Nobel Prize in Chemistry 2008

The green fluorescent protein: discovery, expression and development

O. Shimomura, M. Chalfie, R. Tsien

- Nobel Prize in Chemistry
 - GFP as a revolutionary tool in biology
- History of GFP: key contributors
- GFP chemical properties
 - Maturation of the fluorophore
 - Spectra, pH and pKa
 - XFPs chemical properties
- Applications
 - Optical highlighters (protein dynamics)
 - pH sensors (endocytosis)
 - Apoptosis
 - Protein interactions (FRET and PCA)
 - Pathways (Ca⁺⁺ sensors, phosphorylation, etc.)

Nobel Prize in Chemistry

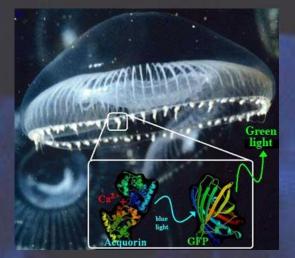
GFP as a revolutionary tool in biology During the last century...

Development of biochemistry Enzyme structure and function

Genetics revolution

Crystallography NMR

Bioinformatics


Development of tools to study dynamic behaviour of living systems: GFP Light microscopy Computational power Molecular modelling

- Nobel Prize in Chemistry
 - GFP as a revolutionary tool in biology
- History of GFP: key contributors
- GFP chemical properties
 - Maturation of the fluorophore
 - Spectra, pH and pKa
 - XFPs chemical properties
- Applications
 - Optical highlighters (protein dynamics)
 - pH sensors (endocytosis)
 - Apoptosis
 - Protein interactions (FRET and PCA)
 - Pathways (Ca⁺⁺ sensors, phosphorylation, etc.)

History of GFP: key contributors

Osamu Shimomura: discovery, purification, characterization of GFP. 1960s isolated GFP, identified the fluorophore. Interest: Aequorea bioluminescence, its chemistry and biochemistry.

Aequorea Victoria

http://www.conncoll.edu/ccacad/zimmer/GFP-ww/shimomura.html

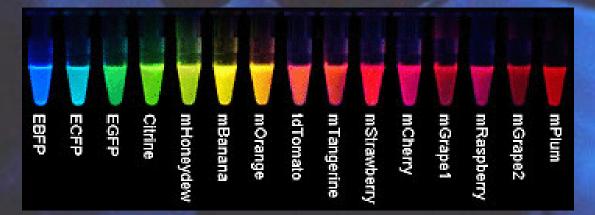
History of GFP: key contributors

Douglas Prasher 1980s-1990s The first to realize the potential of GFP as a tracer. Isolated GFP gene but could not express fluorescent GFP in bacteria.

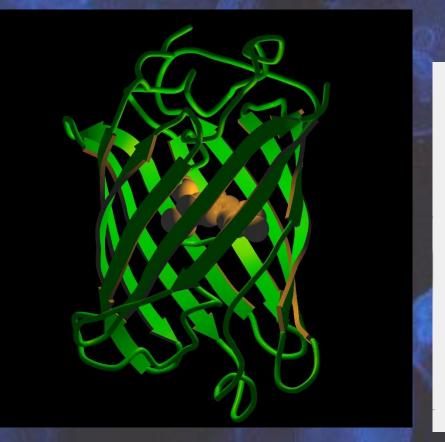
Martin Chalfie 1990s Expressed fluorescent GFP in E.coli, then also in C.elegans, and demonstrated its use to monitor gene expression.

Fig. 1. Expression of GFP in *E. coli*. The bacteria on the right side of the figure have the GFP expression plasmid. Cells were photographed during irradiation with a hand-held long-wave UV source.

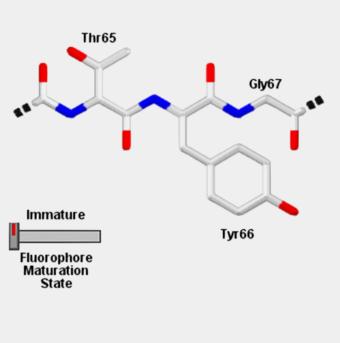
D. Prasher *et al. Gene* **1992**, 111, 229.M. Chalfie *et al. Science* **1994**, 263, 802.


History of GFP: key contributors

Sergey A. Lukyanov 2000s Found GFP-like proteins in corals (Anthozoa species): Found dsRed.

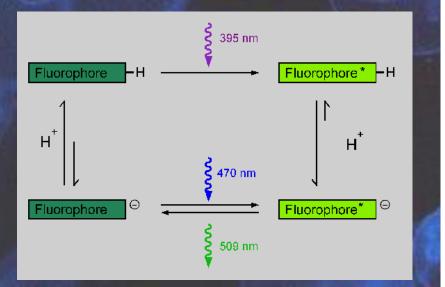


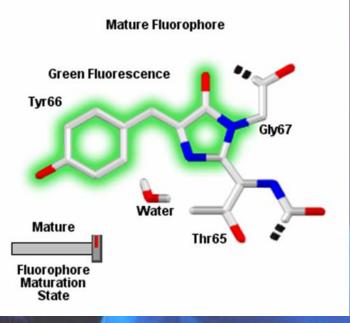
Roger Tsien 1990s-2000s http://www.tsienlab.ucsd.edu Identified the chemistry of maturation of the GFP fluorophore. Developed enhanced mutants of GFP.

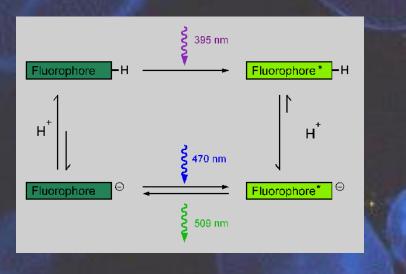


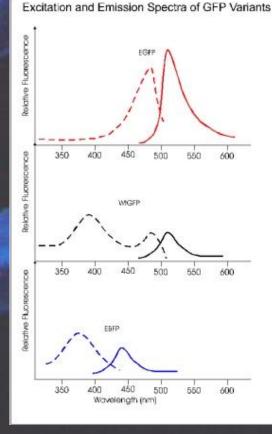
Y. Yanushevich et al. FEBS lett. 2002, 511, 11.

- Nobel Prize in Chemistry
 - GFP as a revolutionary tool in biology
- History of GFP: key contributors
- GFP chemical properties
 - Maturation of the fluorophore
 - Spectra, pH and pKa
 - XFPs chemical properties
- Applications
 - Optical highlighters (protein dynamics)
 - pH sensors (endocytosis)
 - Apoptosis
 - Protein interactions (FRET and PCA)
 - Pathways (Ca⁺⁺ sensors, phosphorylation, etc.)

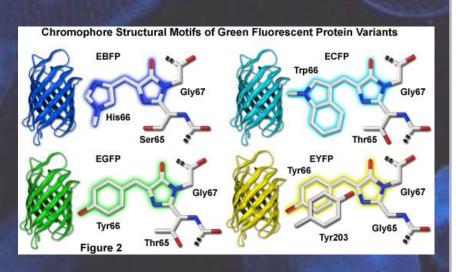


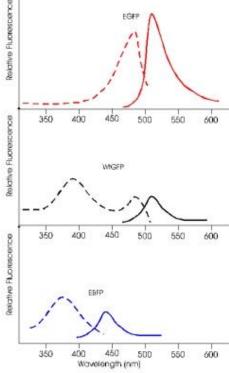

Maturation of EGFP fluorophore


http://www.olympusconfocal.com/java/fpfluorophores/gfpfluorophore/index.html


Maturation of EGFP fluorophore

http://www.olympusconfocal.com/java/fpfluorophores/gfpfluorophore/index.html





Ser 65 Thr

Tyr 66 His

http://www.microscopyu.com/articles/livecellimaging/fpintro.html

Excitation and Emission Spectra of GFP Variants

Ser 65 Thr

Tyr 66 His

http://www.olympusconfocal.com/applications/fpcolorpalette.html

Protein (Acronym)	Excitation Maximum (nm)	Emission Maximum (nm)	Molar Extinction Coefficient	Quantum Yield	<i>in vivo</i> Structure	Relative Brightness (% of EGFP)
GFP (wt)	395/475	509	21,000	0.77	Monomer*	48
Green Fluorescen	t Proteins					
EGFP	484	507	56,000	0.60	Monomer*	100
Emerald	487	509	57,500	0.68	Monomer*	116
Blue Fluorescent	Proteins					
EBFP	383	445	29,000	0.31	Monomer*	27
Sapphire	399	511	29,000	0.64	Monomer*	55
Cyan Fluorescent	Proteins					
mCFP	433	475	32,500	0.40	Monomer	39
Cerulean	433	475	43,000	0.62	Monomer*	79
Yellow Fluorescer	nt Proteins					
EYFP	514	527	83,400	0.61	Monomer*	151
mBanana	540	553	6,000	0.7	Monomer	13
Venus	515	528	92,200	0.57	Monomer*	156
Orange and Red Fl	uorescent Pro	teins				
mOrange	548	562	71,000	0.69	Monomer	146
dTomato	554	581	69,000	0.69	Dimer	142
mCherry	587	610	72,000	0.22	Monomer	47
DsRed	558	583	75,000	0.79	Tetramer	176

http://www.microscopyu.com/articles/livecellimaging/fpintro.html

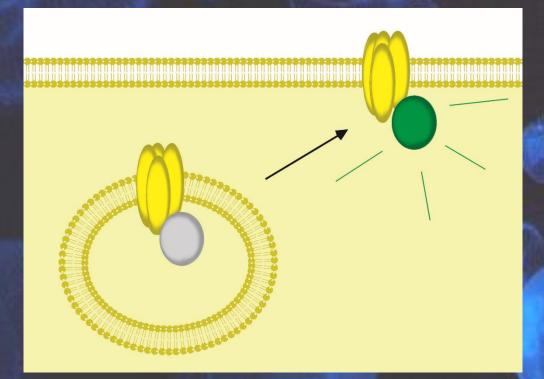
pH sensitivity

- pKa ~ 7 are more sensitive to pH changes in the cell
- Anions sensitivity (chloride)
 - Chloride binding pocket near chromophore
 - Interconnected with pKa
- Folding at 37 C (fluorophore maturation)
 - Important especially for PCA techniques
- Photobleaching stability and reversible photobleaching
- SDS-PAGE artefacts
 - e.g. DsRed, if boiled, hydrolyses into 2 fragments

O. Griesbeck et al. JBC 2001, 276, 29188.

Wavelength Class	Protein	Brightness of fully mature protein (% of fluorescein)	t _{0.5} for bleach, sec	photostabilit y (fold improvement over fluorescein)	pKa	t ₀.s for maturation at 37∝€
Far-red	mPlum	5.9	53	7.3	<4.5	100 min
Red	mCherry tdTomato mStrawberry J-Red DsRed-Monomer	23 138 38 13 5.1	96 98 15 13 16	13.1 13.5 2.1 1.8 2.2	<4.5 4.7 <4.5 5 4.5	15 min 1 hr 50 min ND ND
Orange	mOrange mKO	71 45	9.0 122	1.2 16.7	6.5 5	2.5 hr 4.5 hr
Yellow	mCitrine Venus YPet EYFP	85 76 116 74	49 15 49 60	6.7 2.0 6.7 8.3	5.7 6 5.6 6.9	ND ND ND
Green	Emerald EGFP	57 49	0.69 174	0.1 23.9	6 6	ND ND
Cyan	CyPet mCFP Cerulean	26 19 39	59 64 36	8.1 8.8 5.0	5 4.7 4.7	ND ND ND
UV-excitable green	T-Sapphire	38	25	3.5	4.9	ND
Reference	fluorescein pH 8.4	100	7.3	1.0	6.4	

N. C. Shaner et al. Nature Methods 2005, 12, 905.

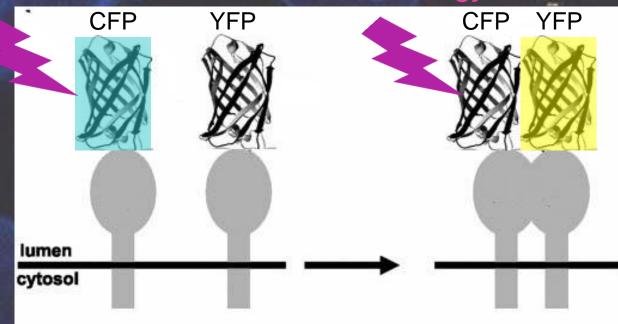

- Nobel Prize in Chemistry
 - GFP as a revolutionary tool in biology
- History of GFP: key contributors
- GFP chemical properties
 - Maturation of the fluorophore
 - Spectra, pH and pKa
 - XFPs chemical properties

Applications

- Optical highlighters (protein dynamics)
- pH sensors (endocytosis)
- Apoptosis
- Protein interactions (FRET and PCA)
- Pathways (Ca⁺⁺ sensors, phosphorylation, etc.)

Applications

pH sensors: imaging of endocytosis



Intracellular vesicles have a pH of 5.0 - 5.5 (pHluorin is **not** visible). When the receptor is placed on the cell surface, the pHlourin is exposed to the extracellular pH (~7.4), it becomes visible under blue illumination.

G. Miesenbock et al. Nature 1998, 394, 192. www.tsienlab.ucsd.edu

Applications

Protein interactions: FRET and PCA Fluorescence Resonance Energy Transfer

B. S. Nyfeler *et al., PNAS* **2005**, 102, 6350.

Useful References

- Tsien's lab <u>www.tsienlab.ucsd.edu</u>
- Phogemon ://www.path1.med.kyoto-u.ac.jp/mm/e-phogemon
- Olympus <u>www.olympuscontocal.com</u>
 Nikon <u>www.microscopyu.com</u>