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Chapter 20

Implications of Cognitive Science Research for

Mathematics Education

Robert S. Siegler, Carnegie Mellon University

Over the past 20 years, a great deal of cognitive
science research has focused on mathematics
learning. The majority of this research has
examined Dbasic capabilities such as counting,
understanding of numerical magnitudes, arithmetic
(both word problems and purely numerical
problems), and pre-algebra. Another, somewhat
smaller, body of research has been devoted to
students' understanding of, and learning about,
algebra, geometry, and computer programming. This
research now allows relatively firm conclusions to be
drawn about a number of aspects of mathematics
learning relevant to the NCTM standards. This
paper focuses on 8 areas in which such conclusions
can be drawn:

1. Mathematical understanding before
children enter school

2. Pitfalls in mathematics learning

3. Cognitive variability and strategy choice
4. Individual differences

5. Discovery and insight

6, Relations between conceptual and
procedural knowledge

7. Cooperative learning
8. Promoting analytic thinking and transfer

The remainder of this paper examines
conclusions based on cognitive science research on
each of these topics. This work informs us regarding
how children typically learn particular skills and
concepts, the stumbling blocks that many of them
encounter, and instructional practices that can

produce greater learning. The examples that are
discussed focus on acquisition of particular
mathematical procedures and concepts, rather than
broad philosophical issues about the nature of
children as learners or about what mathematics
should be taught. These latter issues are largely
outside the purview of cognitive science approaches,
or indeed any empirically based approach to
mathematics learning. Further, one of the main
lessons of cognitive science research is that successful
teaching and learning depends on careful, detailed,
analysis of the particulars of individual children
learning particular skills and concepts. Therefore,
this chapter deliberately steers clear of statements
about math learning in general, instead focusing on
findings concerning how children learn certain key
ideas and procedures.

Mathematical Understanding Before
Children Enter School

Children’s learning of mathematics in school
contexts builds on a substantial base of
understandings that they acquire before they begin
their formal education. Understanding what
children already know when they enter school is
critical both for identifying what they still need to
be taught and also for identifying strengths on
which further instruction can be based. Some of
these acquisitions are universal; others depend on
environments within which children develop.
Differences among social and cultural groups in the
degree to which they master this latter, more
variable, group of skills is clearly related to
subsequent differences in learning of mathematics at
school. Also striking is the fact that from early in
life, children possess relatively abstract, as well as
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concrete, understanding of numbers and

mathematical concepts.
Cardinality

One fundamental underpinning of understanding
of mathematics, the concept of cardinality, appears
to be universally present from the first months out of
the womb. By four months of age, perhaps earlier,
infants can discriminate one object from two, and two
objects from three (Antell & Keating, 1983; Starkey,
Spelke & Gelman, 1990; van Loosbroek & Smitsman,
1990). This was learned through the use of the
habituation paradigm. Infants were shown a
sequence of pictures, each of which contained a
small set of objects, such as three circles. The sets
differed from trial to trial in size of the objects,
brightness, distance apart, and other properties, but
they always had the same number of objects. Once
the infants habituated to displays with this number
of objects, they were shown a set that was
comparable in other ways to the displays they had
seen but that had a different number of objects. Their
renewed looking attested to their having abstracted
the number of objects in the previous sets.

These nascent understandings of cardinality also
make it possible for infants to realize the
consequences of adding and subtracting small numbers
of objects (Simon, Hespos, & Rochat, 1995, Wynn,
1992). In one task, 5-month-olds saw one or two
objects, then saw a screen come down in front of them,
then saw a hand place another object behind the
screen, and then saw the screen rise. Sometimes the
result was what would be expected by adding the
one new object to the one or two that were already
behind the screen; other times (through trickery) it
was not. The infants looked for a longer time when
the number of objects was not what it should have
been, thus suggesting that they expected the correct
number of objects to be present.

Not until three or four years later, however, do
children discriminate among even slightly larger
numbers of objects, such as four objects versus five or
six (Starkey & Cooper, 1980; Strauss & Curtis, 1984)
This suggests that the competencies that develop in
infancy are produced by subitizing, a quick and
effortless process of recognition that people can
apply only to sets of one to three or four objects.
When we see a row of between one and four objects,
we feel like we immediately know how many there
are; in contrast, with larger numbers of objects, we
usually feel less sure and often need to count. Adults
and 5-year-olds are similar to infants in being able
to very rapidly identify the cardinal value of one to
three or four objects, but not larger sets, through
subitizing (Chi & Klahr, 1975).

At 3 or 4 years of age, children become proficient
in another means of establishing the cardinal value
of a set--counting. This allows them to assign
numbers to larger sets than can be subitized. Gelman
and Gallistel (1978) noted the rapidity with which
children learn to count and identified a set of
counting principles on which this rapid learning
seems to be based. The fact that preschoolers possess
such principles is particularly important because it
indicates that from early in learning, children’s
understanding of mathematics includes abstract
knowledge, as well as set procedures and factual
information. Equally important, from the beginning,
the abstract knowledge influences learning and
execution of procedures. The five counting principles
that Gelman and Gallistel identified were:

1. The one-one principle: Assign one and only
one number word to each object.

2. The stable order principle: Always assign
the numbers in the same order.

3. The cardinal principle: The last count
indicates the number of objects in the set.

4. The order irrelevance principle: The order in
which objects are counted is irrelevant.

5. The abstraction principle: The other
principles apply to any set of objects.

Several types of evidence indicate that children
understand all of these principles by age 5, and some
of them by age 3 (Gelman & Gallistel, 1978). Even
when children err in their counting, they show
knowledge of the one-one principle, since they
assign exactly one number word to most of the objects.
For instance, they might count all but one object once,
either skipping or counting twice the single
miscounted object. These errors seem to be ones of
execution rather than of misguided intent. Children
demonstrate knowledge of the stable order principle
by almost always saying the number words in a
constant order. Usually this is the conventional
order, but occasionally it is an idiosyncratic order
suchas "1, 3, 6." The important phenomenon is that
even when children use an idiosyncratic order, they
use the same idiosyncratic order on each count.
Preschoolers demonstrate knowledge of the cardinal
principle by saying the last number with special
emphasis. They show understanding of the
abstraction principle by not hesitating to count sets
that include different types of objects. Finally, the
order irrelevance principle seems to be the most
difficult, but even here, 5-year-olds demonstrate
understanding. Many of them recognize that counting
can start in the middle of a row of objects, as long as
each object is eventually counted. Although few
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children can state the principles, their counting
suggests that they know them.

Ordinality

Mastery of ordinal properties of numbers, like
mastery of cardinal properties, begins in infancy.
However, it seems to begin a little later, between 12
and 18 months.

The most basic ordinal concepts are more and
less. To test when infants understand these concepts
as they apply to numbers, Strauss and Curtis (1984)
found that 16- to 18-month-olds have a rudimentary
understanding of these concepts. Babies who had
been reinforced for reaching for a square with 2 dots
rather than 1, and then one with 3 dots rather than
2, subsequently selected a square with 4 dots rather
than 3, thus indicating understanding of the ordinal
property "more numerous'. They also succeeded
when the square with fewer dots was reinforced.

As with cardinality, extension of these early
understandings of ordinality beyond sets with a few
objects takes a number of years. The task most often
used to examine later understandings of ordinality
involve asking such questions as "Which is more: 6
oranges or 4 oranges." Not until age 4 or 5 years can
children from middle class backgrounds solve these
ordinality problems consistently correctly for the
numbers from 1 to 9 (Siegler & Robinson, 1982). The
greatest difficulty occurs with numbers that are
relatively large and close together (e. g., 7 vs 8).
Counting skills may be important in development of
this ordinal knowledge as well as in arithmetic; the
number that occurs later in the counting string is
always the larger number, and it is easier to
remember which number comes later when the
numbers are far apart in the counting string.

Although most middle income children know
the relative magnitudes of all of the single-digit
numbers when they enter school, comparable
understanding does not exist among children from
low-income backgrounds, at least within the United
States (Griffin, Case, & Siegler, 1994). Such
children often have little or no sense of the relative
magnitudes of single-digit numbers when they enter
first grade. This lack of understanding makes it
particularly difficult for them to understand the
basis of simple arithmetic operations, which is
likely related to their slow learning of the basic
arithmetic facts (Jordan, Huttenlocher, & Levine,
1995). Relatively poor counting skills also appear to
contribute to these children’s difficulty in learning
both numerical magnitudes and arithmetic.

A similar point is relevant for interpreting
differences in standardized achievement test scores
between children in the U.S. and in other countries.

The relatively poor performance on these
international comparisons is often attributed to
formal instruction being inferior in the U.S.
However, substantial differences between
arithmetic knowledge of children in the U.S. and
East Asia exist before children in either country
receive formal instruction in arithmetic (Geary, et
al.,, 1993). This does not mean that mathematics
education in U.S. schools is as effective as in East
Asian schools, but it does demonstrate that
differences in math achievement in different
countries reflects cultural differences that influence
math learning outside the classroom as well as
inside it.

Pitfalls in Mathematics Learning

As noted in the last section, from the preschool
years onward, children learn abstract mathematical
concepts and principles, as well as procedures and
facts. Fairly often, however, they either fail to
grasp the concepts and principles that underlie
procedures or they grasp relevant concepts and
principles but cannot connect them to the procedures.
Either way, children who lack such understanding
frequently generate flawed procedures that generate
systematic patterns of errors. Depending on how one
looks at it, these systematic errors can be seen as
either a problem or an opportunity. They are a
problem in that they indicate that children do not
know what we have tried to teach them. On the
other hand, they are an opportunity, in that their
systematic quality points to the source of the
problem, and thus indicates the specific
misunderstanding that needs to be overcome.
Examples can be found in many areas of math
learning. Here, I will examine three areas with
particularly prominent systematic misconceptions:
the long subtraction algorithm, arithmetic and
magnitude comparison involving fractions, and
algebraic equations.

Buggy Subtraction Algorithms

Brown and Burton (1978) investigated
acquisition of the multidigit subtraction algorithm.
They wused an error analysis method which
involved first presenting problems on which
incorrect rules ("bugs") would lead to specific errors,
and then examining individual children's pattern
of correct answers and errors to see if they fit the
pattern that would be produced by a buggy rule.

Many of children's errors reflected such bugs.
Consider the pattern in Table 1. At first glance, it is
difficult to draw any conclusion about this boy's
performance, except that he is not very good at
subtraction. With closer analysis, however, his
performance becomes understandable. All three of
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his errors arose on problems where the minuend
(the top number) included a zero. This suggests that
his difficulty was due to not understanding how to
subtract from zero.

307 856 606 308 835
-182 -699 -568 =287 =217
285 157 168 181 618

Fig. 20.1. Example of a subtraction bug

Analysis of the problems on which the boy
erred (the first, third, and fourth problems from
the left) and the answers that he advanced
suggests the existence of two bugs that would
produce these particular answers. Whenever a
problem required subtraction from 0, he simply
flipped the two numbers in the column with the 0.
For example, in the problem 307 - 182, he treated O -
8 as 8- 0, and wrote "8" as the answer. The boy's
second bug involved not decrementing the number to
the left of the zero (not reducing the 3 to 2 in 307 -
182). This lack of decrementing is not surprising
because, as indicated in the first bug the boy did
not borrow anything from this column. Thus, the
three wrong answers, as well as the two right ones,
can be explained by assuming a basically-correct
subtraction procedure with two particular bugs.

Although such bugs are common among
American children, they are far less common among
Koreans (Fuson & Kwon, 1992). A major reason
appears to be that Korean children have a firmer
grasp of the base-10 system and its relation to
borrowing. Such understanding makes it more likely
that children's borrowing will maintain the value
of the original number.

Fractions

When presented the problem 1/2 + 1/3, many
children answer 2/5. They generate such answers by
adding the two numerators to form the sum's
numerator and by adding the two denominators to
form its denominator. The misunderstanding is far
from transitory. Many adults enrolled in community
college math courses make the same mistake
(Silver, 1983).

Much of children's difficulty in fractional
arithmetic arises from their not thinking of the
magnitude represented by each fraction. This is
evident in children's errors in estimating the
answer to 12/13 + 7/8 (Table 2). On a national
achievement test, fewer than one-third of U. S. 13-
and 17-year-olds accurately estimated the answer
to this simple problem (Carpenter, et al., 1981). Yet
how could adding two numbers that were each close
to 1 result in a sum of 1, 19, or 21?

Estimate the answer to 12/13 + 7/8. You will not have
time to solve the problem using paper and pencil.

Percentage Choosing Answer

Answer Age13 Agel7
1 7 8
2 24 37
19 28 21
21 27 15
I don’t know 14 16

Fig. 20.2. Estimating the sum of two fractions (Carpenter, et
al., 1981, p. 36).

A similar misunderstanding of the relation of
symbols to magnitudes is evident in children's
attempts to deal with decimal fractions. Consider
how they judge the relative size of two numbers,
such as 2.86 and 2.357. The most common approach
of fourth and fifth graders on such problems is to
say that the larger number is the one with more
digits to the right of the decimal point (Resnick, et
al., 1989). Thus, they would judge 2.357 larger than
2.86. Such choices appear to be based on an analogy
between decimal fractions and whole numbers.
Since a whole number with more digits is always
larger than one with fewer digits, some children
assume that the same is true of decimal fractions.

Another group of children made the opposite
responses. They consistently judged that the larger
number was the one that had fewer digits to the
right of the decimal. Thus, 2.43 would be larger
than 2.897. Many of these children reasoned that
.897 involves  thousandths, 43  involves
hundredths, hundredths are bigger than
thousandths, so .43 must be bigger than .897.

The difficulty in understanding decimal
fractions does not quickly disappear. Zuker (1985;
cited in Resnick et al., 1989) found that one-third of
seventh and ninth graders continued to make one of
the two errors described above. Thus, with decimal
fractions as with long subtraction, children's failure
to understand the number system, or to link that
understanding to specific procedures, leads to
systematic and persistent errors.

Algebraic Equations

Systematic errors also are evident in children’s
efforts to represent concrete situations in algebraic
equations. Even students who do well in algebra
classes often do so by treating the equations as
exercises in symbol manipulation, without any
connection to real-world contexts.

This superficial understanding creates a
situation in which mistakes often arise. Many such
mistakes arise from incorrect extensions of correct
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rules (Matz, 1982; Sleeman, 1985). For example,
since the distributive principle indicates that

ax(b+c)=@xb)+@xo),

some students draw
conclusions, such as

superficially-similar

atbxc)=@+b)x@+c).

Students use a variety of procedures to
determine whether transformations of algebraic
equations are appropriate. Among 11- to 14-year-
olds, the most frequent strategy is to insert numbers
into the original and transformed equations to see if
they yield the same result (Resnick, Cauzinille-
Marmeche, & Mathieu, 1987). This procedure
reveals whether the transformation is allowable,
though it rarely indicates why. Another common
approach is to justify the transformation by citing a
rule. Some students cite appropriate rules, but many
others cite distorted versions of rules, such as the
incorrect version of the distributive law cited
above.

These problems are not quickly overcome. Even
college students encounter difficulty with them. For
example,more than one-third of freshman
engineering students at a major state university could
not write the correct equation to represent the simple
statement "There are six times as many students as
professors at this university” (Clement, 1982). Most
wrote 65=P, which reflects a superficially
reasonable but deeply flawed understanding of the
relation between algebratic equations and the
situations theyrepresent. On a more positive note,
such errors also indicate the source of the problem--
in this case, that students are not analyzing in any
depth the relation between what they have written
and the problem they are representing. Deliberate
practice in representing problem situations in
equations, and analyzing why various equations do
or do not accurately represent the problem situation,
seems likely to be helpful in overcoming this
problem.

More generally, research on children’s
systematic errors points to a central lesson that has
emerged from cognitive science research: The
importance of cognitive task analysis. To promote
effective learning, it is essential to analyze in
detail the particular procedures and concepts to be
learned (Anderson, Reder, & Simon, 1997), to
provide students with instruction and examples that
help them learn the component skills and
understandings,  to  anticipate types of
misunderstandings that most often arise in the
learning process, and to be prepared with means for
helping students move beyond these
misunderstandings.

Cognitive Variability and Strategy Choice

Children's thinking has often been described as
something like a staircase, in which children first
use one approach to solve problems, then adopt a
more advanced approach, and later adopt a yet
more advanced approach. For example, students of
children's basic arithmetic (e.g., Ashcraft, 1987)
have proposed that when children start school,
they add by counting from one; sometime during first
grade, they switch to adding by counting from the
larger addend; and by third or fourth grade, they
add by retrieving the answers to problems.

More recent studies, however, have shown that
children's thinking is far more variable than such
staircase models suggest. Rather than adding by
using the same strategy all of the time, children use
a variety of strategies from early in learning, and
continue to use both less and more advanced
approaches for periods of many years. Thus, even
early in first grade, the same child, given the same
problem, will sometimes count from one, sometimes,
count from the larger addend, and sometimes
retrieve the answer. Even when children master
strategies that are both faster and more accurate,
they continue to use older strategies that are slower
and less accurate as well. This is true not just with
young  children, but with  preadolescents,
adolescents, and even adults (Kuhn, Garcia-Mila,
Zohar, & Anderson, 1995; Schauble, 1996).

This cognitive variability is a spontaneous
feature of children's thinking. Efforts to change it do
not usually meet with much success. For example, in
one study, first-to-third-grade teachers were
interviewed regarding their beliefs about their
students' arithmetic strategies and their evaluation
of whether the students' use of multiple strategies
was a good thing (Siegler, 1984). All of the teachers
recognized that the children wused multiple
strategies, though most viewed this as a bad thing.
One teacher said that she was constantly
discouraging students from using strategies such as
counting on their fingers. When asked how often she
had done this with the pupil in her class who did it
the most often, she asked, "How many days have
there been in the school year so far?" This teacher
and others recognized that even when they
explicitly told students not to use their fingers, they
did anyway, even if they had to do it by putting
their fingers in their lap, under their leg, or behind
their back.

There is a certain logic that supports the
teacher’s view. Older students and those who are
better at math don't use their fingers, whereas
younger and less-apt students do. One goal of
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education is to make younger and less apt students
more like older and more apt ones. Therefore,
children who use their fingers should be discouraged
from doing so.

However, children actually learn better when
they are allowed to choose the strategy that they
wish to use. Immature strategies generally drop out
naturally when students have enough knowledge to
answer accurately without them. Even basic
strategies such as counting fingers allow students to
generate correct answers when forbidding use of the
strategies would lead to many errors. Further,
students who use a greater variety of different
strategies for solving problems also tend to learn
better subsequently (Alibali & Goldin-Meadow,
1993; Chi et al., 1994; Siegler, 1995). This is in part
because the greater variety leads the students to be
able to cope with whatever kinds of problems they
encounter, rather than just being able to cope with a
narrow range. Allowing children to use the varied
strategies that they generate, and helping them
understand why superficially-different strategies
converge on the right answer and why superficially
reasonable strategies are incorrect seems likely to
build deeper understanding (Siegler, forthcoming).

Children’s use of diverse strategies makes it
essential that they choose appropriately among the
strategies. To choose appropriately, they must
adjust both to situational variables and to
differences among problems. Situational variables
include time limits, instructions, and the importance
of the task. For example, in a magic-minute exercise,
it is adaptive for children to state answers quickly,
even if they aren't absolutely sure of them.
Similarly, if it's very important to be correct in the
particular situation, then checking the correctness of
answers becomes more worthwhile. At least from
second grade onward, children shift their choices
appropriately to adapt to such situational
variations.

Adaptive choice also involves adjusting
strategy use to the characteristics of particular
problems. When children are faced with a simple
problem, it often is ideal for them to use a strategy
that can be executed quickly, because it will be
sufficient to solve the problem. In contrast, when
faced with a more difficult problem, they may need
to adopt a more time consuming and effortful
strategy to generate the correct answer. Adaptive
choice involves using quick and easy strategies when
they are sufficient, and using increasingly effortful
ones when they are necessary to be correct.

Research on strategy choice has also revealed
some surprising similarities in the performance of
children from different socio-economic groups.

Children from low-income backgrounds, particularly
low-income African-American backgrounds, are
often depicted as choosing strategies unwisely.
Suggestions have been made that instruction focus on
improving their metacognition and their strategy
selection. However, selection of appropriate
strategies does not seem to be their main problem, at
least in the context of arithmetic. Their strategy
choices are just as systematic and just as sensitive to
problem characteristics as those of children from
middle income backgrounds (Kerkman & Siegler,
1993). Instead, their problem seems to be that they
do not possess adequate factual knowledge. This in
turn seems to be due to less practice in solving
problems, and to less good execution of strategies,
rather than to any high level deficiency in their
thinking. The findings indicate that greater
practice and instruction in how to execute strategies
may be the most useful approach to improving their
arithmetic skills.

Individual Differences

Substantial individual differences exist in
cognitive variability and in the kinds of strategy
choices that children make. These involve both
differences in knowledge and differences in cognitive
style. As early as first grade, children can be
divided into three groups on the basis of their
strategy choices in arithmetic: good students, not-so-
good students, and perfectionists (Siegler, 1988).
Good students and not-so-good students differ in all
the ways that would be expected from the names.
The good students are faster, more accurate, use more
advanced strategies, and perform Dbetter on
standardized math achievement tests.

The differences between the perfectionists and
the other two groups are more interesting. The
perfectionists are just as accurate as the good
students. They also have equally high math
achievement and equally high IQ scores. Their
performance in later grades also appears to be
equally strong (Kerkman & Siegler, 1993). However,
in terms of their strategy choices, they choose a
higher proportion of slow and effortful strategies.
Unless they are very sure of the answer, they don't
rely on memory, preferring instead to use such
strategies as counting from one or from the larger
addend. This appears to reflect a stylistic
preference. Perfectionists seem to set a very high
criterion for when they are sure enough to state an
answer without checking it via a backup strategy,
such as counting on their fingers. They state
retrieved answers on the easiest problems, but only
on them, whereas good students, with comparable
knowledge, state retrieved answers on a
considerably broader range of problems.
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These individual difference patterns are present
among both boys and girls, and among both middle-
class suburban children and low-income inner-city
children. The relative frequencies of children in
each group also are comparable for boys and girls
and for low-income and middle-income children
(Kerkman & Siegler, 1993; 1997). Both of these
findings are different than stereotypes would
suggest. At least at this point in learning,
individual difference patterns in mathematics are
comparable among boys and girls and among low and
middle income children.

These classifications of children’s individual
difference patterns are related to traditional ones.
Roughly half of the not-so-good students in the
Siegler (1988) study went on to be classified as
having mathematical disabilities by fourth grade,
versus none of the good students or perfectionists.
However, the cognitive assessments go beyond the
traditional ones in showing stylistic differences in
math performance as well as knowledge-based
ones.

As has often been noted (e.g., Geary, 1994),
mathematical disabilities, as defined by poor
performance in class and poor standardized test
scores, constitutes a very serious problem in the U.S.
Approximately 6% of children are labeled as
having such disabilities. Like the not-so-good
students in the previous description, these children
have difficulty both in executing backup strategies
and in retrieving correct answers. As first graders,
they frequently use immature counting procedures
(counting from one rather than from the larger
addend), execute backup strategies slowly and
inaccurately, and use retrieval rarely and
inaccurately. By second grade, they use somewhat
more sophisticated counting procedures, such as
counting from the larger addend, and their speed
and accuracy improve. However, they continue to
have difficulty retrieving correct answers then and
for years after (Geary, 1990; Geary & Brown, 1991;
Goldman, Pellegrino, & Mertz, 1988; Jordan, Levine,
& Huttenlocher, 1997). As they progress through
school, these children encounter further problems in
the many skills that build on basic arithmetic, such
as multidigit arithmetic and algebra (Zawaiza &
Gerber, 1993; Zentall & Ferkis, 1993).

Why do some children encounter such large
problems with arithmetic? One reason is limited
exposure to numbers before entering school. Many
children labeled "mathematically disabled" come
from poor families with little formal education. By
the time children from such backgrounds enter
school, they already are far behind other children
in counting skill, knowledge of numerical

magnitudes, and knowledge of arithmetic facts.
Another key difference involves working memory
capacity. Learning of arithmetic requires sufficient
working memory capacity to hold the original
problem in memory while computing the answer so
that the problem and answer can be associated.
However, children labeled as mathematically
disabled cannot hold as much numerical information
in memory as age peers (Geary, Bow-Thomas, &
Yao, 1992; Koontz & Berch, 1996.) Limited
conceptual understanding of arithmetic operations
and counting adds further obstacles to these
children's learning of arithmetic (Hitch &
McAuley, 1991; Geary, 1994). Thus, mathematical
disabilities reflect a combination of limited
background knowledge, limited processing capacity,
and limited conceptual understanding. All of these
difficulties need to be addressed in order for such
children to learn mathematics to a reasonably high
level of proficiency.

Discovery and Insight

The previously-described findings with
preschoolers’” understanding of counting principles
showed that even before children enter school,
they think abstractly about certain mathematical
concepts. However, it takes surprisingly long for
this understanding to be expanded to other concepts,
even ones that also pertain directly to
understanding numbers. One such understanding
that children discover in the first few years of
elementary school is the inversion principle--the
idea that adding and subtracting the same number
leaves  the original quantity  unchanged.
Understanding of this principle can be assessed
through examining performance on problems of the
form "a +b-b=7?" (e.g., 25+ 8 - 8 =?). Children
who solve such problems through applying the
inversion principle would answer in the same
amount of time regardless of the size of b, because
they would not need to add and subtract it. In
contrast, children who solve the problem by adding
and subtracting b would take longer when b was
large than when it was small, because adding and
subtracting large numbers takes longer than adding
and subtracting small ones.

Between 6 and 9 years, performance on a+b-b
problems becomes faster. However, 9-year-olds,
like 6-year-olds, take longer on problems where b is
large than on ones where it is small (Bisanz &
LeFevre, 1990; Stern, 1992). The improved speed on
all problems appears due to improved procedural
competence in addition and subtraction. The
continuing difference between times on problems
where b is large and ones where it is small suggests
that neither 6- nor 9-year-olds have sufficient
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conceptual competence (i. e., understanding of the
inversion principle) to consistently answer such
problems without adding and subtracting. Not until
age 11 do most children, like almost all adults,
ignore the particular value of b and solve all
problems equally quickly, thus demonstrating
understanding of the inversion principle.

A related concept that also takes surprisingly
long for children to wunderstand is that of
mathematical equality. Even third and fourth
graders frequently do not understand that the equal
sign means that the values on each side of it must be
equal. Instead, they believe that the equal sign is
simply a signal to execute an arithmetic operation.
On typical problems such as 3+4+5=___ , this
misinterpretation does not cause any difficulty.
However, on atypical problems, such as
3+4+5=____+5, the misunderstanding leads most
third and fourth graders either to just add the
numbers to the left of the equal sign, and answer
"12," or to add all numbers on both sides of it, and
answer "17" (Alibali & Goldin-Meadow, 1993;
Goldin-Meadow, Alibali, & Church, 1993; Perry,
Church, & Goldin-Meadow, 1988; 1992).

Research on how children solve mathematical
equality problem indicates that they frequently
make hand gestures that indicate knowledge that is
not evident in their verbal statements. For example,
some children who answer "12" and explain that
they just added 3+4+5 also motion with their hands
toward the 12 in ways that indicate equality
between the two. Children who on a pretest show
such discrepancies between their speech and their
gestures subsequently learn more from instruction in
how to solve these problems than do children whose
gestures and speech on the pretest reflect the same
understanding (Alibali & Goldin-Meadow, 1993;
Goldin-Meadow, et al., 1993; Perry et al, 1988;
1992). When asked to evaluate videotapes of
children solving such problems, teachers and other
children rate more highly solutions that include
advanced gestures than ones that do not, even when
what the children say and write is identical
(Garber, Alibali, & Goldin-Meadow, 1998). An
implication is that to the extent possible under
classroom conditions, teachers should attend to
children’s nonverbal gestures as well as their verbal
statements as indicators of their understanding and
readiness to learn.

One lesson that has emerged from many recent
studies is that children discover new strategies and
concepts when existing approaches are succeeding as
well as when they are failing (e.g., Karmiloff-
Smith, 1992; Kuhn et al.,, 1995;Miller & Aloise-
Young, 1996; Siegler & Jenkins, 1989). We often

assume that necessity is the mother of invention,
and sometimes it is. However, children frequently
generate new approaches on problems that they
have previously solved using existing methods, and
when thy have been succeeding on the preceding
problems. One implication of this pervasive finding
is that many discoveries do not require special
“discovery learning” situations to be created. In the
same way that adults often generate new ideas
while in the shower, while driving, or while
working on unrelated or minimally related
problems, so do children.

Relations Between Conceptual and
Procedural Knowledge

Throughout this century, instructional reform
has oscillated between emphasizing mastering of
facts and procedures on the one hand and
emphasizing understanding of concepts on the other
(Hiebert & Lefevre, 1986). Few today would argue
that either type of mathematical knowledge
should be taught to the exclusion of the other. Much
less agreement exists, however, concerning the
balance between the two that should be pursued or
concerning how to design instruction that will
inculcate both types of knowledge.

Multidigit addition and subtraction has proved
to be an especially fruitful domain for studying the
relations between conceptual and procedural
knowledge. Children spend several years learning
multidigit arithmetic. They must learn the
carrying procedure for addition and the borrowing
procedure for subtraction. Understanding these
procedures requires understanding of the concept of
place, that each position in a multidigit number
represents a successively higher power of ten. It
also requires understanding that a multidigit
number can be represented in different ways, for
example, 23 can be represented as 1 "10" and 13
"1's".

Many children have difficulty understanding
place value, and, as noted earlier, they frequently
use buggy procedures that reflect this lack of
understanding. For example, second-graders often
do not correctly carry when adding multidigit
numbers (Fuson & Briars, 1990). Instead, they
either write the two-digit sums beneath each
column of single-digit addends (e. g.,
568+778=121316) or ignore the carried values (e. g.,
568+778=1236).

Although there are exceptions, procedural skill
and conceptual understanding usually are highly
correlated. One source of evidence for this view is
cross-national studies. For example, comparisons of
Korean and American elementary school children
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have revealed parallel national differences in
conceptual and procedural knowledge of multidigit
addition and subtraction. Fuson and Kwon (1992)
asked Korean second and third graders to solve two
and three digit addition and subtraction problems
that require carrying or regrouping. Then the
children were presented several measures of
conceptual understanding: ability to identify
correctly and incorrectly worked out addition and
subtraction problems, to explain the basis of the
correct procedure, and to indicate the place value of
digits within a number. Almost all of the Korean
children used correct procedures to solve the
problems and also succeeded on all of the measures
of conceptual understanding. Stevenson and Stigler
(1992) reported similar procedural and conceptual
competence in first through fifth graders in Japan
and China.

On the other hand, a number of studies
reviewed in Fuson (1990) indicated that American
children, ranging from second to fifth grade,
frequently lack both conceptual and procedural
knowledge of multidigit addition and subtraction.
Lack of conceptual understanding was evident in
findings that almost half of third graders
incorrectly identified the place value of digits
within multidigit numbers (Kouba, Carpenter &
Swafford, 1989; Labinowicz, 1985), and in findings
that most second through fifth graders could not
demonstrate or explain ten-for-one trading with
concrete representations (Ross, 1986). Lack of
procedural knowledge was evident in findings that
children of these ages frequently erred while using
paper and pencil to solve multidigit addition and
subtraction problems (Brown & Burton, 1978; Fuson
& Briars, 1990; Kouba et al., 1989; Labinowicz,
1985; Stevenson and Stigler, 1992). Taken together,
these results suggest that conceptual and procedural
knowledge are related; Asian children have both,
and American children lack both.

Within the U. S. conceptual and procedural
competence are also highly correlated. Second and
third graders who correctly execute the subtraction
borrowing procedure also are more accurate in
detecting conceptual flaws in a puppet’s subtraction
procedures than are children who do not execute the
subtraction algorithm  consistently  corrrectly
(Cauley, 1988). Conceptual understanding of
multidigit addition and subtraction and the ability
to invent effective computational procedures are
also positively correlated in first through fourth
graders (Hiebert & Wearne, 1996).

This correlation leaves open the possibility
that conceptual understanding could be causally
related  to  children inventing adequate

computational procedures, but also the possibility
that knowing the correct procedure could be
causally related to increased conceptual
understanding (by allowing children to reflect on
why the correct procedure is correct.) One relevant
source of evidence is examination of the order in
which individual children gain procedural and
conceptual competence. It turns out that a
substantial percentage of children first gain
conceptual understanding and then procedural
competence, but that another substantial
percentage do the opposite (Hiebert & Wearne,
1996).

Studies aimed at improving teaching of
multidigit addition and subtraction typically
emphasize linking steps in the procedures to the
concepts that support them. In general, these
teaching techniques successfully increase both
conceptual and procedural knowledge. Although
not currently conclusive, they suggest that
instruction that emphasizes conceptual
understanding as well as procedural skill is more
effective in building both kinds of competence than
instruction that only focuses on procedural skill
(Fuson & Briars, 1990; Hiebert & Wearne, 1996).

A question that remains, however, is which
type of knowledge should be emphasized first.
Many opinions have been offered on this topic, but
until recently, no directly-relevant experimental
evidence was available. A recent study by Rittle-
Johnson and Alibali (in press), however, provides
such evidence. They examined fifth graders’
performance on mathematical equality problems of
the form a+b+c=_____+c. Some randomly-selected
children were presented conceptually-oriented
instruction, other children were presented
procedurally-oriented instruction, and yet others
were presented neither. Then all children were
presented practice solving problems, followed by a
posttest that tested both conceptual and procedural
knowledge. The conceptually-oriented instruction
produced substantial gains in both kinds of
knowledge; the procedurally-oriented instruction
produced substantial gains in procedural knowledge
and smaller gains in conceptual knowledge. To the
degree that this result proves general, it suggests
that conceptual instruction should be undertaken
before instruction aimed at teaching procedures.

Cooperative Learning

Children discover new strategies not only
while solving problems on their own, but also while
working with others toward common goals. Some
such problem solving involves scaffolding
situations, in which a more knowledgeable person
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helps a less knowledgeable one to learn by
providing a variety of kinds of help. Such
scaffolding occurs in the context of parents helping
their children, teachers helping their students,
coaches helping their players, and more advanced
learners helping less advanced ones (Freund, 1990;
Gauvain, 1992; Rogoff, Ellis, & Gardner, 1984;
Wood, Bruner, & Ross, 1976). The goal of such
interactions is for the less knowledgeable learner to
construct strategies that the more advanced
already possess.

In other situations, equally-knowledgeable
peers learn together. Such cooperative learning
often enhances problem solving and reasoning
relative to what children would achieve on their
own (Gauvain & Rogoff, 1989; Kruger, 1992;
Teasley, 1995; Webb, 1991). One particularly
effective type of cooperative learning is reciprocal
instruction, in which teachers read paragraphs
with small groups of students and model such
crucial metacognitive activities as summarizing,
identifying ambiguities, asking questions, and
predicting subsequent content. A recent review of 16
studies on reciprocal instruction (Rosenshine &
Meister, 1994) indicated that results were
generally positive with students ranging from
fourth graders to adults, with both low-achieving
and average students, with groups ranging from 2 to
23 students, and with either experimenters or
classroom teachers as the instructors.

On the other hand, cooperative learning often
does not result in increased learning, and at times
leads to worse learning than trying to solve
problems by oneself (Levin & Druyan, 1993; Russell,
1982; Russell, Mills, & Reiff-Musgrove, 1990;
Tudge, 1992). As noted by Ann Brown (March 4,
1998, personal communication), perhaps the
greatest expert on cooperative learning, designing
effective cooperative learning situations requires at
least as much engineering as does standard
classroom instruction. Without such careful
structuring, = problems of freeloading and
disorganization can lead to inferior learning. Thus,
creating effective cooperative learning requires
more than just assigning children to a group and
telling them to work together on a problem or
project.

Different types of collaborative organizations
tend to have different effects not only on learning
but also on instructional interactions. Damon and
Phelps (1989) distinguished among three types of
collaborative  arrangements:  peer  tutoring,
cooperative learning, and peer collaboration. Peer
tutoring involves a child who is knowledgeable
about a topic instructing another child who is less

knowledgeable. Cooperative learning involves
classrooms being divided into small groups or
teams, usually 3-6 students of heterogeneous ability
in each, trying to solve a problem or master a task.
In a common variant of cooperative learning, the
jigsaw method, each child becomes the group’s
expert on a particular part of the task, and task
solutions require the contributions of all of the
experts. Finally, peer collaboration involves a pair
of novices working together to solve problems that
neither could solve on their own initially. These
arrangements tend to differ in the degree to which
they promote equality among participants (higher
in peer collaboration and cooperative learning than
in peer tutoring) and in the degree to which
discussions tend to be extensive and engaging
(highest in peer collaboration). Damon and Phelps
argued that the collaborative arrangements that
generated the most productive instructional dialogs
were those that encouraged joint problem solving
and that discouraged competition among students.

How can the effectiveness of collaborations be
improved? One way is to examine factors that
differentiate successful ~ from unsuccessful
interactions. To obtain such information, Ellis,
Siegler, and Klahr (1993) examined fifth graders
solving decimal fraction problems of the form:
"Which is bigger, .239 or .47"? As noted earlier,
this seemingly simple task often causes children of
this age considerable difficulty. In particular, they
often misapply mathematical rules acquired while
learning about whole numbers or common fractions,
either consistently choosing the number with more
digits as larger (the Whole Number Rule) or
consistently choosing the number with fewer digits
as larger (the Fraction Rule).

Ellis et al. found that children learned more if
they worked with a partner during training than if
they worked alone; that this benefit occurred only if
the children were also provided feedback by the
experimenter concerning which answer was right;
that external feedback was just as critical for
partners who started with different rules as it was
for those who started with the same rule; and that
social aspects of the interaction, as well as external
feedback, influenced learning. One particularly
important factor was the enthusiasm of the
partner's reactions to the child's statements. In this
context, enthusiasm meant strong interest in, rather
than agreement with, the partner's ideas. Children
whose partner reacted enthusiastically during the
training session answered correctly more often on the
posttest than did those whose partners showed less
enthusiasm. Among children who worked with a
partner and received feedback from the
experimenter, the enthusiasm of the partner’s
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reactions was the best single predictor of learning.
The example illustrates that attention to both
cognitive and social variables is crucial for
successful cooperative learning.

Promoting Analytic Thinking and Transfer

Analytic thinking refers to a set of processes for
identifying the causes of events. It is among the
central goals of mathematics education. One reason
is that analytic thinking is an inherently
constructive  process. Analysis demands that
children actively think about the causes of events. It
is possible to obtain a general sense of the typical
course of events, or the way in which things work,
without actively analyzing them. However,
distinguishing features that wusually accompany
events from those that cause them to occur requires
more active thinking. Thus, distinguishing between
features that typically accompany the use of a
particular mathematical problem solving technique,
and features that are essential for the technique to
apply, usually requires analysis of why the
technique is appropriate or inappropriate.

Analytic reasoning is both cause and consequence
of another useful quality: purposeful engagement.
When children have a specific reason for wanting to
learn about a topic, they are more likely to analyze
the material so that they truly understand it. In
this sense, analytic reasoning is a consequence of
purposeful  engagement. n However, analytic
reasoning also promotes purposeful engagement.
Children who from the beginning of learning about a
topic try to deeply understand it become more
engaged in learning it than children who accept
what they are told without thinking about it.

A third way in which analytic thinking is
central is in promoting transfer. When children are
actively engaged in understanding why things work
the way they do, transfer follows naturally and
without great effort. In contrast, when
understanding stays close to the surface, and does not
penetrate underneath, transfer is unlikely (Brown,
1997). The problem is that such passive learners
lack ways of distinguishing the core information
from the incidental details. Thus, encouraging
learners to more often reason analytically will also
create learners who transfer what they learn to new
situations.

A variety of types of evidence attest to the
importance of such explanatory activities. For both
adults and children, students who ask themselves
more questions about the meaning of a textbook as
they are reading it learn more from their reading
than do children who read without asking many
questions. This has been shown for learning of both

physics and computer programming (Chi et al., 1989;
Pirolli & Recker, 1994). The quality as well as the
quantity of explanations that children generate
while reading is related to their learning. For
example, when the best learners study example
problems, they are especially likely to connect
particular aspects of the examples to particular
statements in the text (Pirolli & Bielaczyc, 1989).

How can such analytic thinking be encouraged?
One effective way is to ask children to explain the
correct conclusions or answers of other people.
Children as young as 5 years benefit when they are
asked to answer a difficult problem, answer it, are
told the correct answer, and then are asked, “How
do you think I knew that” (Siegler, 1995). This
procedure combines advantages of discovery
learning with those of didactic methods. Like
discovery-learning approaches, it promotes active
engagement with the task, since children have to
generate the underlying logic for themselves. Like
didactic methods, it is efficient; rather than going
down blind alleys, children spend their time
thinking about the logic that led to desired
conclusions. An added advantage of this approach is
that it can be applied to a very wide variety of
problems. It is possible to ask about almost any
conclusion, “How do you think I knew that” (or
“Why do you think I think that”.) Encouraging
children to explain other people's reasoning in many
contexts may lead children to internalize such an
analytic stance to the point where they ask such
questions reflexively, even when not prompted to do
so.

Asking children to explain both why correct
answers are correct and why incorrect answers are
incorrect may be even more effective than just asking
them to explain why correct answers are correct.
Such activities are featured in Japanese classrooms,
and are associated with excellent levels of math
achievement in that country (Stigler & Perry, 1990).
They also are effective with U. S. children. In a
recent experiment on understanding of mathematical
equality, children were randomly assigned to one of
three conditions: explain both why correct answers
are correct and why incorrect answers are wrong, just
explain why correct answers are correct, or just try to
solve mathematical equality problems and receive
feedback (Siegler, in preparation). Asking children
to explain both why correct answers are right and
why incorrect answers are wrong led to greater
learning than just asking the former type of question.
Especially encouraging, it greatly increased transfer
to problems that were superficially dissimilar to
the originally-presented ones.
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Teaching children computer programming skills
has been proposed as another means of promoting
transfer. In particular, advocates of providing such
experience have contended that it would produce
not only skill at programming, but also enhanced
general problem-solving ability and analytic
skills. In one notable effort in this direction, Papert
(1980) designed the LOGO language with the goal
of helping children acquire such broadly useful
skills as dividing problems into their main
components, identifying logical flaws in one's
thinking, and generating well-thought-out plans.

When learned in standard ways, LOGO has
proved insufficient to meet these goals. However,
mediated instruction, in which LOGO is taught
with an eye toward building transferable skills,
has been quite successful in producing the desired
effects (Klahr & Carver, 1988; Lehrer &
Littlefield, 1991; 1993; Littlefield, Delclos,
Bransford, Clayton, & Franks, 1989). Like
conventional instruction in computer programming,
mediated instruction involves teachers
demonstrating to students how to use commands and
concepts and providing them with feedback on
their attempts to use them. However, mediated
instruction also involves teachers explicitly noting
when particular commands and programs illustrate
general programming concepts and drawing explicit
analogies between the reasoning used to program
and to solve problems in other contexts.

Such mediated instruction has produced a
variety of kinds of desirable transfer. For example,
Klahr and Carver (1988) demonstrated that
mediated instruction in LOGO can create debugging
skills that are useful outside as well as inside the
LOGO context. Their instructional program was
based on a detailed task analysis of debugging.
Within this analysis, the debugging process begins
with the debugger determining the outcome that a
procedure yields and observing if and how its
results deviate from what was planned (for
example by running a computer program and
examining its output). Following this, the debugger
describes the discrepancy between desired and
actual outcomes, and hypothesizes types of bugs
that might be responsible. The next step is to
identify parts of the program that could
conceivably produce the observed bug. This step
demands dividing the program into components, so
that specific parts of the program are identified
with  specific functions. Following this, the
debugger first checks the relevant parts of the
program to see which, if any, fail to produce the
intended results; then rewrites the faulty
component; and then runs the debugged program to

determine if it now produces the desired output.
The 8- to 11-year-olds who received this instruction
took barely half as long to solve LOGO debugging
problems as children who were not presented it.
They also improved their general problem solving
skills in areas outside of programming, in
particular revision of essays. The improvement
seemed due to the children applying the skills
taught in the program: analyzing the nature of the
original discrepancy from the anticipated results,
hypothesizing possible causes, and focusing their
search on relevant parts of the instructions, rather
than simply checking them line-by-line.

Conclusions

This paper summarizes a number of empirical
findings and theoretical conclusions about children's
mathematics learning. Translating these findings
and conclusions into improved instructional
practices, however, will take a considerable amount
of work. Stigler and Hiebert's (1998) description of
the Japanese emphasis on continuous improvement in
teaching points toward a process that seems
essential in U.S. classrooms as well. The process
that they describe involves groups of teachers
working together to perfect the way in which they
teach particular concepts and procedures. Neither
controlled scientific experimentation nor theoretical
analyses automatically translate into prescriptions
for classroom instruction. They can provide useful
frameworks for thinking about teaching and
learning, can indicate sources of difficulty that
children encounter in learning particular skills and
concepts, and can demonstrate potentially effective
instructional procedures. However, a process of
translation into the particulars of each classroom
context is necessary for even the most insightful
frameworks and the most relevant findings to be
utilized in ways that improve learning. Both
institutional support for such  continuous
improvement and teacher dedication to meeting this
goal are essential if research is to lead to superior
instruction.
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