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what is your experience?

https://www.menti.com/aljohokzeb8h
or
https://www.menti.com
ond enter the code
8521 0628

https://www.menti.com/aljohokzeb8h
https://www.menti.com/


Computers in Physics 

• control of instruments
• data collection and analysis 
• visualization 
• symbolic manipulation 
• . . . 



……
• numerical analysis: to solve equations which 

could not be tackled by analytical methods.

• simulations: to model and study physical 
phenomena with numerical techniques. This 
means doing virtual experiments in which our 
representation of the physical reality, though 
necessarily schematic and simplified, can be 
tuned and varied at will. 



Introduction
(1) Computational Physics

- Simulations and “what-if” experiments

- Deterministic and stochastic approaches

- A few examples

(2) This course 

(3) Other Courses concerning computational Physics
in our Physics training track

(4) Local resources 



(1) Computational Physics



The birth of 
computational physics

A PROBLEM for the MANIAC computer (Los Alamos, 1955)

Fermi-Pasta-Ulam-Tsingou



The birth of 
computational physics

A PROBLEM for the MANIAC computer (Los Alamos, 1955)

thermalization!

https://discover.lanl.gov/publications/national-
security-science/2020-winter/we-thank-
miss-mary-tsingou/



The birth of 
computational physics

PROBLEM: Fermi-Pasta-Ulam-Tsingou  1955

A chain of N particles linked by springs
(one-dimensional analogue of atoms in a crystal)

Linear interaction (Hooke’s law): 
analytical solution

there are N 'normal' modes 
(i.e., patterns of motion in which all parts of the system oscillate with the same 

frequency and with a fixed phase relation)
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This notion of sharing energy even-
ly among different modes of motion is 
fundamental. This precept, known as 
the equipartition theorem of statistical 
mechanics, can be extended to include 
molecules that are more complicated 
than billiard-ball-like helium, which 
can partition energy in rotational or 
vibrational movements as well. Ap-

plication of the equipartition theorem 
allows physicists to calculate such 
things as the heat capacity of a gas 
from basic theory.

FPU’s premise was that they could 
start their system off with the masses in 
just one simple mode of oscillation. If 
the system had linear springs (and no 
damping forces), that one mode would 
continue indefinitely. With nonlinear 
springs, however, different modes of 
oscillation can become excited. FPU ex-
pected, the system would “thermalize” 
over time: The vibrating masses would 
partition their energy equally among 
all the different modes of oscillation 
that were possible for this system.

Visualizing the possible modes of os-
cillation is a little tricky for FPU’s string 
of masses, but it’s easy to see how differ-
ent modes of vibration arise in, for exam-
ple, a plucked violin string. One mode 
corresponds to the fundamental tone, in 
which the string shifts up and down the 
most at the center and progressively less 
as you approach its fixed ends. Another 
mode is the first harmonic (an octave 
higher), in which one half of the string 
moves up while the other moves down, 
and so forth. A vibrating string has an 
infinite number of modes, but FPU’s 
system has a finite number (equal to the 
number of masses present).

To conduct their study, FPU (along 
with Mary Tsingou, who, although not 
an author on the report, contributed 
significantly to the effort) considered 
different numbers of masses (16, 32 
or 64) in their computational experi-
ments. They then numerically solved 
the coupled nonlinear equations that 
govern the motion of the masses. 
(They could easily derive these equa-
tions from their nonlinear spring func-
tion and Newton’s famous law f = ma.) 
In this way, FPU used the MANIAC to 
compute the behavior for times corre-
sponding to many periods of the fun-
damental mode in which they started 
the system. They were absolutely as-
tonished by the results.

Initially, energy was shared among 
several different modes. After more 
(simulated) time elapsed, their system 
returned to something that resembled 
its starting state. Indeed, 97 percent 
of the energy in the system was even-
tually restored to the mode they had 
initially set up. It was as if the billiard 
balls had magically reassembled from 
their scattered state to the perfect ini-
tial triangle!

Of course, not everybody was con-
vinced by these computations. One 
popular conjecture was that FPU had 
not run the simulations long enough—
or perhaps the time required to achieve 
equipartition for the FPU system was 
simply too long to be observed numeri-
cally. However, in 1972 Los Alamos 
physicist James L. Tuck and Tsingou 
(who at that point was using her mar-
ried name, Menzel) put these doubts to 
rest with extremely arduous numerical 
simulations that found recurrences on 
such amazingly long time scales that 
they have sometimes been dubbed “su-
perrecurrences.” This research made it 
clear that equipartition of energy wasn’t 
hidden from FPU by computer simula-
tions that were too short—something 
more interesting was indeed afoot.

1 + 1 = 3
Why did FPU think that nonlinear 
springs would ensure an equipartition 
of energy in their experiment? And 
what is this strange concept of non-
linearity anyway? Obviously, the term 
refers to a departure from linearity, 
which we’ve discussed thus far only in 
terms of the proportionality of inputs 
and outputs.

Students of physics study linear 
systems in introductory classes be-
cause they are much easier to analyze 
and understand. When a mass is con-
nected to a linear spring and given a 
shove, its subsequent behavior is very 
simple: It will oscillate back and forth 
at the system’s resonant frequency, 
which depends only on the size of the 

Figure 2. Fermi, Pasta and Ulam modeled a series of masses connected to one another by springs. The masses move back and forth according 
to Newton’s law of motion f = ma (force equals mass times acceleration) along the line that connects them. Here the relevant forces are the 
restoring forces applied by the springs. What made the study so novel and fascinating is that the restoring forces were related nonlinearly to 
the amount of spring compression or extension.

Figure 3. Fermi, Pasta and Ulam expected the 
energy in their mass-spring system eventually 
to become shared equally between different 
modes of motion, which are analogous to the 
modes of vibration of a plucked violin string. 
The fundamental mode of vibration for such 
a string (purple) corresponds to the note that 
is heard. Higher-frequency vibrational modes 
give rise to various harmonics of that note. 
The motions shown here correspond to the 
second (pink), third (green), fourth (blue) and 
fifth (orange) harmonics.



Example with 2 oscillators:
'normal' modes 

More on: https://fisicaondemusica.unimore.it/Catena_di_Fermi-Pasta-Ulam.html

http://fisicaondemusica.unimore.it/Oscillatori_accoppiati.html



The birth of 
computational physics

PROBLEM: Fermi-Pasta-Ulam-Tsingou 1955

A chain of N particles linked by springs
(one-dimensional analogue of atoms in a crystal)

Linear interaction (Hooke’s law): 
analytical solution

The energy given to a single 'normal' mode 
always remains in that mode.

216     American Scientist, Volume 97 © 2009 Sigma Xi, The Scientific Research Society. Reproduction 
with permission only. Contact perms@amsci.org.

This notion of sharing energy even-
ly among different modes of motion is 
fundamental. This precept, known as 
the equipartition theorem of statistical 
mechanics, can be extended to include 
molecules that are more complicated 
than billiard-ball-like helium, which 
can partition energy in rotational or 
vibrational movements as well. Ap-

plication of the equipartition theorem 
allows physicists to calculate such 
things as the heat capacity of a gas 
from basic theory.

FPU’s premise was that they could 
start their system off with the masses in 
just one simple mode of oscillation. If 
the system had linear springs (and no 
damping forces), that one mode would 
continue indefinitely. With nonlinear 
springs, however, different modes of 
oscillation can become excited. FPU ex-
pected, the system would “thermalize” 
over time: The vibrating masses would 
partition their energy equally among 
all the different modes of oscillation 
that were possible for this system.

Visualizing the possible modes of os-
cillation is a little tricky for FPU’s string 
of masses, but it’s easy to see how differ-
ent modes of vibration arise in, for exam-
ple, a plucked violin string. One mode 
corresponds to the fundamental tone, in 
which the string shifts up and down the 
most at the center and progressively less 
as you approach its fixed ends. Another 
mode is the first harmonic (an octave 
higher), in which one half of the string 
moves up while the other moves down, 
and so forth. A vibrating string has an 
infinite number of modes, but FPU’s 
system has a finite number (equal to the 
number of masses present).

To conduct their study, FPU (along 
with Mary Tsingou, who, although not 
an author on the report, contributed 
significantly to the effort) considered 
different numbers of masses (16, 32 
or 64) in their computational experi-
ments. They then numerically solved 
the coupled nonlinear equations that 
govern the motion of the masses. 
(They could easily derive these equa-
tions from their nonlinear spring func-
tion and Newton’s famous law f = ma.) 
In this way, FPU used the MANIAC to 
compute the behavior for times corre-
sponding to many periods of the fun-
damental mode in which they started 
the system. They were absolutely as-
tonished by the results.

Initially, energy was shared among 
several different modes. After more 
(simulated) time elapsed, their system 
returned to something that resembled 
its starting state. Indeed, 97 percent 
of the energy in the system was even-
tually restored to the mode they had 
initially set up. It was as if the billiard 
balls had magically reassembled from 
their scattered state to the perfect ini-
tial triangle!

Of course, not everybody was con-
vinced by these computations. One 
popular conjecture was that FPU had 
not run the simulations long enough—
or perhaps the time required to achieve 
equipartition for the FPU system was 
simply too long to be observed numeri-
cally. However, in 1972 Los Alamos 
physicist James L. Tuck and Tsingou 
(who at that point was using her mar-
ried name, Menzel) put these doubts to 
rest with extremely arduous numerical 
simulations that found recurrences on 
such amazingly long time scales that 
they have sometimes been dubbed “su-
perrecurrences.” This research made it 
clear that equipartition of energy wasn’t 
hidden from FPU by computer simula-
tions that were too short—something 
more interesting was indeed afoot.

1 + 1 = 3
Why did FPU think that nonlinear 
springs would ensure an equipartition 
of energy in their experiment? And 
what is this strange concept of non-
linearity anyway? Obviously, the term 
refers to a departure from linearity, 
which we’ve discussed thus far only in 
terms of the proportionality of inputs 
and outputs.

Students of physics study linear 
systems in introductory classes be-
cause they are much easier to analyze 
and understand. When a mass is con-
nected to a linear spring and given a 
shove, its subsequent behavior is very 
simple: It will oscillate back and forth 
at the system’s resonant frequency, 
which depends only on the size of the 

Figure 2. Fermi, Pasta and Ulam modeled a series of masses connected to one another by springs. The masses move back and forth according 
to Newton’s law of motion f = ma (force equals mass times acceleration) along the line that connects them. Here the relevant forces are the 
restoring forces applied by the springs. What made the study so novel and fascinating is that the restoring forces were related nonlinearly to 
the amount of spring compression or extension.

Figure 3. Fermi, Pasta and Ulam expected the 
energy in their mass-spring system eventually 
to become shared equally between different 
modes of motion, which are analogous to the 
modes of vibration of a plucked violin string. 
The fundamental mode of vibration for such 
a string (purple) corresponds to the note that 
is heard. Higher-frequency vibrational modes 
give rise to various harmonics of that note. 
The motions shown here correspond to the 
second (pink), third (green), fourth (blue) and 
fifth (orange) harmonics.



The birth of 
computational physics

PROBLEM: Fermi-Pasta-Ulam-Tsingou  1955

in presence of a weak non linear coupling 
(quadratic or cubic correction to the linear term), 

which modes will be excited after a long 
enough time? 

Expected behavior based on the equipartition theorem: 
the energy will be equally distributed among all the 

degrees of freedom of the system.
However: analytical solution impossible
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This notion of sharing energy even-
ly among different modes of motion is 
fundamental. This precept, known as 
the equipartition theorem of statistical 
mechanics, can be extended to include 
molecules that are more complicated 
than billiard-ball-like helium, which 
can partition energy in rotational or 
vibrational movements as well. Ap-

plication of the equipartition theorem 
allows physicists to calculate such 
things as the heat capacity of a gas 
from basic theory.

FPU’s premise was that they could 
start their system off with the masses in 
just one simple mode of oscillation. If 
the system had linear springs (and no 
damping forces), that one mode would 
continue indefinitely. With nonlinear 
springs, however, different modes of 
oscillation can become excited. FPU ex-
pected, the system would “thermalize” 
over time: The vibrating masses would 
partition their energy equally among 
all the different modes of oscillation 
that were possible for this system.

Visualizing the possible modes of os-
cillation is a little tricky for FPU’s string 
of masses, but it’s easy to see how differ-
ent modes of vibration arise in, for exam-
ple, a plucked violin string. One mode 
corresponds to the fundamental tone, in 
which the string shifts up and down the 
most at the center and progressively less 
as you approach its fixed ends. Another 
mode is the first harmonic (an octave 
higher), in which one half of the string 
moves up while the other moves down, 
and so forth. A vibrating string has an 
infinite number of modes, but FPU’s 
system has a finite number (equal to the 
number of masses present).

To conduct their study, FPU (along 
with Mary Tsingou, who, although not 
an author on the report, contributed 
significantly to the effort) considered 
different numbers of masses (16, 32 
or 64) in their computational experi-
ments. They then numerically solved 
the coupled nonlinear equations that 
govern the motion of the masses. 
(They could easily derive these equa-
tions from their nonlinear spring func-
tion and Newton’s famous law f = ma.) 
In this way, FPU used the MANIAC to 
compute the behavior for times corre-
sponding to many periods of the fun-
damental mode in which they started 
the system. They were absolutely as-
tonished by the results.

Initially, energy was shared among 
several different modes. After more 
(simulated) time elapsed, their system 
returned to something that resembled 
its starting state. Indeed, 97 percent 
of the energy in the system was even-
tually restored to the mode they had 
initially set up. It was as if the billiard 
balls had magically reassembled from 
their scattered state to the perfect ini-
tial triangle!

Of course, not everybody was con-
vinced by these computations. One 
popular conjecture was that FPU had 
not run the simulations long enough—
or perhaps the time required to achieve 
equipartition for the FPU system was 
simply too long to be observed numeri-
cally. However, in 1972 Los Alamos 
physicist James L. Tuck and Tsingou 
(who at that point was using her mar-
ried name, Menzel) put these doubts to 
rest with extremely arduous numerical 
simulations that found recurrences on 
such amazingly long time scales that 
they have sometimes been dubbed “su-
perrecurrences.” This research made it 
clear that equipartition of energy wasn’t 
hidden from FPU by computer simula-
tions that were too short—something 
more interesting was indeed afoot.

1 + 1 = 3
Why did FPU think that nonlinear 
springs would ensure an equipartition 
of energy in their experiment? And 
what is this strange concept of non-
linearity anyway? Obviously, the term 
refers to a departure from linearity, 
which we’ve discussed thus far only in 
terms of the proportionality of inputs 
and outputs.

Students of physics study linear 
systems in introductory classes be-
cause they are much easier to analyze 
and understand. When a mass is con-
nected to a linear spring and given a 
shove, its subsequent behavior is very 
simple: It will oscillate back and forth 
at the system’s resonant frequency, 
which depends only on the size of the 

Figure 2. Fermi, Pasta and Ulam modeled a series of masses connected to one another by springs. The masses move back and forth according 
to Newton’s law of motion f = ma (force equals mass times acceleration) along the line that connects them. Here the relevant forces are the 
restoring forces applied by the springs. What made the study so novel and fascinating is that the restoring forces were related nonlinearly to 
the amount of spring compression or extension.

Figure 3. Fermi, Pasta and Ulam expected the 
energy in their mass-spring system eventually 
to become shared equally between different 
modes of motion, which are analogous to the 
modes of vibration of a plucked violin string. 
The fundamental mode of vibration for such 
a string (purple) corresponds to the note that 
is heard. Higher-frequency vibrational modes 
give rise to various harmonics of that note. 
The motions shown here correspond to the 
second (pink), third (green), fourth (blue) and 
fifth (orange) harmonics.



The birth of 
computational physics

PROBLEM: Fermi-Pasta-Ulam-Tsingou 1955
Numerical solution with MANIAC (originally: calculations for N=5)

Pictures from: Thierry Dauxois and Stefano Ruffo (2008), Scholarpedia, 3(8):5538. doi:10.4249/scholarpedia.5538
http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations and other web sites

here: N=32;
after initial 

excitation of the 
mode k=1 and 
157 periods, 

almost all the 
energy is back 
to this mode !!!

Energy vs. time 
for the first 
three modes:

K= 1 2 3

time

http://dx.doi.org/10.4249/scholarpedia.5538
http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations


Simulations as 
“virtual experiments”

A few similarities between experiments:



Simulations as 
“virtual experiments”

A few similarities between experiments:

With errors!!!



• Importance of simulations: “what–if”
experiments (large flexibility in varying 
parameters; e.g. material properties can be 
studied also under conditions not accessible in 
real labs) ; predictions, not just description.

• Use of simulations: not “final goal”, but 
“instruments” to study and shed light on 
complex phenomena and/or systems with many 
degrees of freedom or many variables and 
parameters 

• in the last decades, the numerical simulation 
has emerged as the third fundamental paradigm 
of science, beside theory and experiment 



experience theory

simulation



• “The computer is a tool for clear 
thinking” (Freeman J. Dyson) 

• “. . . whose [of the calculations] purpose 
is insight, not numbers” (Richard W. 
Hamming) 

The purposes 
of the scientific calculus



• deterministic
Info can be obtained both on the equilibrium 
properties and on the dynamics of the system 

• stochastic (Monte Carlo, MC) 
Typically to simulate random processes, 
and/or sampling of most likely events 

TWO different approaches 
for numerical simulations



The deterministic approach
We can write the equations of motion 

(Classical => Newton; Quantum => Schroedinger)

and we know the initial condition

the problem is related to the 
numerical integration of differential equations
(or integral-differential in quantum problems)

(like the FPUT problem)



The deterministic approach
Numerical integration of the eqs. of motion: 

discretization and iteration

Different algorithms according whether
the equation is 1st , 2nd order…

(the equation for the velocity is 1st order),
whether the force is dependent or not on the 

velocity,
to which order…

Examples =>



The deterministic approach

x(1) v(1) F(1) x(2) v(2) F(2) x(3) v(3) F(3) ... ... …

F1
F2

F3
F4

1) Classical Discretization of the equation of motion and iteration:

v1
v2 v3 v4



The deterministic approach
2) Quantum

Discretization of the Schrödinger equation

NEXT WEEK!



The stochastic approach

1) Some physical processes which are 
inherently probabilistic.
2) Many large classical systems which 
have so many variables, or degrees of 
freedom, that an exact treatment is 
intractable and not useful. 

Useful to model:



1) Probabilistic physical processes
We attempt to follow the `time dependence’ of a 
model where change, or growth, does not proceed 
in some rigorously predefined fashion (e.g. 
according to Newton’s equations of motion) but 
rather in a stochastic manner which depends on a 
sequence of random numbers which is generated 
during the simulation.
E.g.: radioactive decay

The stochastic approach



2) Systems with many degrees of freedom
E.g.: Thermodynamic properties of gases

Impossible and not useful to know 
the exact positions and velocities of all molecules.

Useful properties are statistical averages: average energy 
of particles (temperature), average momentum change from 
collisions with walls of container (pressure), etc.

The error in the averages decreases as the number of 
particles increases. Macroscopic volume of gas has O(10^23) 
molecules. Thus a statistical approach works very well!

The stochastic approach



2) Systems with many degrees of freedom
The stochastic approach

(problem faced with MANIAC computer)



Monte Carlo
Monte Carlo refers to any procedure which 
makes use of random numbers (*)

Monte Carlo is used in:
-Numerical analysis
-Stochastic Simulations

(*) a sequence of random numbers is a set 
of numbers which looks unpredictable but 
with well defined statistical properties



Monte Carlo Methods: 
to calculate integrals

“Hit or Miss” Method: Ηοw much is π?

A1

C B

y

x0

1

Algorithm:

•Generate uniform, random 
x and y between 0 and 1

•Calculate the distance from 
the origin: d=(x2+y2)1/2

•If d ≤ 1, thit = thit + 1

•Repeat for ttot trials tot

hit

τ
τ

π

4    

OABC Square of Area
CA Curve Under Area x 4 

=

≈

.
.. .

.
..

.

.
..



A few selected examples
of applications
(here: atomistic simulations 

in condensed matter…)



From “normal” scales…

SIMULATION
of the Brownian motion

Sedimentation of hard spheres in a 2D 
system with walls.
Included interactions with smaller 
particles (not shown here) representing 
the thermohydrodynamic solvent

(deterministic, classical 
simulation)

(classical)



... colloidal systems growth on a 
substrate...

REAL IMAGE (by 
Atomic Field Microscopy) of a 
gold colloid of about 15 nm on 
a mica substrate

SIMULATION
of a diffusion-limited 
auto-aggregation model 
(fractal)

(stochastic, classical simulation)



with organic molecules 
(thiols)
Au
S

... to the nanoscale:
passivation of nanoparticles

Credits: J. Olmos-Asar



(M.P. in 
collaboration
with TASC; 

Science, 2018)

Grafene
@Ni(111)

EXPERIMENTAL
FAST-STM
MOVIE

… to the atomic scale



(M.P. in 
collaboration
with TASC;

Science, 2018)

Grafene
@Ni(111)

CLASSICAL 
MOLECULAR 
DYNAMICS

SIMULATION

… to the atomic scale



CO2 + H -> HCOO  @ Ni(110)

(deterministic, quantum mechanical simulation)

…including chemical reactions



A wide scenario…
even within the condensed matter:

• wide range of length scales: ≈12 orders of magnitude 
(nuclei/electrons/atoms/chemical bonds ~ 10−12 m, 
fracture/macroscopic mechanical phenomena ~ 100 m; 
nano / micro / meso / macroscopic scales) 

• wide range of time scales: ≈12 orders of magnitude 
(nuclei/electrons/atoms/chemical bonds ~ 10−12 s, 
fracture/macroscopic mechanical phenomena ~ year)

• wide range of chemical-physical properties: 
structural, elastic, vibrational, electronic, dielectric, 
magnetic, optical, thermal . . . 

• wide range of materials: different phases, traditional 
materials (crystalline / amorphous , metals/ 
semiconductors / insulators . . .), new materials. . . 



different kind of 
interactions

• Classic
• Quantum

different approaches
• Deterministic
• Stochastic



…and also different specific 
techniques

corresponding to different size/time scales: 
• continuous models (for macroscopic systems) 
• atomistic simulations
- ab - initio techniques (or “first-principles”): up to 

~103 atoms, 10 ps
- Semiempirical techniques: up to 107 atoms, 1 ms
- models at different levels



Some techniques and systems are 
not computationally very demanding
(our experiments will be quite small and simple!!!)

others are very hard and need

…and different computational 
workload

High Performance Computing
resources



https://www.top500.org/ - updated June 2023
High performance computing 

https://www.top500.org/


Possible access to CINECA HPC 
resources for research but also 
for thesis 
(direct calls or through 
UniTS-CINECA agreement)

High performance computing 

a cluster @DF!
coming s

oon
And…



(2.1) This course
-contents-



This course
• IS NOT a course on Information 

Technology, Computer Science, 
Programming languages…

• BUT a PHYSICS LAB.
• focusing on modeling, problem 
solving and algorithms 

• Not exhaustive, of course…



This course
• basic ingredients of the 
deterministic approach     
(only quantum)

• Stochastic approach,       
classical interactions       
(mainly) 



TENTATIVE LIST OF ARGUMENTS

Discretization of differential equation: Numerov algorithm.

Properties and generation of Random Numbers with different distributions.

Monte Carlo simulation of Random Walks.

Numerical integration in 1 dimension: deterministic and stochastic algorithms; 

Monte Carlo algorithms. 

Error estimate and reduction of the variance methods. 

Metropolis algorithm for arbitrary random number generation.

Metropolis method in the canonical ensemble.

Ising model and Metropolis-Monte Carlo simulation. 

Microstates and macrostates: efficient algorithm for the numerical calculation of entropy. 

Variational Monte Carlo in quantum mechanics (basics). 

Lattice gas: vacancy diffusion in a solid. 

Chaos and determinism: classical billiards and chaotic billiards, logistic maps; Lyapunov exponents. 

Fractals: diffusion and aggregation, models for surface growth simulation. Percolation. 

(Genetic algorithms.   Population dynamics and epidemic models.)



On MS Teams: registration of lectures (42nd2c3)

On moodle: everything else https://moodle2.units.it
Then select:
ÞDipartimento di Fisica
ÞLaurea Magistrale
ÞSM23 – FISICA
ÞA.A. 2023-24
Or point directly to:
https://moodle2.units.it/course/view.php?id=11402

Course material on: 
MS Teams & moodle2

https://moodle2.units.it
https://moodle2.units.it


You can find the material lecture by lecture
-Important announcements
-Detailed contents of each lecture
-Lectures notes
-Exercises
-Info about textbooks
-links, tutorials (for surviving with Linux/Unix, 
Fortran90, Python, gnuplot…)
-Info about exams
SUBSCRIBE TO THE COURSE to:
-register your attendance lecture by lecture
-be able to upload homeworks

Course on moodle2 



Languages

Fortran90 Python

?



Fortran compilers
• gfortran (free):  ([] for optional) 
$ gfortran [–std=f95] [-o test.o] test.f90 

The option -std=f95 allows to obtain, after 
compilation, supplementary info about the 
commands you wrote in your code (the syntax, 
whether it is standard fortran or not…)

OPTIONS ARE IMPORTANT AND USEFUL!



Other possible Fortran compilers
• g95 (free)

ifort (Fortran Intel compiler, NOT free)   

F (free; useful options: -ieee=full for floating 
point exception manipulation)

….

• To run the executables (e.g. test.o or a.out by 
default):    
$ ./a.out  (or $bash a.out)



A few useful 
UNIX (Linux, MacOSx,…) commands:

Check your space! 
$ quota   
or “du” (displays disk usage statistics):

$ du ~ | more
(if “-k” flag is specified, the number of 1024-byte 

blocks used by the file is displayed):
$ du -k ~ | more    (Last line shows the total)
$ find . -size +20000 –print (to identify big files)



Python:
Wednesday



- lectures schedule
- rules for attendance
- exams

(2.2) This course



Schedule:
1 topic / week: 3 h lectures + 3 h lab

sketch solutions in 
Python

(A. Marrazzo) 

Start do-it-yourself!

Introduce the topic
+ sketch solutions in 

Fortran90 
+ give exercises
(M. Peressi) 

Hands-on session 

with Python
(A. Marrazzo)



• attendance: 75% compulsory (this is a lab course!)
• Exercises during the course (for some of them, a 

short report will be requested as homework 
within ~1 week from the lecture)

• Exam: homework reports (if not uploaded during 
the course, they must be given at the end with 
some additional request) + a final project 

Attendance, homeworks, exams:



(3) Activity/Courses in 
Computational Physics

in the Condensed Matter training track



others
• “Information Technology Tools for Physics” (D. 

Coslovich, I semester)
• “Numerical Methods for Electronic Structure” (P. 

Giannozzi, II semester) (deterministic, quantum)
• “Classical simulations of many body systems” (E. 

Smargiassi, I semester) (deterministic, classical)
• “Laboratory of Atomistic and Molecular Simulations”

(D. Coslovich, II semester) (also mesoscale, solid & soft 
matter, machine learning approaches)





=> Select properly the keyboard language
=> You may increase font size:
gsettings set org.gnome.desktop.interface scaling-factor 2

(4) Local resources
virtual Lab of Physics Dept.
Access:
on VPN UNITS (Forticlient)
through Vmware Horizon client
using your own UniTS credentials
ÞAULA-CORSI-FISICA 
ÞIt’s a temporary space! Save your work!
ÞDo LOGOUT at the end
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