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editors.

Part I - Impulse response function



1D or 2D?

 In principle, to deal with images we should consider 
2D functions (f(x,y), δ(x,y), etc.)

 However, to keep notation simple, we will stick to 
1D functions, and generalize to 2D only when really 
necessary



Imaging System

 In the following, we will consider a medical imaging 
system as a “black box” that receives an input signal 
and produces an output image

 The theory will be developed with reference to a 
planar x-ray radiographic system, which is the oldest 
and possibly the simplest system.

 The same approach can however be applied also to 
more complex systems.

Imaging system

Input image
(distribution of x-ray quanta)

output image
(either analog or digital)



Images

 We will distinguish among 3 different image types:
 Analog image d(x)
 Expressed as a function of the position variable x
 Arbitrary units (optical density in a film, intensity on a monitor, 

etc.)
 Digital image dn
 Represents image intensity at a particular pixel identified by n
 Dimensionless (just numbers)

 Quantum image q(x)
 Spatial distribution of quanta (function of the position variable x)
 Dimensions: 

 1/length (for a 1D quantum image)
 1/area (for a 2D quantum image)

 Statistical properties (Poisson statistics)



Linear Systems

 We will assume the imaging system S{  } be a linear 
system, i.e.

for any real constant a, which is sometimes summarized 
as “the output is proportional to the input”.

Imaging system
S{ }input

h(x)
output
S{h(x)}

and



Linear systems as an approximation

 Generally speaking, no real imaging system is 
actually linear, and the linear system approach must 
be considered as an approximation

 However, many systems which are not strictly linear
 Can be linearized by means of an appropriate 

calibration 
 Can be considered linear provided the amplitude of 

the input signal is sufficiently small



Impulse response function irf(x, x0)



The superposition principle

 For any input expressed as a superposition of many 
impulse functions, the output of a linear system will 
consist of the superposition of one irf for each input 
impulse

 A simple example:



The superposition principle

 More generally, let us consider the case in which the 
input is represented by an arbitrary function h(x)

 Since it is readily shown that:

 The latter is said the superposition integral
 Thus the irf contains all the information about an 

imaging system necessary to describe its response to 
any input h(x)
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Linear and shift-invariant systems

 The imaging system will be assumed also to be shift-
invariant (isoplanatic), which means that a particular 
structure will appear the same, regardless of where in the 
image it is placed

 Virtually all imaging systems are (approximately) shift-
invariant, and if they are not, it is always possible to restrict 
the analysis to a central region where they are reasonably 
so.

 Shift-invariant imaging systems must have a shift-invariant 
irf, which means that the shape of the irf is independent of 
the position x0 , i.e. it only depends on the distance of x 
from x0:

irf(x,x0) = irf(x-x0)



Linear and shift-invariant systems

irf(x,x0)=irf(x-x0)

Shift-invariant system Non-Shift-invariant system

x
x1

δ(x-x1)

impulse

x
x1

irf(x,x1)

impulse response

x
x2

δ(x-x2)

impulse

x
x2

irf(x,x2)

impulse response

x
x1

δ(x-x1)

impulse

x
x1

irf(x,x1)

impulse response

x
x2

δ(x-x2)

impulse

x
x2

irf(x,x2)

impulse response

irf(x,x0) really depends on x0



 When the irf is shift-invariant, the superposition integral

can be written as

which is actually a convolution integral

The convolution integral
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Part II – System characteristic 
functions
 Ian A. Cunningham,

Chapter 2 in Handbook of medical imaging.
Volume 1, Physics and psychophysics.
Richard Van Metter, Jacob Beutel, Harold Kundel, 
editors.



A special case: a sinusoidal input

 Let us consider the special case of an input that varies 
sinusoidally with the position, i.e.

where u is the spatial frequency (cycles/mm). 
The output d(x) is:

ℎ 𝑥𝑥 = 𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋 = cos 2𝜋𝜋𝜋𝜋𝜋𝜋 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(2𝜋𝜋𝜋𝜋𝜋𝜋)

 Thus:
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Fourier Transform of irf(x)
We call it the system

characteristic function, T(u)

𝑑𝑑 𝑥𝑥 = 𝑆𝑆 𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋 = T(u)𝑒𝑒𝑖𝑖𝑖𝜋𝜋𝜋𝜋𝜋𝜋



The system characteristic function T(u)

 In this particular case, the output is thus proportional to 
the input, the scaling factor being T(u), which is the 
Fourier transform of irf(x)

 Thus complex exponential of the form ei2πux are 
eigenfunctions of the imaging system

 T(u) describes the eigenvalues and is called the 
characteristic function of the system

 In general T(u) has complex values, however:
 If irf(x) is real and even, T(u) is also real and even
 T(0) represents the area under irf(x) and is always real

𝑆𝑆 𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋 = T(u)𝑒𝑒𝑖𝑖𝑖𝜋𝜋𝜋𝜋𝜋𝜋



The spatial-frequency domain

 Let us consider again the convolution integral 

 If we define or, in short:

 As a consequence of the convolution theorem we 
have that 
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The spatial-frequency domain
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Another sinusoidal input



The Modulation Transfer Function (MTF)



Source: Hasegawa, B. H. - The physics of medical 
X-ray imaging (or the photon and me: how I 
saw the light) - 1990

Part 3 – More on MTF



Measuring MTF(u) (conceptually)

[From Robert M. Nishikawa ]



Measuring MTF(u) (a simple method)

 A very simple method to measure the MTF of a system is by 
means of a bar pattern, which provides an input object with 
several square waves of different spatial frequencies 



Measuring MTF(u) (a simple method)

 The basic idea is to measure the modulation of the images obtained 
with the bar-pattern test-object

 However, the input is a square wave (rather than a sine wave)
 Thus the result is not exactly the MTF(u): it’s a different function 

which sometimes is called Contrast Transfer Function CTF(u)



Measuring MTF(u) (a simple method)

 The modulation of each square wave of the bar pattern is then 
calculated from the image and the result is plotted as a 
function of the spatial frequency to yield the CTF(u)

C
TF

(u
)

u (lp/mm)



Measuring MTF(u) (a simple method)

 The difference between CTF(u) and MTF(u) is often disregarded
 However, a more accurate estimate for the MTF(u) can be 

obtained form the values of CTF(u) according to the Coltman
formula [J.W. Coltman JOSA 44 468-469, 1954] :



Measuring the PSF(x,y) (i.e. the irf(x,y))

 Alternatively, the irf(x,y) could be measured instead
 Note: following Hasegawa, in this section we will assume the 

irf(x,y) is normalized, i.e. 

 Then:
 the irf(x,y) is dubbed Point Spread Function PSF(x,y)
 irf(x,y) = PSF(x,y)

 the T(u,v) is dubbed Optical Transfer Function OTF(u,v)
 T(u,v) = OTF(u,v)

 Note: more general relations between irf/PSF, and T/OTF are 
discussed in the Appendix (Technicalities)

�
−∞

∞
𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1



 The PSF(x,y) represents the action of the system S[ ] 
on a point-like object δ(x,y)

 Thus, one could think to use a point-like input δ(x,y) 
to measure the PSF(x,y) directly

 In practice, however, utilizing a point-like input 
δ(x,y) can be impractical
 it can be technically challenging to realize it
 the input can be weak and the output dominated by 

noise
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Measuring the PSF(x,y) (i.e. the irf(x,y))



PSF and LSF

 An alternative approach is to consider a line input, e.g. a bright 
line corresponding to the y axis in the image plane

 The action of the imaging system on this line input defines the 
Line Spread Function (LSF)

Imaging system



PSF and LSF

 Formally the line input can be written as:

 We define the Line Spread Function as follows:

 As a consequence

 Often, the OTF is characterized by some symmetry 
properties (e.g. circular symmetry) and thus it is sufficient to 
evaluate it along one direction in the spatial-frequency 
plane
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LSF and ESF

 An even more practical approach is by considering a step 
input, that can easily be obtained placing an opaque edge 
across the field of view

 We thus define an “edge spread function” (ESF):

Imaging system



LSF and ESF

 Formally, the step input can be written as:

 We thus define an “edge spread function”:

 The LSF can then be obtained by differentiating the 
previous equation:

 The OTF(u,0) can then be obtained calculating the 
FT of the LSF(x)
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PSFs and MTFs

note: in this slide the spatial 
frequency is indicated as f
(instead of u)



Appendix: technicalities



The Optical Transfer Function (OTF)

 The Optical Transfer Function of an imaging system is 
defined as

 In general, while the MTF is always real, the OTF has 
complex values. Thus, it can be written in the polar form

 where we have introduced the
 Modulation Transfer Function
 Phase Transfer Function PTF(u)
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The Point Spread Function (PSF)

 The OTF and the MTF are normalized (by 
definition): 

 The normalized impulse response function is said
point spread function

 Thus
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irf(x), psf(x), T(u), MTF(u), OTF(u)

 In this Appendix we gave formal definitions of:
irf(x), psf(x), T(u), MTF(u), and OTF(u).

 However, most often in practical cases some property 
applies so that a simplification is possible

 For instance,  if the impulse response function is 
normalized:

then and
 Moreover, if the impulse response function is normalized, 

real and even:
then and

 Some textbooks just assume these conditions apply and 
do no even introduce irf(x), T(u) and OTF(u), but they 
simply use psf(x) and MTF(u) - or OTF(u)
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