
## Università di Trieste, A.A. 2019/2020 – Laurea Triennale in Fisica Elettromagnetismo, Prima Prova Parziale (26.11.2019)

| Cognome. | <br>Nome | • • • • • • • • • • • • • • • • • • • • |  |
|----------|----------|-----------------------------------------|--|

## Istruzioni per gli esercizi:

Per ciascuna domanda rispondere fornendo solo il risultato finale: i principali passaggi logici per la soluzione del problema, la grandezza incognita espressa simbolicamente in funzione delle grandezze date o di quelle ottenute in altre risposte, e poi il corrispondente risultato numerico con le unità di misura appropriate. Verranno valutati sia il procedimento logico (argomentato) che il risultato numerico.



- 1. Un condensatore piano, costituito da due armature piane e parallele di raggio r = 15. cm poste a distanza D = 1.5 mm, è connesso ad un generatore che mantiene una differenza di potenziale  $V_0 = 200$  V tra le armature. Una lastra di conduttore a facce piane e parallele, di spessore  $\Delta = 0.70$  mm, viene inserita internamente al condensatore come in figura 1. Si calcolino a) la densità superficiale delle cariche indotte sulla lastra e b) il campo elettrico nelle due zone comprese tra la lastra e le armature. Si calcoli infine c) la forza agente sulla lastra interposta tra le armature del condensatore e d) il lavoro esterno compiuto per inserire la lastra.
- 2. Un cavo coassiale (a simmetria cilindrica) di lunghezza L=40 cm e capacità C=30 pF, è composto da un conduttore cilindrico centrale, da un dielettrico di costante dielettrica relativa  $\kappa$  (ossia  $\epsilon_r$ ) = 5 e da un guscio cilindrico sottile conduttore di esterno di raggio  $R_2=0.80$  cm concentrici (Fig 2.). Da una distanza molto grande si portano sul conduttore interno la carica  $q_1$  e su quello esterno la carica  $q_2$ . L'intensità del campo elettrostatico all'interno del cavo a distanza  $R_D=R_2$  dal centro comune dei cilindri è  $E_D=50$  kV/m mentre nel punto P all'esterno del cavo a distanza  $R_P=0.90$  cm dal centro è  $E_P=30$  kV/m. Trascurando gli effetti di bordo, determinare a) le cariche  $q_1$  e  $q_2$  portate sui conduttori, b) il raggio  $R_1$  del conduttore centrale, c) la differenza di potenziale tra il punto P e il conduttore centrale. Calcolare infine d) le cariche di polarizzazione disposte sulla superficie posta a distanza  $R_1$  dal centro del cavo coassiale.