

Design and Synthesis of Highly Reactive Dienophiles for the Tetrazine—trans-Cyclooctene Ligation

Michael T. Taylor, Melissa L. Blackman, Olga Dmitrenko, and Joseph M. Fox*

Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States

Supporting Information

ABSTRACT: Computation was used to design a *trans*-cyclooctene derivative that displays enhanced reactivity in the tetrazine—*trans*-cycloctene ligation. The optimized derivative is an (*E*)-bicyclo[6.1.0]non-4-ene with a *cis*-ring fusion, in which the eight-membered ring is forced to adopt a highly strained 'half-chair' conformation. Toward 3,6-dipyridyl-s-tetrazine in MeOH at 25 °C, the strained derivative is 19 and 27 times more reactive than the parent *trans*-cyclooctene and 4*E*-cyclooct-4-enol, respectively. Toward 3,6-diphenyl-s-tetrazine in MeOH at 25 °C, the strained derivative is 160 times more reactive than the parent *trans*-cyclooctene.

Reactions which proceed efficiently in the presence of biological functionality have broad reaching applications that span chemistry, biology, and materials science. The Cu-catalyzed azide—alkyne cycloaddition, the archetypical 'click reaction', finds broad use and application² but can be limited by the cytotoxicity of Cu.³ Accordingly, a number of bioorthogonal methodologies have been advanced that proceed efficiently without the need for catalysis. In 2004, Bertozzi made a seminal advance through the development of a strain-assisted reaction between cyclooctyne and organic azides. This methodology has found significant applications as a tool for *in vivo* labeling, 4,5 and efforts to improve reaction rates and substrate accessibility have been under continual development. 4,5

Recently, our group introduced the tetrazine—trans-cyclooctene ligation (Figure 1), a bioorthogonal reaction with unusually fast rates that is based on the cycloaddition of tetrazines and trans-cyclooctene.6 The development of this bioorthogonal reaction was enabled by a photochemical flow-reaction developed by our group for the efficient preparation of trans-cyclooctenes.⁷ A variety of s-tetrazine derivatives were known to react with strained alkenes,8 and we have found that 3,6-diaryl-stetrazines offer an excellent combination of fast reaction rates and stability for both the starting material and conjugation products. Thus, 3,6-di(2-pyridyl)-s-tetrazine (2a) reacts with trans-cyclooctene (1) in 9:1 MeOH/water with $k_2 = 2000 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1.8}$ Amido substituted 3,6-di(2-pyridyl)-s-tetrazines (2b) are readily synthesized⁶ and display excellent stability toward water and biological nucleophiles. Derivatives of 2b (R' = DOTA¹⁰ or cyclic RGD peptide¹¹) have been used by Robillard¹⁰ and our group¹¹ for radiochemical imaging and shown to participate in the tetrazine-trans-cyclooctene ligation with excellent rates. After we described the use of trans-cyclooctene for tetrazine

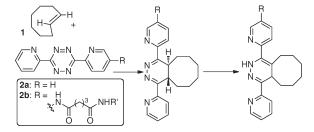
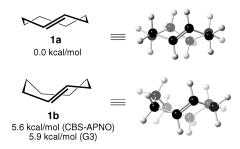
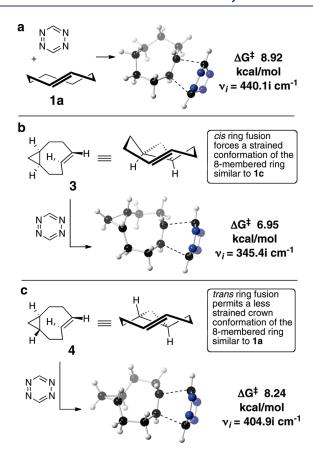



Figure 1. Tetrazine—trans-cyclooctene ligation.

Figure 2. Calculated relative energies (0 K) for two conformations of *trans*-cyclooctene at the CBS-APNO and G3 levels of theory.


ligations, the groups of Hilderbrand and Weissleder¹² and Pipkorn and Braun¹³ described ligations between tetrazines and less reactive strained alkenes. Yet, the use of *trans*-cyclooctene derivatives is necessary for fast rates of reactivity. Recently, the tetrazine–*trans*-cyclooctene ligation has been used in applications by a number of groups,^{10,14} including our own.¹¹

The lowest energy, 'crown' conformation of *trans*-cyclooctene¹⁵ (1a, Figure 2) bears structural analogy to the chair conformation of cyclohexane, as the methylenes in both conformations display an alternating arrangement of axial and equatorial hydrogens. Alternate conformations of *trans*-cyclooctene are significantly higher in energy. ^{15a,b} In a recent *ab initio* study, Bach calculated the 'half chair' conformation (1b, Figure 2) to be 5.9 kcal/mol higher in energy than the crown conformation 1a. ^{15a} Calculations at the CBS-APNO level of theory (see Supporting Information) are in close agreement and find 1b to be 5.6 kcal/mol higher in energy than 1a.

We speculated that the increase in strain energy associated with noncrown conformations of *trans*-cyclooctene could be used to accelerate the reactivity toward tetrazines. Previously,

Received: February 28, 2011

Published: May 20, 2011

Figure 3. M06L/6-311+G(d,p)-optimized transition structures for the Diels—Alder reaction of *s*-tetrazine with the crown conformer of *trans*-cyclooctene (a), the *cis*-ring fused bicyclo[6.1.0]non-4-ene 3 (b), and the *trans*-ring fused bicyclo[6.1.0]non-4-ene 4 (c). The barrier (8.24 kcal/mol) for the reaction of 4 with *s*-tetrazine is 1.29 kcal/mol higher than the analogous reaction of 3.

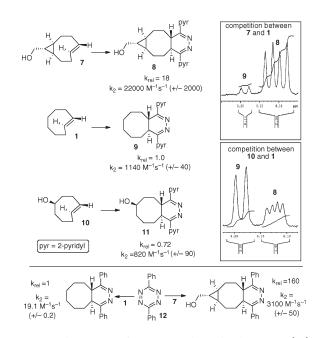
dienophiles for the tetrazine—trans-cyclooctene ligation have been derived from cyclooct-4-enol,⁷ a derivative of which was shown to adopt the crown conformation in a crystal structure.⁷ We recognized that that the eight-membered ring of bicyclo-[6.1.0]non-4-ene derivative 3 (Figure 3b), a trans-cyclo-octene annealed to cyclopropane with a cis ring fusion, would be forced to adopt a strained conformation similar to that of 1b (Figure 2).¹⁶ Computation was used to predict whether the added strain in 3 would manifest in faster reactions with tetrazines.

Transition state calculations in the gas phase for the inverse electron demand Diels—Alder reaction between s-tetrazine and trans-cyclooctene derivatives were studied by us at the M06L/6(311)+G(d,p) level. ^{17,18} The reaction between trans-cyclooctene in the crown conformation (1a) and s-tetrazine proceeded with a barrier of $\Delta G^{\dagger}=8.92$ kcal/mol (Figure 3a). By comparison, the reaction of s-tetrazine and cis-fused bicyclo[6.1.0]non-4-ene 3 proceeded with a significantly lower barrier of $\Delta G^{\dagger}=6.95$ kcal/mol (Figure 3b). These barriers are consistent with those that have been calculated for other Diels—Alder reactions that proceed with fast rate constants. ¹⁹ These calculations predict that the reaction of s-tetrazine with 3 would be 29 times faster than the reaction with 1a. ²⁰

We also computed the barrier for the reaction between s-tetrazine and trans-fused bicyclo [6.1.0] non-4-ene 4. Because 4 bears a

Scheme 1. Synthesis of a Highly Reactive Dienophile

trans-ring fusion, the eight-membered ring adopts a crown conformation (similar to 1a) in its minimized conformation (Figure 3c). The barrier for the reaction between 4 and s-tetrazine, $\Delta G^{\dagger}=8.24$ kcal/mol, is similar to that for 1a and significantly higher than that for 3. Compounds 3 and 4 are diastereomers and the cyclopropyl moiety is distant from the tetrazine in each transition state. We therefore conclude that the low barrier computed for the reaction of 3 with s-tetrazine is attributable to the higher strain of the eight-membered ring.


Based on these calculations, we sought to prepare compound 7 (Scheme 1). Thus, a Rh-catalyzed reaction of ethyl diazoacetate in neat^{21c} 1,5-cyclooctadiene gave 5 in 54% yield (along with 44% of the separable *syn*-isomer).²¹ DIBAL reduction of **5** gave the known alcohol **6**.^{21a,22} The flow-chemistry method developed in our laboratories was used to photoisomerize **6** to *trans*-isomer 7 in 74% yield.⁷

During the completion of our studies, van Delft et al. elegantly demonstrated that cyclooctyne-based bioconjugations can be accelerated through fusion of a cyclopropane ring. ^{21a} This group reported the synthesis of **6** and readily converted it to the corresponding cyclooctyne derivative for bioorthogonal labeling and cell imaging using 3+2 cycloaddition strategies. ^{21a} The rates of these conjugations were as high as $1.66~\mathrm{M}^{-1}~\mathrm{s}^{-1}$ for nitrone cycloadditions.

Compound 7 combines with **2a** to give product **8** in >95% yield by ¹H NMR analysis (Scheme 2). As expected, ^{6,14,23} the initially formed 4,5-dihydropyrazine derivative **8** slowly isomerizes in the presence of water to the 1,4-dihydropyrazine derivative **8b** via the aminal intermediates **8a**.²⁴

The rate of the reaction between 7 and 2a was studied. As the reaction was too rapid for reliable rate determination by UV—vis kinetics, we determined the relative rate by $^1\mathrm{H}$ NMR through a competition experiment with *trans*-cyclooctene at 25 °C. NMR analysis was conducted immediately upon mixing, and product mixtures were analyzed for the formation of conjugated 4,5-dihydropyrazine products 8 and 9 (Figure 4). Thus, competition of 7 (10 equiv) and 1 (10 equiv) with 2a (6.5 mM) in CD₃OD gave a 19:1 ratio of 8:9. As the rate of the reaction between 1 and 2a had been previously measured to be $k_2=1140~\mathrm{M}^{-1}~\mathrm{s}^{-1}~(\pm 40)$ in MeOH, these NMR experiments show the rate of reaction between 7 and 2a to be $k_2=22\,000~\mathrm{M}^{-1}~\mathrm{s}^{-1}~(\pm 2000)$. As inverse-demand Diels—Alder reactions of tetrazines show significant accelerations due to the hydrophobic effect, 6,25 it is possible that rates may be even faster in aqueous solvents. 26

Scheme 2. Reaction of trans-Cyclooctene 7 with 2a

Figure 4. Relative rates of reactions with 3,6-diaryltetrazines (2a) in CD_3OD at 25 °C. NMR spectra (400 MHz, CD_3OD) of competition experiments are shown in the insets.

In prior studies on the tetrazine—*trans*-cyclooctene ligation, functionalized derivatives of 4*E*-cyclooct-4-enol (10) have been utilized. 6,10,13,14 In a competition experiment against *trans*-cyclooctene (1), 9 and 11 were formed in a 1.0:0.72 ratio. Based on these relative rates, 10 reacts in methanol with a rate of 820 $\rm M^{-1}$ s $^{-1}$ (\pm 90) and a relative rate that is 27 times slower than $7.^{27a}$

The reaction rates of 3,6-diphenyl-s-tetrazine (12) and cyclooctenes 1 and 7 were directly measured by UV—vis spectroscopy. In MeOH at 25 °C, a large rate difference was observed, as 12 reacted with 7 160 times faster than did 1. Thus, 1 reacted with a rate of 19.1 (\pm 0.2) M $^{-1}$ s $^{-1}$, whereas 7 reacted with a rate of 3100 (\pm 50) M $^{-1}$ s $^{-1}$. For the reaction of 1 and 12, Eyring analysis showed ΔH^{\dagger} to be 5.41 (\pm 0.7) kcal/mol, ΔS^{\dagger} to be -33.6 (\pm 2.3) e.u., and ΔG^{\dagger} to be 15.4 (\pm 0.9) kcal/mol. Based on the relative rate data at 25 °C, in MeOH, ΔG^{\dagger} for the reaction of 7 and 12 was calculated to be 12.4 (\pm 0.9) kcal/mol at 25 °C in MeOH. In gas phase computations at the M06L/6-311+G(d,p) level of theory at 25 °C the experimental $\Delta\Delta G^{\dagger}$ (3.0 kcal/mol) for 7 vs 1 correlated closely with the calculated $\Delta\Delta G^{\dagger}$ (3.34 kcal/mol) for 3 vs 1a. 27b

Figure 5. (a) Preparation of a thioredoxin—trans-cyclooctene conjugate 14, and ligation with 2a to give adduct 15. (b) Analysis of 15 within 5 min of combination of 14 and 2a.

In addition to excellent reactivity, 7 also displays excellent stability; it shows no degradation in water or human serum after 24 h. Compound 7 (30 mM) also shows no decomposition upon exposure to 30 mM n-butylamine in CD₃OD solvent for 24 h or to 5 mM ethanethiol in CD₃OD for 12 h²⁸. Treatment with 4-nitrophenylchloroformate^{21a,29} gave a carbonate which combined with N-(2-aminoethyl)maleimide to give 13 (Figure 5a). As shown in Figure 5a, the reduced form³⁰ of the 11.7 kDa protein thioredoxin (Trx, 15 μ M) could be derivatized with an excess (120 μ M) of maleimide 13 to give adduct 14. Subsequent reaction with 2a (120 μ M) was rapid, and the crude ESI-MS indicated that the formation of adduct 15 was completed as quickly as we were able to take a measurement (<5 min) (Figure 5b). By contrast, Trx derivatized by a cis-cyclooctene does not react with 2a.

In summary, computation was used to design a *trans*-cyclooctene derivative with enhanced reactivity in the tetrazine—*trans*-cycloctene ligation. The strained *trans*-cyclooctene derivative not only displays enhanced reactivity but also can be easily derivatized, and bioconjugation to the protein thioredoxin has been demonstrated.

ASSOCIATED CONTENT

Supporting Information. NMR spectra, experimental, kinetic and computational details are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author jmfox@udel.edu

■ ACKNOWLEDGMENT

We thank NIH P20 RR017716 (NCCR COBRE) and NSF CRIF: MU, CHE 0840401 for NMR instrumentation. We thank Colin Thorpe for insightful discussions and a gift of Trx.

■ REFERENCES

- (1) (a) Sletten, E. M.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2009, 48, 6974. (b) Lim, R. K. V.; Lin, Q. Chem. Commun. 2010, 46, 1589. (c) Kalia, J.; Raines, R. T. Curr. Org. Chem. 2010, 14, 138.
- (2) Click chemistry reviews: (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004. (b) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249. (c) Best, M. D. Biochemistry 2009, 48, 6571. (d) Iha, R. K.; Wooley, K. L.; Nystrm, A. M.; Burke, D. J.; Kade, M. J.; Hawker, C. J. Chem. Rev. 2009, 109, 5620. (e) Mendal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952.
- (3) Reviews of Cu-free bioconjugation chemistry: (a) Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272. (b) Becer, C. R.; Hoogenboom, R.; Schubert, U. S. Angew. Chem., Int. Ed. 2009, 48, 4900. (c) Baskin, J. M.; Bertozzi, C. R. Aldrichimica Acta 2010, 43, 15. (d) Lutz, J.-F. Angew. Chem., Int. Ed. 2008, 47, 2182. Selected examples: (e) Lim, R. K. V.; Lin, Q. Chem. Commun. 2010, 46, 7993. (f) Wang, Y.; Song, W.; Hu, W.; Lin, Q. Angew. Chem., Int. Ed. 2009, 48, 5330. (g) Ning, X.; Temming, R. P.; Dommerholt, J.; Guo, J.; Ania, D. B.; Debets, M. F.; Wolfert, M. A.; Boons, G. J.; van Delft, F. L. Angew. Chem., Int. Ed. 2010, 49, 3065. For the recent development of a Cu-catalyst that functions for cell-surface labeling in alkyne/azide cycloadditions:(h) Hong, V.; Steinmetz, N. F.; Manchester, M.; Finn, M. G. Bioconjugate Chem. 2010, 21, 1912.
- (4) (a) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004, 126, 15046. (b) Jewett, J. C.; Sletten, E. M.; Bertozzi, C. R. J. Am. Chem. Soc. 2010, 132, 3688. (c) Chang, P. V.; Prescher, J. A.; Sletten, E. M.; Baskin, J. M.; Miller, I. A.; Agard, N. J.; Lo, A.; Bertozzi, C. R. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 1821. (d) Codelli, J. A.; Baskin, J. M.; Agard, N. J.; Bertozzi, C. R. J. Am. Chem. Soc. 2008, 130, 11486.
- (5) (a) Poloukhtine, A. A.; Mbua, N. E.; Wolfert, M. A.; Boons, G.-J.; Popik, V. V. J. Am. Chem. Soc. **2009**, 131, 15769. (b) Ning, X.; Guo, J.; Wolfert, M. A.; Boons, G.-J. Angew. Chem., Int. Ed. **2008**, 47, 2253. (c) McKay, C. S.; Moran, J.; Pezacki, J. P. Chem. Commun. **2010**, 46, 931.
- (6) Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518.
- (7) Royzen, M.; Yap, G. P. A.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 3760.
- (8) (a) Thalhammer, F.; Wallfahrer, U.; Sauer, J. Tetrahedron Lett. **1990**, 31, 6851. (b) Boger, D. L. Chem. Rev. **1986**, 86, 781.
- (9) Acetamido-substituted dipyridyltetrazines (1b) are stable for prolonged periods (>24 h) in water and toward amines and thiols in MeOH. See ref 11.
- (10) Rossin, R.; Verkerk, P. R.; Bosch, S. M. v. d.; Vulders, R. C. M.; Verel, I.; Lub, J.; Robillard, M. S. Angew. Chem., Int. Ed. 2010, 49, 3375.
- (11) (a) Selvaraj, R.; Liu, S.; Hassink, M.; Huang, C.-w.; Yap, L.-p.; Park, R.; Fox, J. M.; Li, Z.; Conti, P. S. *Bioorg. Med. Chem. Lett.* **2011**, doi: 10.1016/j.bmcl.2011.04.116. (b) Li, Z.; Cai, H.; Hassink, M.; Blackman, M. L.; Brown, R. C. D.; Conti, P. S.; Fox, J. M. *Chem. Commun.* **2010**, 46, 8043.
- (12) Devaraj, N. K.; Weissleder, R.; Hilderbrand, S. A. Bioconjugate Chem. 2008, 19, 2297.
- (13) Pipkorn, R.; Waldeck, W.; Didinger, B.; Koch, M.; Mueller, G.; Wiessler, M.; Braun, K. J. Peptide Sci. 2009, 15, 235.
- (14) (a) Devaraj, N. K.; Upadhyay, R.; Haun, J. B.; Hilderbrand, S. A.; Weissleder, R. Angew. Chem., Int. Ed. 2009, 48, 7013. (b) Devaraj, N. K.; Hilderbrand, S.; Upadhyay, R.; Mazitschek, R.; Weissleder, R. Angew. Chem., Int. Ed. 2010, 19, 2869. For a subsequent study on the same F-18 probe described in ref 11b:(c) Keliher, E. J.; Reiner, T.; Turetsky, A.; Hilderbrand, S. A.; Weissleder, R. ChemMedChem 2011, 6, 424.
- (15) (a) Bach, R. D. J. Am. Chem. Soc. 2009, 131, 5233. (b) Allinger,
 N. L.; Sprague, J. T. J. Am. Chem. Soc. 1972, 94, 5734. (c) Leong, M. K.;
 Mastryukov, V. S.; Boggs, J. E. J. Mol. Struct. 1998, 445, 149. (d) Barrows,
 S. E.; Eberlein, T. H. J. Chem. Educ. 2005, 82, 1334.
- (16) For prior synthetic studies on *cis* and *trans*-fused derivatives of (*E*)-bicyclo[6.1.0]non-4-ene: Deyru, J. A.; Betkouski, M. F. *J. Org. Chem.* 1975, 40, 284.

- (17) For prior calculations on Diels—Alder reactions of tetrazines and alkynes: (a) Cioslowski, J.; Sauer, J.; Hetzenegger, J.; Karcber, T.; Hierstetter, T. *J. Am. Chem. Soc.* **1993**, *115*, 1353. For prior calculations on reactions between *trans*-cyclooctene and azides, see ref 15a and(b) Schoenebeck, F.; Ess, D. H.; Jones, G. O.; Houk, K. N. *J. Am. Chem. Soc.* **2009**, *131*, 8121. (c) Ess, D. H.; Houk, K. N. *J. Am. Chem. Soc.* **2008**, *130*, 10187.
- (18) A barrier of $\Delta G^{\dagger}=7.12$ kcal/mol for the reaction between 1a and s-tetrazine was also calculated at the MP4SDTQ/6-31G(d)//MP2/6-311+G(d,p) level of theory. This calculation is in good agreement with the barrier of 8.92 kcal/mol calculated using the M06L/6-311+G(d,p) method (see Figure 3 and the Supporting Information, Table 3S). Calculations at the B3LYP/6-311+G(d,p) level overestimated the barrier for the reaction between 1a and s-tetrazine relative to MP4SDTQ/6-31G(d)//MP2/6-311+G(d,p).
- (19) Jones, G. O.; Guner, V. A.; Houk, K. N. J. Phys. Chem. A 2006, 110, 1216.
- (20) $k_{\rm rel}$ for 3/1a was determined according to the equation $\Delta\Delta G^{\dagger} = -RT \ln(k1/k2)$.
- (21) (a) Dommerholt, J.; Schmidt, S.; Temming, R.; Hendriks, L. J. A.; Rutjes, F. P. J. T.; van Hest, J. C. M.; Lefeber, D. J.; Friedl, F.; van Delft, F. L. Angew. Chem., Int. Ed. 2010, 49, 9422. (b) Ast, W.; Rheinwald, G.; Kerber, R. Makromol. Chem. 1976, 177, 1349. (c) Anciaux, A. J.; Hubert, A. J.; Noels, A. F.; Petiniot, N.; Teyssié, P. J. Org. Chem. 1980, 45, 695.
- (22) Dehmlow, E. V.; Plueckebaum, O. J. Chem. Res., Miniprint 2001, 4, 451.
- (23) Aminal formation has been observed in studies on 3,4-diazanorcaradienes with alcohols and water. Steigel, A.; Sauer, J.; Kleier, D. A.; Binsch, G. J. Am. Chem. Soc. 1972, 94, 2770.
- (24) In CD₃CN with 10 equiv of D₂O, the conversion of **8** to **8b** was 50% complete after 60 h. In 10% (202 equiv) D₂O/CD₃CN, the conversion to **8b** was slower (12% after 84 h) and hemiaminals **8a** could be observed by 1 H NMR as **8** converted to **8b** over the course of 206 h. In CD₃OD, only 10% of **8** remained after 12 h, with 90% aminal formation from CD₃OD. In CD₃OD, the formation of **8b** was not observed until after 96 h, at which point 7% of **8b** was observed. See the Supporting Information for full experimental details.
- (25) Wijnen, J. W.; Zavarise, S.; Engberts, J. B. F. N.; Charton, M. J. Org. Chem. 1996, 61, 2001.
- (26) We attempted to measure the rate of the reaction between 7 and 2a in 9:1 MeOH/water, but the rate was too fast to measure accurately by UV—vis spectroscopy. Compound 12 is too poorly soluble in aqueous solvent mixtures for direct rate measurements.
- (27) (a) In a direct competition between 7 and 10 for 2a, the amount of 11 was below the reliable 1H NMR detection limit (<5%). (b) The barriers for the gas phase reaction between 1a and 12 were $\Delta H^{\dagger}=12.92$ kcal/mol and $\Delta G^{\dagger}=16.09$ kcal/mol at 25 °C. The calculated barriers for the reaction of 12 and 3 were significantly lower: $\Delta H^{\dagger}=9.59$ kcal/mol and $\Delta G^{\dagger}=12.74$ kcal/mol.
- (28) At a high concentration of ethanethiol (30 mM) in MeOH, we observed isomerization of 7 (30 mM) to 6: 0% isomerization after 2 h, 25% after 2.5 h, and 58% after 3.5 h. Because the transformation of 6 to 7 has a long induction time and does not follow second-order behavior, we suspect that the the conversion of 6 to 7 may be a radical catalyzed at high thiol concentrations. For a review of radical processes that involve low concentrations of thiol-based radicals, see:Winterbourn, C.; Metodiewa, D. *Free Radical Biol. Med.* 1999, 27, 322.
- (29) (a) Ning, X.; Guo, J.; Wolfert, M. A.; Boons, G. Angew. Chem., Int. Ed. 2008, 47, 2253. (b) Krishnamurthy, V. R.; Wilson, J. T.; Cui, W.; Song, X.; Yi, L.; Cummings, R. D.; Chaikof, E. L. Langmuir 2010, 26, 7675.
- (30) Trx (15 μ M) was reduced with tri(3-hydroxypropyl)phosphine (THP, 1 mM) and combined with 12 (100 μ M) in acetate buffer (pH 6). As THP also reduces maleimide functionalities, an excess of 12 was required.