching that damage state or worse:

where dsi is the ith damage state, increasing values of i indicate more severe

damage, and the fragility parameters θi and βi are specified for each damage

state. The multiple damage states are typically assumed to be mutually exclusive

and collectively exhaustive

Fragility functions

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Seismic Risk

Vulnerability functions

A vulnerability function is used to quantify outcomes when the consequence of

interest is a continuous outcome, rather than a binary “failure” or “non failure.

where C is the consequence metric of

interest and F(c | x) is a cumulative

distribution function for the

consequence C, evaluated at c and

dependent on the IM amplitude x.

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Seismic Risk

Failure rate

where λ(F) denotes the annual rate of

failure, F, P(F | IM = x) is the fragility

the failure limit state from

λ(IM > x) is the ground-motion hazard

curve from

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Seismic Risk

Failure rate

In discrete form:
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Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Seismic Risk

Loss exceedance curve

A loss exceedance curve provides the rates of exceeding various levels of

losses (i.e., consequences) by combining a ground-motion hazard curve with

a vulnerability function. The exceedance rate is computed for a particular

loss level as

where λ(C > c) is the annual rate of

consequence metric C exceeding threshold c,

P(C > c | IM) is a vulnerability and λ(IM > x) is

again the ground-motion hazard curve.
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Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Seismic Risk

Exceedance probability curve

An exceedance probability (EP) curve (sometimes abbreviated as an ‘EP 

Curve’) provides the probability of exceeding various levels of loss during a 

specified window of time (often 1 year).

This connects the loss exceedance rates to the probability of an event occurring

over some period of interest. The exceedance rates can be used to compute

probabilities of exceedance over some time period t, assuming that the

exceedances are Poissonian in nature and

Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



Seismic Risk

Average annual Loss

The average annual loss (AAL) measures the expected amount of loss

experienced per year.This metric is of interest for insurance transactions, as the

annual cost of an insurance policy is influenced by the average payouts expected

under the policy. It is also useful in evaluating risk reduction actions, as the cost of

the action can be compared with the expected reduction of loss produced by the

action.

where E[C] is the expected loss

(consequence) per unit time. Since

λ(IM > x) is typically an annual rate,

these units persist and E[C] is an

expected annual loss.
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Baker, Bradley and Stafford (2021), “Seismic Hazard and 

Risk Analysis.” These images are provided for instructional 

and research use, with attribution. Not for commercial use.



EMS Scale



EMS Scale

Grünthal (1998)



Towhata 2008.

Kodera et al., 2016.



Damage Classification

Grünthal (1998)



Damage classification

The long crack in this wall is large enough to constitute slight

structural damage. The damage should be considered to be of

grade 2

Several chimneys have been damaged and tiles on the roof

have been shifted. Large and extensive cracks in most walls

were not observed, and therefore the damage is to be

assessed as grade 2.

Note: The chimney on the left of the picture was broken due

to the differential shaking behaviour of the two adjoining

buildings. Parts of the broken chimney hit the roof and

dislodged tiles; this damage to the tiles is therefore a

secondary effect and not caused directly by the earthquake

shaking.Grünthal (1998)



Damage classification

The large and extensive cracks in most walls suggest damage

of grade 3.

Grünthal (1998)

There are large diagonal cracks in most walls, but they are not

so severe and the walls have not failed. In this case the damage

is grade 3.



Damage classification

The serious failure of walls in this example is indicative of

damage grade 4. The vulnerability is affected by the poor quality

of mortar and the non-effectiveness of the concrete elements in

the construction.

Parts of the bearing walls have failed, causing partial collapse of the

roof and floor slabs. This is heavy structural damage and therefore

damage grade 4.

Grünthal (1998)



Damage classification

The whole ground floor has collapsed completely. In such cases

the damage grade is 5.

This is obviously very heavy structural damage and near-total

collapse, and therefore damage grade 5.

Note: This RC frame structure incorporating a certain level of

earthquake resistant design was adversely affected by the

insufficient coupling between beams and columns. This

building type is a typical example where one should assign a

low vulnerability class, in this case B, which represents an

exceptionally low class for this type of structure.

Grünthal (1998)



Italian building code (NTC08/18)

Seismic classification

https://rischi.protezionecivile.gov.it/it/sismico/attivita/classificazione-

sismica

Seismic hazard

http://esse1.mi.ingv.it

NTC08 Seismic code (§ 2.*; 3.2; 7.*)

https://www.gazzettaufficiale.it/eli/id/2008/02/04/08A00368/sg

NTC18 Seismic code (§ 2.*; 3.2; 7.*)

https://www.gazzettaufficiale.it/eli/gu/2018/02/20/42/so/8/sg/pdf

https://www.gazzettaufficiale.it/eli/id/2019/02/11/19A00855/sg

https://rischi.protezionecivile.gov.it/it/sismico/attivita/classificazione-sismica
http://esse1.mi.ingv.it
https://www.gazzettaufficiale.it/eli/id/2008/02/04/08A00368/sg
https://www.gazzettaufficiale.it/eli/gu/2018/02/20/42/so/8/sg/pdf
https://www.gazzettaufficiale.it/eli/id/2019/02/11/19A00855/sg


Site response



Local Geology Effects

Soil Structure 

Interaction

Causative 

fault

Seismic Source Spectrum

Propagation

Resonance 

Frequency of 

Building



Site effects: Gubbio Valley (Italy)

GU 00

GU 10

GU 00

GU 10

Ground motion increasing with increasing 

distance from the source! (within the valley)



free surface

C=( 2V2/ 1V1) is impedance contrast

soft layer

rock layer

s, Vs, h, q

b, Vb, 

A simple model: site effects due to the seismic impedance contrast

Incident SH

Refracted SH

reflected SH

1

2 b, Vpb, Vsb

s, Vps, Vss

SNELL’S LAW

sin( i ) / V = constant = p

sin (i1) / V1 = sin (i2) / V2

REFRACTION and REFLECTION
When a body wave encounters an

ELASTIC boundary or discontinuity

(change on seismic velocity), part of

the energy will be transmitted through

the boundary and part reflect.



free surface

C=(r2V2/r1V1) is impedance contrast

soft layer

rock layer

rs, Vs, h, q

rb, Vb, ∞

A simple model: site effects due to the seismic impedance contrast

Incident SH

Refracted SH

reflected SH

1

2 rb, Vpb, Vsb

rs, Vps, Vss

SNELL’S LAW

sin( i ) / V = constant = p

sin (i1) / V1 = sin (i2) / V2

REFRACTION and REFLECTION
When a body wave encounters an

ELASTIC boundary or discontinuity

(change on seismic velocity), part of

the energy will be transmitted through

the boundary and part reflect.



k= wavenumber

a= size of the 

heterogeneities

Vs=400 m/s

Qs=∞ Vs=400 m/s

Qs=∞

Qs=10

Qs=∞

Combined 

effect of 

intrinsic, 

trasmission, 

scattering 

depending on 

the wavelegth

Yoon., 2005



Contribution of the intrinsic attenuation and transmission properties 

of a media to the different portions of the seismic signal

s=0.10 s=0.20 s=0.30Qs=30 Qs=30 s=0.25

The travel time

within each layer is

perturbed randomly,

starting from the

average value

(0.0025 s) A

Gaussian

distribution of the

perturbations with

a st.dev. s equal to

0.05, 0.10, 0.15,

0.2, 0.25, 0.30 of

the average value is

used. The sum of

the travel times in

each layer over the

whole 100 m equals

the original average

one (0.25 s ).

Qs=30 s= 0.25s =0.30s=0.20s=0.10Qs=30

S-wave velocity [m/s] S-wave velocity [m/s]] S-wave velocity [m/s]] S-wave velocity [m/s] S-wave velocity [m/s]



Soil: 

rs,Vs

Rock: 

rb, Vb

x(t) y(t)

h=vs t
u(t)

d(t)

x(t)/2

1
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pbVb psVs c
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C=(rbVv/rsVs) is  the 

impedance contrast
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Assuming that the free surface amplification is equal to 2 

and eliminating u(t) and d(t) we obtain:
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-Linearity:     

-Derivative:

-Shift: 

-Convolution:
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Some properties of the Fourier Transform 

Applications: linear system (source*path*site*instrument), time-delay of propagation 

(e.g. array analysis), solving differential equations, etc…

Parseval identity 

(sum of the square values)
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If X(f) is the Fourier transform of x(t) and Y(f) is the Fourier 

transform of y(t)

The Fourier transform of x(t-t) is X(f)e-i2pft and the Fourier 

transform of y(t-2t) is Y(f)e-i4pft

The time delay t correspond in the frequency domain to a 

phase shift 2pft

Multiplying the spectrum for the phasor e-i2pft only modifies

the phase but not the amplitude of the spectrum in fact:
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The Fourier trasform of Y(f) is then:

4 2( ) ( ) (1 ) ( )i f i fY f rY f e r X f ep t p t    

If we define the transfer function H(f) as Y(f)/X(f) we obtain:
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The modulus of H(f) can be simply calculated by computing 

the modulus of the numerator and of the denominator

The modulus of the numerator is:
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The modulus of the denominator is:
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A simple model: site effects due to the seismic impedance contrast
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If damping is accounted for and complex soil velocities are considered

The reflection coefficients and the travel time become (for |r|<=1 and 

Q>>1): 
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Substituting these coefficients in the equation for H(f) we get:

2 1
2

4 1
2

1
4

( )

1
4

i
i f

Q

i
i f

Q

i
r e

Q
H f

i
r e

Q

p t

p t

 
  

 

 
  

 

 
  

 
 

  
 

The modulus of the transfer function is :

 
 

   
 

1/ 2

2 2 /

2

2 / 2 4 /

2

1
1

4
( )

1 1
1 2 cos 4 sin 4

4 4

t Q

f Q t Q

r e
Q

H f

r f f e r e
Q Q

pt

p t ptp t p t



 

  
   
     

   
             

f

f



For Q>0 assuming 1/4Q~0 does not cause significant errors and the 

modulus of the transfer function become:
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Stefano Parolai

The amplified frequency band depends on the

S-wave velocity structure below the site.

Modified after Safak (2001)



Site effects and NTC18 - Soil classification



Subsurface classification is made on the basis of stratigraphic conditions 

and values of the equivalent shear wave propagation velocity, VS,eq (in m/s), 

defined by : 

With hi thickness of the i-th layer; VS,i velocity of shear waves in the i-th layer; N number 

of layers; H depth of the substrate, defined as that formation consisting of very rigid rock 

or soil, characterized by VS not less than 800 m/s

For deposits with substrate depth H greater than 30 m, the equivalent shear wave velocity 

VS,eq is defined by the parameter VS,30, obtained by placing H=30 m in the above 

expression and considering the properties of the soil layers up to that depth.

Site effects and NTC18 - VS,eq



Multi Hazard and Multi Risk

Zschau 2017

Difficulties arise because different hazards differ in their nature, return period  and intensity, as well as the 

effects they may have on exposed elements



In order to assist decision-makers in the field of DRM in their prioritizing of mitigation actions,

one has to understand the relative importance of different hazards and risks for a given region.

Multi Hazard and Multi Risk

A first step towards a full multirisk assessment, is to consider a multilayer single-hazard/ risk

assessment approach, ignoring the interactions but harmonising and standardising the

assessment procedures among the different perils.

Zschau 2017

• matrices — hazard matrix, 

vulnerability

matrix and risk matrix;

• indices — hazard index, vulnerability

index and risk index; 

• curves — hazard curves, vulnerability

curves and risk curves.

Standardisation schemes use:



Multi Hazard and Multi Risk

Zschau 2017

A hazard matrix applies a colour code to classify certain hazards by the intensity and 

frequency (occurrence probabilities) determined qualitatively, for instance ‘low’, ‘moderate’ 

and ‘high

Multilayer single risk hazard

If applied to vulnerability it is the damage matrix

(e.g. link to the EMS-98 scale)



Multi Hazard and Multi Risk

Zschau 2017

For the aim of comparing and aggregating risks coming from multiple hazards, assessment

procedures are required that combine both hazard and vulnerability information.

Multilayer single risk hazard

The European Commission (2010) proposed a risk matrix that relates the two dimensions,

likelihood (probability) and impact (loss), for a graphical representation of multiple risks in

a comparative way



Multi Hazard and Multi Risk

More quantitative methods for assessing natural threats in a multilayer single-hazard approach are

based on ‘curves’ (‘functions’).

Multilayer single risk hazard

Hazard curves present the exceedance probabilities for a certain hazard’s intensities in a given

period. Vulnerability curves graphically relate the loss or the conditional probability of loss

exceedance to the intensity measure of a hazard (for instance ground motion, wind speed or ash

load) in order to quantify the vulnerability of elements at risk. When the probability of exceeding

certain damage levels is considered, the curves are referred to as ‘fragility curves’

One may easily combine vulnerability curves with the corresponding hazard curves to arrive at a

measure of risk. This could be the average loss per considered period, the so-called average annual

loss or expected annual loss, if the period is 1 year.

Zschau 2017



Multi Hazard and Multi RiskMulti Hazard and Multi Risk

Multilayer single risk hazard

To compare high-probability and low-consequences events with low-probability and high-

consequences ones, probabilities and loss can simply be multiplied (P×L)

In the case of a single-risk scenario with a given annual probability, the loss-probability-product

directly represents the average annual loss (impact). This is not the case for the risk curve, which

includes the loss from all possible hazard intensities.

Thus, one may learn which curve, in terms of return periods, will contribute most to the average

annual loss

Zschau 2017



Multi Hazard and Multi Risk

In a complex system like nature, processes are very often dependent on each other, and interact.

There are various kinds of interactions between hazards that often lead to significantly more

severe negative consequences for the society than when they act separately. A multilayer single-

risk perspective does not consider this, but a multihazard approach does.

Hazard interactions: cascading events and co.

Zschau 2017



Multi Hazard and Multi Risk

Hazard interactions: Semi-quantitative approach, hazard interaction matrices

Zschau 2017



Multi Hazard and Multi Risk

Hazard interactions: Quantitative method, tree and fault tree strategies

A probabilistic approach is

used for quantifying each

branch of the tree

Zschau 2017



Multi Hazard and Multi Risk

Dynamic vulnerability: Time and state dependent

Time dependent: More or less gradual

changes of vulnerability with time.

State dependent: depends on a certain

state of a system that may change abruptly,

due to a natural hazard event

Zschau 2017



Multi Hazard and Multi Risk

Integration into a probabilistic framework

Multi risk framework

Integration of interaction on

the vulnerability/fragility level:

fragility/vulnerability surfaces

Zschau 2017



Uncertainties in single risk analysis: seismic risk

Two different types of uncertainties are usually identified, depending on their nature – namely,

“aleatory” and “epistemic”.

The part of the total uncertainty related to the inherent variability in the behaviour of a system is

commonly known as aleatory uncertainty (sometimes referred to as “randomness”).

The other part, which is related to the state of knowledge about the system under consideration, is

known as epistemic uncertainty.

Tyagunov et al., 2014

Epistemic uncertainty can be reduced by collecting additional relevant information and improving 

the state of knowledge, while the aleatory uncertainty is not reducible and, in principle, cannot be 

dealt with using deterministic approaches.

However, it should also be kept in mind that a given source of uncertainty cannot often be neatly 

separated into these types, with many sources containing elements of both.



Uncertainties in single risk analysis: seismic risk

The example of Cologne (Germany)

Seismic Hazard: PSHA in terms of macroseismic intensities with respect to the European

Macroseismic Scale (EMS-98, Grünthal, 1998)

Seismic vulnerability modelling is based on the vulnerability classification of EMS-98

The damage probability matrices were constructed following the guidelines of the EMS-98

Only direct monetary losses due to structural damage to residential buildings are taken into

account.

The level of losses is estimated in terms of mean damage ratio (MDR), determined as the cost of

repair over the total cost of the damaged buildings, as well as in monetary terms, taking into

consideration the estimated construction costs of residential buildings in Germany

Tyagunov et al., 2014



Tyagunov et al., 2014

The example of Cologne (Germany)

Uncertainties in single risk analysis: seismic risk



The example of Cologne (Germany)

Uncertainties in single risk analysis: seismic risk

Mean hazard curve from Grünthal

and Wahlström 2006.

Tyagunov et al., 2014



The example of Cologne (Germany)

Uncertainties in single risk analysis: seismic risk

Tyagunov et al., 2014

Uncertainties in vulnerability

model might be critical!



Multi Hazard and Multi Risk

The example of Cologne (Germany)

Tyagunov et al., 2014



Multi Hazard and Multi Risk

Tyagunov et al., 2014

The example of Cologne (Germany) Sensitivity analysis



Multi Hazard and Multi Risk

Tyagunov et al., 2014

The example of Cologne (Germany)

Sensitivity analysis



Multi Hazard and Multi Risk

Harmonizing and comparing single-type natural hazard risk estimations

Fleming et al., 2016

The “total risk” curve relates the exceedance probability of a given loss value, independent of the risk

source (or sources) causing it. If Pi(Lj) is the probability of exceedance of the jth loss per annum (Lj)

for the ith risk source (e.g., earthquakes, floods, landslides, etc.), then the total annual exceedance

probability curve can be calculated as:

P(Lj)tot = 1 - Π (1 − Pi(Lj)) 

which is valid for i independent single-type risk sources (i.e., neglecting possible risk interactions)



Multi Hazard and Multi Risk

Harmonizing and comparing single-type natural hazard risk estimations: visualization with a risk matrix

Fleming et al., 2016



Multi Hazard and Multi Risk

Harmonizing and comparing single-type natural hazard risk estimations: Prioritization of risk under 

uncertainties

Fleming et al., 2016

Are losses arising from two independent typologies of hazards for a specific return period are significantly different?

Distribution free ranking

Mann-Whitney test

is a nonparametric test of

the null hypothesis that,

for randomly selected

values X and Y from two

populations, the

probability of X being

greater than Y is equal to

the probability of Y being

greater than X.

Details on the test can

be found in Barlow, R.J.

(1989). Statistics A guide

to the use of statistical

methods in the physical

sciences, John Wiley

& Sons, 204 p. Available

in the library

https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Statistical_hypothesis_test
https://en.wikipedia.org/wiki/Null_hypothesis


Multi Hazard and Multi Risk

Tyagunov et al., 2018

Multihazard analysis fragility analysis

Example for fluvial earthen dikes in earthquake and flood-prone areas due to liquefaction.



Multi Hazard and Multi Risk

Tyagunov et al., 2018

Multihazard analysis fragility analysis

Example for fluvial earthen dikes in earthquake and flood-prone areas due to liquefaction.

The liquefaction potential, estimated using the method of Seed and Idriss (1971). The liquefaction

potential can be assessed with a factor of safety (FS) against liquefaction, which is determined as the

ratio of the capacity of the soil to resist liquefaction (CRR, cyclic resistance ratio) and the seismic

demand placed on the soil layer (CSR, cyclic stress ratio).

The CSR value can be estimated using the following expression:

(PGA), g is the gravitational acceleration, svo and s’vo are the total and effective overburden stresses 

(pressure imposed by above layers) of the soil, respectively, and rd is a stress reduction factor that 

depends on the depth. 

For the calculation of the vertical stresses as a function of depth, the variations in the water level in 

the river, which influences the phreatic surface and degree of saturation in the dike core is 

considered.

As for the CRR value, probably the most common method 

based on standard penetration testing (SPT). Here, due to the 

lack of SPT data, an approach based on the correlation 

between penetration resistance and the angle of internal 

friction for sandy soils was used



Multi Hazard and Multi Risk

Tyagunov et al., 2018

Multihazard analysis fragility analysis

Example for fluvial earthen dikes in earthquake and flood-prone areas due to liquefaction.

The performance of dikes under seismic ground motion loading is analysed using a simplified

one-dimensional model assuming that below the water level the soil is in a saturated state.

CSR (reflecting the level of seismic ground shaking) and CRR (depending on the dike material

properties and the water level) are calculated for all points of the dike cross-section from the

crest to the bottom (with a discretization interval of 5 cm). Once both the CSR and CRR values

have been determined at a certain point under certain load conditions, one can calculate the

factor of safety (FS) against liquefaction employing the following relationship (Seed and Idriss,

1971):

Computations of the liquefaction potential are done in a Monte Carlo simulation (MCS)

considering the variability (uncertainty) of the geotechnical parameters of the dikes

Based on a frequency analysis of the MCS results, dike failure probabilities are computed for

different points of the discretized two-dimensional load space, considering possible

combinations of peak ground acceleration and floodwater level.



Multi Hazard and Multi Risk

Tyagunov et al., 2018

Multihazard analysis fragility analysis

Example for fluvial earthen dikes in earthquake and flood-prone areas due to liquefaction.

The fragility results are presented in a three-dimensional form, with seismic and hydraulic load

described by peak ground acceleration and water level

Tyagunov et al., 2018



Multi Hazard and Multi Risk

Tyagunov et al., 2018

Multihazard analysis fragility analysis

Example for fluvial earthen dikes in earthquake and flood-prone areas due to liquefaction.



Multi Hazard and Multi Risk

Tyagunov et al., 2018

Multihazard analysis fragility analysis

Example for fluvial earthen dikes in earthquake and flood-prone areas due to liquefaction

Integrating  seismic and hydraulic load for the calculation of the multi-hazard failure probability 

The actual dike failure probabilities can be quantified by considering 

the probabilities of occurrence of the earthquake ground shaking level 

and flood return periods at different dike locations combined with the 

presented fragility curves

The simultaneous occurrence of a flood and an earthquake should be

assumed. The typical duration of a flood wave of 30 days is

considered for the Rhine. It is assumed that no dike repair actions are

undertaken in this period, which may affect the probability of failure.

Thus, the earthquake probability is computed for this period to be

combined in the following expression to determine the actual failure

probability


