

A.A. 2020-21

Corso «Materiali Naturali e Biomimetici»

- Biomimetic Materials -

Vanni Lughi

DIA – Department of Engineering and Architecture, University of Trieste

vlughi@units.it

"In materials processing, Nature replaces the massive use of energy (for example high temperatures or harsh chemical reactions) with the **use of information** (which equates with structure at all levels, molecule to ecosystem).

Indeed, most of the exceptional functionality of biological materials is due to their **complex structure**, driven by their chemical composition and morphology derived from DNA. It is here that the most important aspect of biomimetics emerges, and **it has the power to redesign engineering**."

moth eye

Examples of Bioinspiration in Art

Interior of Bird Bone

Bone Chair and Bone Armchair (Laarman, 2006 & 2008)

Examples of Bioinspiration in Architecture: Plants, Animals, and Replication

Evergreen Forest

Sagrada Familia, Barcelona, Spain (Gaudi, 1882)

Cross section of a dicot stem

Nakagin Tower, Tokyo (Kurokawa, 1972)

Ribs with intercostal muscles

Rib vaulting, Exeter Cathedral, Exeter UK (architect unknown, 1400)

Toothed gears on hind legs of insect Issus coleoptratus

Magnified view of the gears

Biomimicry

Natural materials are efficient

Little material and energy are used for complex requirements:

- Mechanical: static and dynamic loads
- Thermal and electrical: insulation, transpiration, sensing, actuation
- Sustainable: recyclable, biodegradable

Mimicking these characteristics is a very promising strategy for engineering

Most natural materials are hybrids and composites

Key role of surfaces!

Building Blocks of Natural Materials

Natural Materials

- Soft tissue
- Mineralized tissue
- Woods and wood-like materials
- Natural fibers
- Bio-materials

Applications

Objects					Typical materials		Desired properties
(a) Biomedical applications							
Biomedical devices, cathete micropumps, microvalves,			ers, drainage tubing, electronic circuits		PDMS, Polystyrene, PMMA		Superoleophobic, self-cleaning, anti-biofouling
(b) Automotive applications							
Windshield, window glass, side/rear view mirrors, camera lens (back of car)			Glass			Superoleophobic, self-cleaning, anti-finger touch, antifouling, optically transparent/ antireflective	
Display, headlights			PMMA for smart screens for capacitive touch material, Polycarbonate (head lights)			Superoleophobic, self-cleaning, anti-finger touch, antifouling, optically transparent/ antireflective	
Dashboard, door liners, seats, carpet, leather			Polyurethane, nylon (dashboard), Polypropylene (door liner), Polyurethane (seats), Leather (natural, synthetic polycarbonate)		Superoleophobic, self-cleaning, anti-finger touch, antifouling		
Car body			Painted Steel		Self-cleaning, anti-smudge, low drag		
(c) Smart screens for electronic display							
Screens	Soda-l terepht	lime glass, polyethylene Sup thalate, polycarbonate tou			roleophobic, self-cleaning, anti-finger h, antifouling, optically transparent		
(d) Plastic bottles and caps and plastic sheets							
Bottles		High-density polyethylene, polyeth terephthalate, polypropylene			hylene	Supe supe	roleophobic, rhydrophobic
Bottle caps		Polypropylene				Supe supe	roleophobic, rhydrophobic
Plastic packaging sheets		Polypropylene, acrylic				Supe	rroleophobic, rhydrophobic, anti-fouling

(reversible) Super-Adhesion

macrostructure

mesostructure

microstructure

75 micrometer

fine microstructure

Van der Waals forces

VdW forces between "large" (multimolecular and above) objects:

- Are very small
- Grow with the size of the object, R

But...
$$\frac{F_{VdW,macro}}{F_{gravity}} \cong A \frac{R}{12r^2} \frac{1}{\frac{4}{3}\pi R^3 \rho g} \cong \frac{A}{16\pi \rho r^2 g} \frac{1}{R^2}$$

VdW forces between "large" (multimolecular and above) objects:

- Grow with the size, R, but slower than volume forces (gravity, drag, lift...)
- Become preponderant at the nanometric scale
- \rightarrow Nanosystems tend to aggregate
- ightarrow Nanostructures can inspire dry, reversible adhesives

Contact Forces

Hertz

The contact between two smooth elastic bodies was investigated by Hertz (1896) who demonstrated that both the size and shape of the zone of contact followed from the elastic deformation of the bodies. For two spheres of radius R_1 and R_2 pressed together under a load P_0 (see figure 1 *a*) the radius a_0 of the circle of contact is given by

$$a_0^3 = \frac{3}{4}\pi(k_1 + k_2)\frac{R_1R_2}{R_1 + R_2}P_0,$$
(1)

where k_1 and k_2 are the elastic constants of the material of each sphere; that is

$$k_1 = \frac{1 - \nu_1^2}{\pi E_1}$$
 and $k_2 = \frac{1 - \nu_2^2}{\pi E_2}$

where ν is the Poisson ratio and E the Young modulus of each material. Resulting from local compression near to the contact region, distant points in the two spheres approach each other by a distance δ given by

$$\delta^3 = \frac{9}{16} \pi^2 (k_1 + k_2)^2 \frac{R_1 + R_2}{R_1 R_2} P_0^2. \tag{2}$$

Hertz used an optical microscope to measure the contact between glass spheres and so verified his theory experimentally. JKR

The following elementary analysis shows how surface attraction may be interpreted in terms of surface energy.

Consider two elastic spheres in contact under zero external load. Attractive forces between the surfaces produce a finite contact radius, a, a balance eventually being established between stored elastic energy and lost surface energy. The loss in surface energy $U_{\rm S}$ is given by

$$U_{\rm S} = -\pi a^2 \gamma, \tag{3}$$

where γ is the energy per unit contact area (i.e. the two surfaces). The force $F_{\rm S}$ associated with this energy change is

$$F_{\rm S} = -\,\mathrm{d}U_{\rm S}/\mathrm{d}x,\tag{4}$$

where x is the movement of the bodies and is approximately the same as δ which is given by the Hertz equations (1) and (2) but cannot be worked out exactly from these because the attractive surface forces disturb the stress distributions in the bodies. Thus we may only write that

$$x \approx a^2 (R_1 + R_2) / R_1 R_2 \tag{5}$$

combining equations (3), (4) and (5) gives

$$F_{\rm S} \approx \pi R_1 R_2 \gamma / (R_1 + R_2).$$
 (6)

This force acts in addition to the ordinary load P_0 between surfaces and the simple analysis shows that it may be related to the geometry and energy of the contacting surfaces. Further, the surface force will strongly influence the contact size when

$$P_0 \approx \pi R_1 R_2 \gamma / (R_1 + R_2).$$
 (7)

Suppose $R_1 = R_2 = 2 \text{ cm}$ and $\gamma = 600 \text{ erg} \text{ cm}^{-2}$ (for mica $\gamma \approx 300 \text{ erg} \text{ cm}^{-2}$ per surface) then P_0 is around 2 g.

Surprisingly, perhaps, the force of adhesion $F_{\rm S}$ between convex surfaces does not depend upon the elastic moduli of the materials. The modulus influences the contact radius, a, but, however, it can be seen from equations (3) and (5) that both the surface energy and the elastic work vary as a^2 , so that the force of adhesion is independent of a and hence of the elastic modulus. The more rigorous analysis which now follows provides the magnitude of the adhesive force but does not change this conclusion.

(dall'articolo originale di JKR!)

Key Adhesion Mechanisms

- Van der Waals (main mechanism)
- Capillary forces (secondary mechanism in humid conditions)

 $F_{\text{peel}} =$

(per unit width

Effect of Multiple Contacts in Peeling

Adhesive Force per Spatula

Effect of Humidity

Detachment Mechanism

Detachment Mechanism

Roughness amplitude (nm)
Self-cleaning

Role of hierarchy

Fig. 19.34 Multi-walled carbon nanotube structures: (left) grown on silicon by chemical vapor deposition, (right) transferred into a PMMA matrix, and then exposed on the surface after solvent etching (Yurdumakan et al. 2005)

Polyimide pillars (before and after use)

doi:10

Multi-level features

(1) Spin-coating photoresist

Nanotechnology 16 (2005) 1159-1166

A batch fabricated biomimetic dry adhesive

Michael T Northen^{1,3} and Kimberly L Turner²

(3) Spin-coat new photoresist layer

(4) Masked irradiation

(5) Development

DOI: 10.1002/adma.200801340

A Gecko-Inspired Reversible Adhesive**

By Michael T. Northen, Christian Greiner,* Eduard Arzt, and Kimberly L. Turner

Figure 1. Electron micrographs of synthetic structures (left) and the analogous gecko structures (right), samples from a Tokay Gecko (*Gekko Gecko*). A) Paddle surface coated with evenly spaced uncondensed aligned vertical polymer nanorods (left) and B) the branched terminus of a seta into spatulae (right), same magnification and scale bar 10 μ m. C) Freestanding nickel cantilevers and paddles coated with nanorods (left) and an array of setae (D) (right), same magnification and scale bar 50 μ m.

ADVANCED MATERIALS

Quanta superficie corporea deve essere coperta da elementi adesivi per sostenere il peso del corpo?

Superliquiphobicity (૭ > 150°)

Fig. 4.1 Schematic of the most prominent functions of the boundary layer on a hydrophobic microstructured plant surface. (A) Transport barrier limitation of uncontrolled water loss/leaching from interior and foliar uptake, (B) surface wettability, (C) anti-adhesive, self-cleaning properties: reduction of contamination, pathogen attack and reduction of attachment/locomotion of insects, (D) signaling: cues for host–pathogens/insect recognition and epidermal cell development, (E) optical properties: protection against harmful radiation, (F) mechanical properties: resistance against mechanical stress and maintenance of physiological integrity, and (G) reduction of surface temperature by increasing turbulent air flow over the boundary air later (adapted from Koch et al. 2009a)

Fundamentals of Wetting

 γ_{SL} : solid-liquid surface tension γ_{SV} : solid-liquid surface tension γ_{LV} : solid-liquid surface tension

partially wetting liquid : $\theta < 90^{\circ}$

いた あんかかない 東京 かん

equilibrium contact angle : Young Dupré relation

 $\gamma_{\rm SV}$, $\gamma_{\rm SL} = \gamma_{\rm LV} \cos \theta$

國際理論的高級自然的意思。但否

non wetting liquid : $\theta > 90^\circ$

perfect wetting liquid : $\theta = 0^{\circ}$

Wetting of a Rough Surface

Young's law on rough surface:

Wetting States

Liquid must be non-wetting

Transition between wetting states

Metastability of Wetting States

Compression of a water drop between two identical microtextured hydrophobic surfaces. The contact angle is measured as a function of the imposed pressure.

Metastability of wetting states

Metastability and irreversibility

Superficie liscia

Rugosità micrometrica

Rugosità nanometrica e gerarchica

Petal Effect

Petal (Cassie impregnating wetting state)

Lotus (Cassie's state)

Petal Effect

Petal Effect

PS Replica

Hysteresis

$$\cos\theta_{\rm adv} - \cos\theta_{\rm rec} = R_{\rm f}(1 - f_{\rm LA})(\cos\theta_{\rm adv0} - \cos\theta_{\rm rec0}) + H_{\rm r}$$

Homogeneous surface* $f_{LA} \rightarrow 0$ Hysteresis increases with R_f

Composite surface*

 $f_{LA} \rightarrow 1$ large CA and low Hysteresis (good for self-cleaning)

**under the droplet!*

lotus

rose

rose filled microstructure

Cassie

Wenzel

Cassie filled nanostructure

Wenzel filled nanostructure

Wenzel filled microstructure

Wenzel filled micro/nanostructure

Superhydrophobic with high adhesion surface

Figure 7. Shapes of droplets on various hierarchical structures. (a) Droplet on a horizontal surface of hierarchical structure with 23 µm pitch and 0.1 µg mm⁻² *n*-hexatriacontane, showing air pocket formation. (b) Droplet on a horizontal surface of hierarchical structure with 105 µm pitch and (i) 0.1 µg mm⁻² and (ii) 0.2 µg mm⁻² *n*-hexatriacontane, showing (i) no air pocket and (ii) air pocket formation, respectively. (c) Droplet on inclined surfaces of hierarchical structure with 105 µm pitch and 0.1 µg mm⁻² *n*-hexatriacontane, showing that droplet is still suspended when (i) vertical and (ii) upside down. Adapted from Bhushan & Her (2010). Scale bars, all 500 µm.

(b)

regime B₂

Figure 8. Optical micrographs of droplet evaporation on hierarchical structured surfaces with 105 μ m pitch value and (a) 0.1 μ g mm⁻² or (b) 0.2 μ g mm⁻² *n*-hexatriacontane. (a) The 0.1 μ g mm⁻² *n*-hexatriacontane coated sample has no air pocket formed between the pillars in the entire contact area until evaporation was complete. (b) The 0.2 μ g mm⁻² *n*-hexatriacontane coated sample has an air pocket, and then transition from the lotus regime to the 'rose petal' regime occurs. Adapted from Bhushan & Her (2010). Scale bars, both 500 μ m.

Design of general liquiphobic surfaces

- The matter of superhydrophobic surfaces is solved
- A fundamental problem in designing superoleophobic surfaces remains:

$$\theta_0 > \theta_c > 90^\circ$$

BUT there are no materials with surface energy low enough to guarantee $\theta_0 > 90^\circ$ with alkanes and other oily liquids

How to overcome this limitation?

HINT: Note that the wax on the lotus leaf is only weakly hydrophobic $\theta_0 = 74^\circ$, so there must be a strong structural reason for superhydrophobicity!

Key Engineering Parameters

- Surface Energy
- Roughness
- Geometry

Role of re-entrant geometry

 $\theta_0 > \theta_c > 90^\circ$
Key Engineering Parameters

Variable angle structures: composite surface with any contact angle

Key Engineering Parameters

Variable angle structures: composite surface with any contact angle

Use of a mixture of PMMA and fluoroPOSS to systematically change the contact angle

Plot *adv* and *rec* angles for smooth vs rough (reentrant) surfaces

Robustness

a alamy stock photo

CEBP8I www.alamy.cor

Hodoos

Engineering Surfaces for Liquiphobicity Nanonails D* values: 10-100; H* values: 100-100,000 Fractal structure 10,000 D* values: 5-10; H* values: 600-2,500 H* (dimensionless robustness) 1,000 Micro-hoodoos D* values: 10-30; H* values: 64-1,000 100 **Electrospun fibers** D* value:~10; H* value:~50 Vertical pillars D* value: 15; H* values: 46 10 Cassie's wire gratings D* values: 2-6, H* values: 0.5-8 $H^* = h_2 / h_1$ Lotus leaf, D* value: ~15; H* values: ~0 20 1 10 30 $D^* = (R + D) / R$

D* (dimensionless spacing)

Engineering Surfaces for Liquiphobicity

Table I: Values of the Apparent Contact Angles (θ^*) with Water and Octane and Corresponding Values of the Robustness Parameter H^* for Various Natural and Artificial Surfaces Discussed in the Literature.

	Water			Octane		
	θ* (deg)	H*	$\theta - \psi^a$ (deg)	θ* (deg)	H*	$\theta - \psi^a$ (deg)
Vertical pillars ²³	~160	~70	30	0	~50	-30
Fractal structure ^{8 b}	~165	740-3,800	75	0	600-2,500	0
Cassie's wire gratings19	~150	3.4-34	105	NAd	0.5-8	45
Electrospun fiber surface6	~165	~210	120	~140	~50	60
Lotus leaf ^c	~155	~180	~15	0	~0	NAd
Micro-hoodoos6	~165	95-1,500	120	140-165	64-1,000	60
Nanonails ¹⁰	~150	150-150,000	120	130-150	100-100,000	60

^aAny liquid for which $\theta - \psi < 0^{\circ}$ will immediately yield a fully wetted interface.

^bThe reentrant angle ψ is hard to measure on randomly shaped textures. On these fractal-like structures, ψ is expected to be ~45° as octane penetrates into the surface texture.

^cThe geometry of the lotus leaf has been estimated through the inspection of various published scanning electron microscopy (SEM) images and is possibly prone to error. ^dNot available.

Engineering surfaces for selective liquiphobicity

Self-cleaning

Strong and tough bioinspired materials

Structural Materials

Biopolymers

Microstructure and mechanical properties

Biopolymers

Spider silk

Gly

Gly

Ser

Gly

Ala

0 Ala

doi: 10.1126/science.1220854

Bone

Similarity between bone and bamboo

DOI: 10.1038/NMAT4089

Bone

Micro

Nano

Nacre

Hierarchical architecture and selected toughening mechanisms

Breaking of mineral bridges

Sheet nacre

Nacre

Toughening mechanisms

Crack deflection at soft interlayers Crack bridging Breaking of mineral bridges Viscoelastic behavior of organic component Tablet interlock Plastic deformation ahead of the crack Crack blunting Nanograin rotation

Nacre

Toughening mechanisms: nano grain rotation

Nacre: mechanical properties

Nacre: mechanical properties

Nacre-like hybrids

0.4

Crack extension (mm)

0.6

Ó

DOI: 10.1038/NMAT4089

Alumina / Cyanate Ester Composite (freeze casting + CE infusion

DOI 10.1038/s41427-018-0009-6

High content Alumina (98%) + silica-calcia glassy phase

High strength (480 MPa) and high fracture toughness (22 MPa m^{0.5})

Bioinspired nacre structural materials	Scale	Fracture toughness (MPa \sqrt{m})
Al/Al-Si	μm	5.5-10
Al ₂ O ₃ /Al-Si	μm	40
Al ₂ O ₃ /PMMA ^a	μm	30
Al ₂ O ₃ /TiO ₂	mm	12
SiC/Al ₂ O ₃ -Y ₂ O ₃	mm	14
Si ₃ N ₄ /BN	mm	28

Fabrication of nacre-like materials

Fabrication of nacre-like materials

An example of scalable fabrication process

Fabrication of nacre-like materials

Freeze casting

Fabrication of complex, hybrid hierarchical structures

Additive manufacturing

DOI: 10.1038/NMAT4089

Applications

Polymer Butterfly

MRS Bulletin 42 (2017)