
Chapter

8
Spaced Out: Spatial Encoding

8.1 Introduction
By now you are probably a regular user of the MR
scanner and are familiar with the appearance of
images (as seen in Chapter 3) produced from various
common sequences (Chapter 4). You may have a feel
for the digital nature of the images as pixels, voxels
and slices (Chapter 5), how parameter changes affect
them (Chapter 6) and the artefacts that may some-
times arise (Chapter 7). In a way, that concludes
much of your basic hands-on training. In this chapter
we begin to provide the theoretical basis for how the
scanner produces images from MR signals. Chapter 9
will continue to develop the theory by looking at how
the signals are made in the first place.

It should be stressed here that understanding
image formation in MRI is neither simple nor obvi-
ous and most people struggle to conceptualize it.
There are a number of ways of understanding this
and what matters is that you find a way that makes
sense to you. Persistent students also find that even-
tually the penny always drops, a light bulb inside their
brain suddenly switches on and usually, like the cur-
rent in a superconducting magnet (or the skill of
bicycle riding), it becomes permanent.

An understanding of the image-formation pro-
cess is helpful for obtaining the optimum diagnostic
information from an examination, modifying or cre-
ating new protocols, recognizing common image
artefacts and taking measures to overcome or avoid
them. It will also help as a basis for understanding
the pulse sequences considered in Chapters 12, 13
and beyond. It is not just theory. It is the heart and
soul of MRI.

In this chapter you will see that:

� magnetic field gradients form the basis of MR
signal localization;

� 2D slices are produced by the combination of an
excitation RF pulse and simultaneous slice-select
gradient;

� the in-plane MR signal is encoded in terms of the
spatial frequencies of the object using phase-
encoding and frequency-encoding gradients;

� we collect or sample every spatial frequency that
can exist within the image before we Fourier
transform these data (known as ‘k-space’) to
produce the image directly;

� inadequate or erroneous k-space sampling leads to
certain image artefacts.

8.2 Anatomy of a Pulse Sequence
You will have noticed that some scans take a long
time to acquire and involve loud banging sounds
from the scanner. Each sound is produced by gradient
pulses applied to localize the MR signals in the body.
In MR the static magnetic field B0 (‘B-nought’) is
constantly present. The gradients are not. They are
applied in a controlled fashion to form a pulse
sequence. An MR pulse sequence diagram is a simple
means of showing how the RF and gradients
are applied. The vertical axis represents pulse ampli-
tude and the horizontal axis is time. Figure 8.1 shows
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Figure 8.1 Basic gradient-echo MR imaging sequence.
Amplitude is shown vertically, time horizontally. GSS is the
slice-selective gradient, GPE the phase-encoding gradient and GFE

the frequency-encoding gradient.
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the basic gradient-echo MR imaging sequence that we
will use to illustrate the image-formation process. For
the present we will only say what each bit does (how
and why will follow).

First (top line), an RF pulse is applied simultan-
eously with a slice-selective gradient GSS (line 2). The
RF pulse stimulates the MR interactions in tissue
which lead to the MR signal. By combining the RF
excitation with a gradient the MR interactions are
restricted to a two-dimensional plane, slab or slice.
Any physical gradient Gx, Gy or Gz or combinations
of these can be used for this purpose, allowing us to
produce transverse, sagittal or coronal, oblique or
double oblique slices.

Next, in line 3, phase encoding is applied in a
direction orthogonal to the slice selection. This
encodes the MR signal in the phase-encode direc-
tion. In line 4, the frequency-encode or readout
gradient is applied in the third direction and finally
line 5 shows the time when the MR signal is meas-
ured or acquired. Note that this is during the
frequency-encode gradient but after the phase
encoding. The whole sequence pattern has to be
repeated for every ‘line’ of data, corresponding to
a different value of phase-encode gradient until the
data or k-space matrix is filled. A time period, TR,
occurs between the application of one RF excitation
and the next.

The total scan time is

Scan time ¼ NSA×TR ×NPE

where NSA is the number of signal averages and NPE

the size of the phase-encoding matrix.
Once all the data are acquired, a two-

dimensional Fourier transform is applied. This
converts the data, already encoded as spatial fre-
quencies, into an image. Reconstruction in MRI is
generally simpler than in X-ray CT; most of the
hard work has been done during the acquisition
by the gradients.

Although this is the simplest possible MR
imaging sequence, once you have grasped the pur-
pose of each element, it is relatively easy to make
the jump to more complicated sequences as they all
have the same basic elements. We will describe
three of the steps towards localization – slice selec-
tion, phase encoding and frequency encoding – in
some detail. First, however, it is important to
make sure you understand some underpinning
principles.

8.3 From Larmor to Fourier via
Gradients
The basic groundwork for this chapter is a knowledge
of the Larmor equation to describe the behaviour of
excited nuclei (or ‘spins’), an understanding of the
effect of magnetic field gradients and familiarity with
the concept of spatial frequencies. Mathematical skills
that would be useful include an understanding of sine
waves and an awareness of Fourier transforms (see
Appendix). If you already know about sine waves you
can skip to Section 8.3.1.

A purely sinusoidal signal or waveform has three
basic properties: amplitude, frequency and phase.
Amplitude describes how large the signal is, measured
in real-world units like volts, or arbitrary ‘signal units’.
Frequency, measured in hertz (Hz), describes how
rapidly in time the instantaneous magnitude of the
wave is changing: 1 Hz equals one cycle or rotation
per second. Phase describes the instantaneous position
within the cyclic variation in terms of an angle. It is
measured in degrees or radians, and can vary from 0°
to 360° (0–2π radians), thereafter repeating itself. It is
sometimes helpful to think of a phase as the angle
displayed on a ‘clockface’. See Appendix A.2.

8.3.1 Larmor Equation
Sir Joseph Larmor was an Irish physicist who died
four years before the discovery of NMR, but who
nevertheless predicted the relationship between the
precession frequency of spins and the magnetic field
strength (he also has a crater named after him on the
moon). In a simple picture we can think of the spins
as rotating at the Larmor or resonance frequency,
which is also the frequency of the MR signal given
by the equation

Frequency≈ 42 ×magnetic field

where frequency is in megahertz (MHz) and magnetic
field is in tesla (T). The good news is that this is the only
equation you need to know to understand spatial local-
ization, although you do need to develop a thorough
understanding of its consequences. The number 42 is
called the gyro-magnetic ratio (which has the symbol γ,
pronounced ‘gamma’) and is a property of the nucleus
in question. Its value more exactly is 42.56 MHz T–1 for
hydrogen (water or fat protons). Other nuclei (e.g.
phosphorus) have a different value of gamma, but for
most of MRI we only care about hydrogen.
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So, if the magnetic field strength of the MR
magnet is 1.5 T, the MR signal obtained has a fre-
quency of

1:5 T× 42 MHz T�1 ¼ 63 MHz

Similarly, at 3 T the Larmor frequency becomes 126
MHz. An RF pulse applied at 63 MHz in a 1.5 T MR
system will result in MR signals of a periodic (sinus-
oidal) nature also at 63 MHz. These can be detected
by a coil and receiver tuned, in the same manner as a
transistor radio, to this frequency. The proportion-
ality of field and frequency underlies all of the image-
formation process.

Where’s the Bar?

Conventionally, the Larmor equation is written as

ω0 ¼ γB0

where ω0 is the angular frequency of the protons
(ω = 2πf). Using this scheme gives γ a value of
2.67 × 108 radians s–1 T–1. We find this number
unmemorable and angular frequencies are not as
intuitively understandable as regular (scalar) frequen-
cies. When the use of scalar frequency is helpful or
important for understanding, wewill use the symbol
(‘gamma bar’), which is equal to γ /2π (i.e. 42 MHz T–1).
The use of gamma and gamma bar only affects the
material in the advanced boxes. Beware, not all
authors realize whether or not they are using the bar.

This signal alone is insufficient to produce an
image of a patient lying within the magnet bore
because we would have no way of assigning parts of
the signal to where in the patient they originated. To
achieve this localization we now need to introduce the
concept of magnetic field gradients, or in short
‘gradients’.

8.3.2 Gradients
In MRI the term ‘gradient’ refers to an additional
spatially linear variation in the static field strength
in the z direction, i.e. along B0. For example an ‘x
gradient’ (Gx) will add to or subtract from the magni-
tude of the static field at different points along the x
axis or x direction. Figure 8.2 shows representations
of the main field (a) and the field plus an x gradient
(b) with the total field represented by the spacing of
the ‘field lines’. Gradient field strength is measured in
milli-tesla per metre (mT m–1).

In Figure 8.2a all the protons (spins) experience
the same field and have the same frequency. When a
gradient is added (b) the magnetic field produced by
the gradient adds to the main field B0. At the centre
(x = 0) the total field experienced by the nuclei is
simply B0, so these spins resonate at the Larmor
frequency. As we move along the x direction,
however, the total field either increases or decreases
linearly and thus these protons resonate faster or
slower depending upon their position. Faster or slower

x

B

Constant field

x

B

Constant field + Gx

FasterSlower

B0 B0

x = 0

(a) (b) Figure 8.2 Effect of field gradient on
nuclei. (a) B0 only, all nuclei precess at
the same frequency. (b) B0 plus gradient
Gx – precession frequency now depends
upon position.
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precession is detected as higher or lower frequencies in
theMR signal, and so frequencymeasurements may be
used to distinguish between MR signals at different
positions in space. Gradients can be applied in any
direction or orientation. Three sets of gradient coils –
Gx, Gy and Gz – are included in the MR system. They
are normally applied only for a short time as pulses. It
is these three sets of gradients that give MR its three-
dimensional capability.

The Effect of Gradients

Mathematically the three orthogonal spatial gradi-
ents of Bz are defined as

Gx ¼ ∂Bz
∂x

Gy ¼ ∂Bz
∂y

Gz ¼ ∂Bz
∂ z

When a gradient (e.g. Gx) is applied, the total field in
the z direction experienced by nuclei will be depend-
ent upon the position in space, e.g.

B xð Þ ¼ B0 þ x � Gx

When a gradient is applied the Larmor frequency will
depend upon the total z component of the magnetic
field and thus becomes spatially dependent, e.g. for
the x gradient.

f xð Þ ¼ B0 þ x � Gxð Þ
where we are using ≈ 42 MHz T–1.

8.3.3 Dephasing and Rephasing
If we have a uniform distribution of water producing
an MR signal and we apply a gradient G for a given
time, what will happen to the MR signal? There will
be variations in frequency of the MR signal, either
faster or slower, depending upon position, as in
Figure 8.2. The spins which are precessing faster,
because of the action of a gradient, appear to move
apart or dephase (see Figure 8.3), and those which are
precessing slower dephase in the opposite direction.
The combined effect is often thought of as a ‘fanning
out’ due to dephasing. The speed at which this
happens depends upon the gradient amplitude or
strength. The total angle of dephasing depends upon
the product of the gradient strength and its duration,
also known as the gradient moment.

If we now apply another gradient with a reversed
sign or polarity (i.e. negative amplitude) as shown in
Figure 8.4, the signals which sped up before now will
start to precess slower and the ones which had travelled

with a slower rotation will now speed up. The spins will
start to rephase until, when the gradient moments are
equal, the components of the MR signal will all be
pointing in the same, original direction. At this point
in time we get a measurable MR signal, known as a
gradient echo. Each gradient pulse is known as a lobe
and is described as dephasing if it occurs first, or as
rephasing if it corrects for an earlier dephasing.

Gradient Dephasing

In the rotating frame (see Box ‘My Head’s in a Spin!’)
we can view the action of the gradient as a dephasing
of components of transverse magnetization in the xy
plane. The phase change at any time and place is

ϕ x; tð Þ ¼ exp iγ � x � Gx � tð Þ
and it evolves for as long as the gradient is applied.
Once the gradient is switched off, the accumulated
phase changes remain encoded until the transverse
magnetization decays to zero or further gradients are
applied. A gradient echo results from the application
of gradient of equal moment but with the opposite
polarity. The echo time TE occurs for

ðTE

0

G� tð Þ � dt ¼ �
ðTE

0

Gþ tð Þ � dt

y = 0 y > 0y < 0

y

z

x

Figure 8.3 Effect of gradient on MR signal (transverse
magnetization). Signal originating from different positions along the
y-gradient axis will have a position-dependent phase change.
These are shown as clock-face diagrams in the upper part of the
figure. It is usual in the MRI literature to ‘collapse’ or superimpose
these all on the same xyz-axes as in the lower portion.
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where the plus and minus signs refer to the positive
and negative lobes of the gradient waveform.
Signal loss due to main B0 field inhomogeneity is
not restored. The MR signal decays exponentially
with time constant T2

*.

My Head’s in a Spin!

What’s the rotating frame? It’s a set of xyz axes that
rotates around the z axis at the Larmor frequency. In
this frame of reference, a proton at exactly the Larmor
frequency is static, which makes all the maths a bit
more straightforward. We’re not going to say anymore
than that for now, because it’s easy to get confused.
Once you have come to the end of this chapter and
read the next (Chapter 9), you will realize that all along
in this chapter we have been subversively operating in
the ‘rotating frame of reference’. You don’t need to
worry about this at all; in MRwe tend to naturally adopt
this frame of reference; after all, we live on one! The
rotating frame is fully explained in Box ‘The Rotating
Frame of Reference’ in Chapter 9.

8.3.4 Fourier Transforms
Joseph Fourier was a French mathematician who
enjoyed a colourful life spanning science, politics and
high society during the time of Emperor Napoleon
Bonaparte. His lasting achievement was the invention
of the Fourier transform, which entirely underpins the
theory of MR imaging. Fourier’s great idea was that
any signal or waveform in time could be split up into a
series of ‘Fourier components’, each at a different
frequency. For example, the sound of a musical

instrument could be described either by the actual
pressure waveforms it produced in the time domain,
or by the appropriate magnitude of its constituent
frequencies or its spectrum in the frequency domain.
An acoustic signal, such as that produced by a musical
instrument, is an example of a one-dimensional wave-
form, and when Fourier transformed gives a one-
dimensional spectrum. In MR we use two- or three-
dimensional Fourier transforms. Variables which
relate to each other in their respective domains are
called Fourier transform pairs. Examples are shown
in Figure 8.5. One of the key features of the Fourier
transform is that ‘less is more’: if a shape is small in one
domain, its transform will be large in the other.

8.4 Something to get Excited About:
The Image Slice
Slice selection or selective excitation is the process
whereby MR signals are restricted to a two-
dimensional plane or slab within the patient. The
position, width and orientation of the slice can all be
controlled by the operator.

8.4.1 Selective Excitation
In selective excitation we apply a specially designed RF
excitation pulse at the same time as a gradient (the
slice-selective gradient) as shown in the top two lines
of the pulse sequence diagram in Figure 8.1. The
designer RF pulse contains a narrow range of frequen-
cies of RF, centred about the Larmor frequency. In
technical terms we say it has a ‘narrow bandwidth’.
(Note that this is different from the receive bandwidth:
the transmit bandwidth is not operator-controlled.)

G(t)

Signal

Echo formed for
equal areas

y

z

x y

z

x

Figure 8.4 Rephasing of signal by a
bipolar gradient to form a gradient echo.
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In contrast, a simple block RF pulse which is simply
switched on and then off again has a wide bandwidth
because it is a sinc function in the frequency domain
(see Figure 8.5).

The principle of slice selection is illustrated in
Figure 8.6. The presence of the gradient causes the
resonant frequency (required for producing MR sig-
nals) to vary with position in the gradient direction.
At the isocentre where the additional value of the
gradient is zero, the normal Larmor frequency will
apply. Further away along the selection axis, either a
higher or lower RF frequency will be needed. If the
required frequency is present within the RF pulse’s
bandwidth then resonance will happen, i.e. protons
will be excited. If the required frequency is not pre-
sent within the RF pulse’s bandwidth then nothing
will happen. Thus, excitation for the production of
signal can only take place at or close to the isocentre.
If the slice-select gradient is applied along the z axis,
the resultant slab of excited nuclei or slice will form a
transverse plane.

In the advanced Box ‘Slice Selection Maths’
(which is for those who wish to know more about
the maths), we show that the shape of the physical
slice is related to the shape of the spectrum of the
RF pulse. We could use Figure 8.5 to give an
indication of the distribution of flip angle in the
slice-select direction (the slice profile) for various RF
waveforms. Commonly, a version of a ‘sinc’ or ‘sinx/x’
pulse (an apodized or truncated sinc) is used for the
RF, which gives an approximately rectangular slice
profile.

Slice Selection Maths

For a selective pulse the magnetic field gradient
introduces a position-dependent spread Δf in the
Larmor frequency about the carrier frequency f0 such
that

Δf zð Þ ¼ � z � Gz

using the z gradient for excitation (to produce a
transverse slice). Let us apply an amplitude-
modulated RF 90° pulse with a form

B1 tð Þ ¼ A tð Þ cos 2π � f 0 � tð Þ
where A is the pulse envelope or shape and f0 is the
‘carrier’ frequency. Applying a result which will be
derived in Section 9.3, the resultant flip angle will
be (approximately)

αðzÞ ¼ γ

ð
AðtÞ � exp ðiγ � z � Gz � tÞdt

¼ γ

ð
AðtÞ � exp ði2π � Δf � tÞdt

The integral is the Fourier transform of A(t), i.e.
α(z) = γA(f). So the shape of the RF pulse’s spectrum
determines the shape of the slice with regard to the
selection direction (in this case z).

The position of the slice is given by

z ¼ f 1 � f 0
γ � Gz

where f1 is the shifted carrier frequency. Thus for a
slice shift of 100 mm, using a 5 mT m–1 gradient an
RF carrier frequency shift of about 20 kHz is required.
The slice width or thickness is given by

slice width ¼ RF bandwidth
γ � Gz

So for a 5 mm thickness with a 5 mT m–1 gradient the
RF bandwidth needs to be approximately 1 kHz. This
implies an RF pulse duration of the order of 1 ms.

Sinusoid

Top hat

Gaussian

Single frequency

Lorentzian

Gaussian

Sinc function

FT

FT

FT

FT

Figure 8.5 Spectra and waveforms (Fourier transform pairs).
A narrow extent in one domain is equivalent to a wide extent in the
other. FID stands for free induction decay.
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8.4.2 What’s Your Orientation?
Manipulating the Slice
All features of the slice can be manipulated by adjusting
the gradient or RF waveform properties, i.e. electronic-
ally, rather than having to move the patient as required
in X-ray CT. These include position, orientation and
thickness. Box ‘Slice Selection Maths’ contains a more
mathematical description of these features.

First, the position of the slice can be varied simply
by changing the basic (or carrier) frequency of the RF
pulse but using the same gradient strength. The
region which now fulfils the MR resonant condition
will have moved. Second, the thickness of the slice can
be controlled by changing either the shape of the
designer RF pulse (changing its bandwidth) or the
strength of the gradient. A stronger gradient will
result in a thinner slice (Figure 8.7a). Alternatively,
we can use a narrower RF pulse bandwidth.
According to Fourier theory, this means using a
longer duration RF pulse. Notice the ‘less is more’
principle again: you can have a thinner slice but it will
take longer to excite (Figure 8.7b).

Third, the orientation of the slice can be varied
by using a physically different gradient axis. The

selected slice is always orthogonal (perpendicular) to
the gradient applied. So far we have assumed the
application of GSS in the z–axis, along the patient,
giving a transaxial or transverse slice. If we use Gx as
a slice-select gradient we get a sagittal slice. For a
coronal slice we use Gy (as was shown in Figure 5.8).
Oblique and double oblique slices can be created
using combinations of Gx, Gy and Gz. See Box ‘An
Oblique View’.

An Oblique View

Oblique slices may be obtained by driving two orth-
ogonal gradients in proportion to the sine and cosine
of the angle required, e.g. to obtain a transverse slice
rotated through an angle ϕ from the x axis requires
the simultaneous application of

Gx ¼ GSS cos ϕ Gy ¼ GSS sin ϕ

while the generation of a double oblique angulation
of ϕ from x and θ from z requires the application of

Gx ¼ G sin θ cos ϕ, Gy ¼ G sin θ sin ϕ, Gz ¼ G cos θ

B

Frequency

Bandwidth
RF amplitude

RF carrier
frequency

z
Image slice

Region where Larmor
equation applies

B0 z

Figure 8.6 Selective excitation of an
image slice by applying a shaped RF
pulse and a field gradient at the same
time.
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8.4.3 Multiple Slices
It doesn’t take very long to excite a slice and collect its
echo, typically much less than the TR needed to
control the image contrast. We can use the ‘dead time’
within the TR period to acquire multiple interleaved
slices (see Section 5.7). By applying a slice-select gra-
dient and changing the central frequency of the RF
pulse we can move the position of the slice
(Figure 8.8). This is the standard means of image
acquisition. A multi-slice interleaving scheme is
shown in Figure 8.9. It is possible to acquire the slices
in any order. Normally an ‘interleaved’ slice order is

used, e.g. for an eight-slice sequence acquiring the
following positions in this order: 1, 3, 5, 7, 2, 4, 6, 8
(see Section 5.7).

8.4.4 Rephasing
In Figure 8.1 you will have noticed a negative portion
of the slice-select gradient. This is necessary to
rephase the MR signal in order to get the maximum
possible signal. While the selective excitation process
is occurring, the signal being generated is also being
dephased by the gradient. We normally consider the
action of the RF pulse to occur at its centre in time. In

z

Field / frequency

GSS

RF Bandwidth

Larger gradient

(a)

Slice thickness

Thinner slice

z

Smaller RF bandwidth

Thinner slice

Time
Longer RF pulse

GSS

RF

Field / frequency

Slice thickness

(b)

Figure 8.7 Dependence of slice thickness
on (a) gradient strength and (b) RF
transmit bandwidth. Larger gradient
amplitude and longer RF pulses both result
in thinner slices.
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this case, a rephasing gradient moment of half the
slice-selection gradient is required to leave all the
spins in phase throughout the slice.

8.5 In-Plane Localization
In MRI we use the gradients to measure the two- (or
three-) dimensional spectrum of the object being
imaged. This spectrum is what we call k-space and
consists of an array or matrix of individual spatial
frequencies. The next sections will explain the process
conceptually. If you want (or need) the maths, check
out Box ‘Encoding for 2D FT Imaging’, but you don’t
need to in order to understand image formation.

Encoding for 2D FT Imaging

Following the excitation of a localized slice, fre-
quency- and phase-encoding gradients are applied
to manipulate the MR signal to encode spatial fre-
quencies. The effect of a gradient GFE applied along
the x direction following the initial excitation on a
discrete signal element ∂s is

∂ s tð Þ ¼ ρ xð Þ � exp �t
T�
2

� �
� exp iγ � x � GFE � tð Þ � dx

where ρ(x) is the proton density along x, and i is
the square-root of –1, denoting complex notation
(see Appendix). This gradient is applied continuously
during the signal acquisition (sampling). A dephasing

gradient is usually applied prior to sampling in order
to generate a symmetrical echo.

The phase encoding is applied (along the y direc-
tion for our example) through a gradient GPE with
a duration of τ prior to the signal measurement
(sampling). The signal from a small element following
the application of both gradients is

∂ s tð Þ ¼ ρ x; yð Þ � exp �t
T�
2

� �
� exp iγ � x � GFE � tð Þ

� exp iγ � y � GPE � τð Þ � dxdy

In words, this is

signal ¼ spin density× T�2 decay×phase change due

to GFE ×phase change due to GPE

The total MR signal is the integral of this with respect
to x and y. In a complete MR acquisition the signal is
sampled M times at intervals Δt, and the pulse
sequence repeated N times, each time incrementing
the PE gradient amplitude such that

GPE nð Þ ¼ ΔG � n for n ¼ N
2

� �
to

N
2
� 1

� �

Now define quantities kFE and kPE such that

kFE ¼ γ � GFE � Δt �m
kPE ¼ γ � ΔG � n � τ

The total signal S acquired in two dimensions time t
and ‘pseudo-time’ n � τ is found by integrating over x
and y

Slice 2 Slice 3 Slice 4 Slice 1

TR

Slice 1

Figure 8.9 Multi-slice sequence. Different slices can be selected
and lines of data acquired within each TR period. The expanded
section is repeated for each slice position using a different RF carrier
frequency.

Frequency

z

zf1
f2
f3
f4

Slice 1

Slice 3

Slice 4

Slice 2

Gss

Figure 8.8 By changing the RF centre frequency, multiple slices
may be acquired at different locations quite independently of
each other.
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S m; nð Þ ¼
ðð
ρ x; yð Þ � exp �t

T�
2

� �
� exp i2π � x � kFEð Þ

� exp i2π � y � kPEð Þ � dxdy
which (except for the T2

* term) is the form of an
inverse Fourier transform of the spin density ρ(x, y), i.e.

S m; nð Þ ¼ ρ kFE; kPEð Þ
Thus the 2D FT of the encoded signal results in a
representation of the spin density distribution in two
dimensions. An alternative way of viewing this is that
the spatial frequency components are given by the
discrete signal elements S(m, n), the raw k-space
data. Position (x, y) and spatial frequency (kFE, kPE)
constitute a Fourier transform pair.

We have seen how the gradient-encoded MR
signal represents the matrix of spatial frequencies.
However, a glance at the maths shows that this
equivalence is not exact – there is a term which
depends upon T2

*. This affects some spatial frequen-
cies more than others and can lead to loss of reso-
lution and blurring of the image. This is explored in
Section 13.4.

8.5.1 Spatial Frequencies Demystified
The concept of spatial frequencies is not just a theor-
etical abstraction dreamt up to torment students of
MRI. In real life the brain makes use of spatial fre-
quencies to construct the visual images that you see.

Spatial frequencies may be hard to conceptualize but
they are very natural and we’d all be in the dark
without them!

One of the easiest ways of understanding spatial
frequencies is to think of a line-pair test object, such
as those used for testing X-ray imaging systems.
These consist of alternate light and dark bands or
line-pairs of differing spacings (Figure 8.10). Suppose
we have five line-pairs per centimetre. This means
that five dark–light patterns are contained within a
centimetre. The pattern of image brightness produced
by this line-pair pattern is like a spatial frequency. In
MR a spatial frequency is a periodic variation in
signal spatial distribution or image brightness, meas-
ured not as line-pairs per centimetre but as ‘cycles per
centimetre’ (which are very similar).

Applying the theory of Fourier, any image (not
just MRI) may be decomposed into a spectrum of
periodic (sinusoidal) brightness variations or spatial
frequencies. In a digital image with a matrix of 256 ×
256 pixels there are 256 × 256 possible spatial fre-
quencies, allowing for positive and negative values. If
we know the spatial frequencies we can calculate an
image of the object that formed them. The purpose of
MR localization by gradients is to manipulate the MR
signal so that it gives all the spatial frequencies neces-
sary to form an image. Each point of data or k-space
is a spatial frequency component.

Figure 8.11 shows an image and its constituent
spatial frequencies (k-space). If we remove the high

Figure 8.10 Spatial frequencies.

Chapter 8: Spaced Out: Spatial Encoding

111

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781107706958.009
Downloaded from https://www.cambridge.org/core. The Abdus Salam International Centre for Theoretical Physics, on 13 May 2020 at 15:41:12, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781107706958.009
https://www.cambridge.org/core


spatial frequencies we are left with an image which has
the right brightness but no detail. Removing the low
spatial frequencies leaves the image with details of
edges and sharp features but low intensity elsewhere.
So big objects have low spatial frequencies. Small
objects or sharp edges have high spatial frequencies.

8.5.2 Totally Fazed: Phase Encoding
Most people find phase encoding the hardest part of
MR image formation to understand, but gaining a
conceptual grasp of it will pay dividends in terms of
your overall understanding. Consider the following in
conjunction with Figure 8.12, which shows the effect
of the phase-encoding gradient on the transverse
magnetization at three different locations and times.

Suppose we already have an MR signal with all the
spins in phase. If we apply the phase-encode gradient
(GPE) at time A in the y direction, then the precession
of the nuclei will speed up or slow down according to
their position along the y axis. As we saw in Section
8.3.3, this causes the spins to dephase or fan out to a
progressively greater degree for as long as the gradient
is applied. When we switch off the gradient at time B,
all the nuclei will revert to their original frequency or
speed, but will keep their different phase angles. They
are said to be phase encoded. The relative phase dif-
ferences between signals in different locations remain
until either another gradient is applied or the MR
signal decays due to T2 relaxation.

Figure 8.13 shows the phase encoding generated
by three different gradient amplitudes on a column of

(a) (c)(b)

Figure 8.11 Images and their 2D spectra (k-space) showing: (a) reconstruction from all spatial frequencies; (b) low spatial frequencies, i.e. the
centre of k-space only; and (c) high spatial frequencies, i.e. the edges of k-space only.
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protons in the phase-encode axis. We see that without
any applied gradient, the spins are all in phase and a
large signal is obtained, but that the dephasing or
twisting of the spins increases with gradient strength

until the dephasing is large enough for all the spins to
cancel each other out and no signal is obtained.

How is this measuring spatial frequencies? Refer-
ring to Figure 8.13, suppose we have a uniform

Small gradient value Large gradient valueNo gradient

Total signal large Total signal small Total signal zero

(a) (b) (c)

Figure 8.13 Effect of three different strengths of phase encoding on a uniform distribution of signal-producing material. The MR signal
detected is given by the sum of all the vectors. (a) No gradient, (b) small gradient, (c) large gradient.

GPE

No gradient:
signal in phase

Gradient on:
signal dephases

Gradient off:
final phase

remembered

y = 0

y < 0

y > 0

Time 

A B 

Figure 8.12 Phase encoding returns the
signal to the Larmor frequency but with
position-dependent phase changes.
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distribution of protons and we apply a sufficient phase-
encode gradient to cause the phase of the spins to vary
by 360° (2π radians or multiples of 2π). When we add
up the MR signal from this column we get zero as the
spins are evenly distributed throughout each direction.
We can say that this object contains no information at
the spatial frequency of one cycle per unit length.

Consider now a series of line-pair structures as in
Figure 8.14 with alternating sections containing
protons or nothing. Obviously only the sections con-
taining protons can contribute to the signal. In the
instance where k = 8 due to their distribution in space
they are in phase and add up to give a net positive
signal. That is to say, this particular value of phase-
encode gradient is sensitive to objects containing the
spatial frequency eight cycles per FOV. Looking at the
other patterns in Figure 8.15, none of the lines add up
to anything other than zero.

In general, however, an object (i.e. the patient) will
have a range of spatial frequencies. Each value of
phase encoding can be considered as a template or a

comb (technically, a filter) that only responds to one
spatial distribution of MR signal or spatial frequency.
To build up a whole picture, the entire range of
possible spatial frequencies has to be interrogated.
This is achieved by stepping through all the values
of phase encoding (the ‘ladder’ in Figure 8.1), once
per TR period. When no gradients are applied, we get
a signal from the whole object, and this is referred to
as the zero spatial frequency or zero k.

So the MR sequence consists of multiple repeti-
tions of the excitation process followed by a different
phase-encode gradient until all possible spatial fre-
quencies are collected. You can think of each phase-
encode step as being a filter or a comb, as in
Figure 8.15. Once all these signals are collected, the
application of a Fourier transform converts the spatial
frequency distribution into a spatial distribution of
the excited nuclei, i.e. an image of the patient.

8.5.3 Frequency Encoding
There is no reason why this phase-encode process
should not be re-applied to obtain the full image in
the other directions. The only practical difficulty is
that for every value of GPE (or spatial frequency in the
PE direction, kPE) we have to collect ALL the values of
kFE (apply all the GFE gradient steps). This would take
a long time, but it is possible, and three-dimensional
imaging or three-dimensional Fourier transform (3D
FT) does something similar. Fortunately there is a
quicker, more convenient and conceptually simpler
method of encoding the second in-plane direction:
frequency encoding.

In frequency encoding we can acquire all the
spatial frequency information needed from one MR
signal following one RF excitation. In phase encoding
we required one MR excitation (RF pulse) for every

Sum = 0+1+0+1+0+1+0+1+0+1+0+1+0+1+0+1 
= 8

Signal adds up constructively

Sum =  0+0+0+0+1–1+1–1+0+0+0+0+1–1+1–1 
= 0

Signal adds up destructively

Example, k = 8 Figure 8.14 Picking out a single spatial
frequency with phase encoding step 8.
Black represents an area which produces
no signal (i.e. with zero proton density).
Only one pattern results in any signal.
This is spatial frequency or k value 8.

Figure 8.15 The ‘MR eye’: picking out spatial frequencies in two
dimensions by applying spatial frequency ‘combs’ or filters. The
thumbnails show the parts of the overall image selected by each
comb. Like understanding MRI, the eye is not always obvious at first.
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line of data (i.e. every value of kPE). For a 256-pixel
image we thus required 256 MR excitations, and this
will take 256 × TR ms. Figure 8.16 shows a gradient
being applied for a certain time, giving a certain
gradient moment and phase change, after which the
signal strength is measured. The next data point is
measured after a different gradient step (and gradient
moment and phase change). We then have data points
corresponding to the strength of the MR signal after a
whole range of gradient moments.

Suppose, however, that we apply a gradient con-
tinuously and measure or sample the MR signal at
different time-points during the application of that
gradient. At each point, the MR signal is affected by a
different amount of gradient moment and has a

different amount of phase change. Each data point
therefore reflects a different amount of ‘phase encod-
ing’ and thus corresponds to a different spatial fre-
quency. We can therefore collect all the spatial
frequencies for that direction from the evolving MR
signal in real time following a single RF excitation.
This is analogous to the phase-encode acquisition
which works in ‘pseudo-time’, with a sampling separ-
ated by TR, as shown in Figure 8.17. The resulting
raw data matrix is sometimes referred to as k-space.

So if we can do frequency encoding all at once,
why waste all that time with multiple excitations and
phase encoding? The answer is that frequency is a
scalar parameter, i.e. it is described by a single
number. If we applied frequency-encoding gradients

Signal

GFE

GPE

Time

Pseudo-time 

=

+ + + +

(a)

(b)

Figure 8.16 Equivalence of frequency
encode acquired continuously in real
time (a), and phase encode acquired
step-wise in ‘pseudo-time’ (b).

kPE 

kFE 

Signal 
kPE 

kFE

TR Time 

Pseudo-
time 

Figure 8.17 Central lines of k-space
(magnified) showing the equivalence of
phase and frequency axes. Signal strength
is shown in the vertical direction in the
magnified portion and as a greyscale in
the thumbnail. Each PE line is separated
by time TR.
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in two directions at the same time we would have no
way of knowing whether a particular frequency in the
signal originated from one or the other (or both) of
the applied gradients. By combining phase encoding
and frequency encoding in two orthogonal directions
we can collect all the spatial frequencies unambigu-
ously that we need to make the image.

Another way of understanding frequency encod-
ing, more usually considered in texts, is to consider
the effect of GFE on the frequency of the MR signal,
illustrated in Figure 8.18. Because the frequency-
encode gradient is present at the same time as the
MR signal is being measured, the signal’s frequency
will now depend upon the position of the material
from which it originated within the gradient field. It
will not be a single sinusoid wave but a mixture of
many frequency components. We then have a signal
which is frequency encoded. It is easy to determine
the frequency components; we simply perform
another Fourier transform. Applied in one dimension
this produces a spectrum which represents a one-
dimensional projection of the object.

8.5.4 Spatial Encoding: A Musical Analogy
You can think of MRI in-plane localization in terms of
playing a multi-stringed musical instrument such as a
guitar. Suppose you wish to play every possible note (or
frequency) distinctly, you first have to pluck a string.
This is like the RF excitation. The sound it makes is like
theMR signal. It is then relatively easy to play every note
available on that string by running a finger up the
fretboard. As one does this the length of the string is
in effect shortened (this is like a gradient) and the pitch
of the note (or frequency) changes. All the while the
sound can be heard. This is like frequency encoding.

However, there are other strings. To hear them we
have to pluck one of them (perform another RF
excitation) and repeat the pitch-changing action.
The action of changing to a different string is analo-
gous to the operation of phase encoding in MRI.

8.5.5 2D FT Reconstruction
To reconstruct the image we do a 2D FT on the raw
data matrix or k-space. Usually the image is then
displayed as a ‘magnitude’ image. The result of the
2D FT is actually a complex image with ‘real’ and
‘imaginary’ parts, as shown in Figure 8.19, or with
amplitude and phase (see the Appendix for a
reminder about complex numbers). We usually com-
bine these as a complex magnitude (this gets round
some problems with the B0 field) and the images only
contain positive values. Sometimes a phase image can
be optionally produced too.

Certain types of scan may require ‘real’ recon-
struction, which allows the image to have positive
and negative values. In this case the image back-
ground is mid-grey. Real-valued inversion recovery
is an example of this (see Section 12.4.1).

8.5.6 Resolution and Field of View
For a 2D FT MR acquisition the resolution is nor-
mally pixel limited provided the signal-to-noise ratio
(SNR) is adequate. So if the pixel size is 1 mm, then
you should be able to see details of this size clearly. To
increase the resolution for a fixed field of view
(decrease the pixel size) you can do one of three
things: increase the gradient strengths, increase the
matrix or increase the sampling time (for the FE
direction only). In practice, you cannot get arbitrarily
small pixels as sooner or later you will run out of
gradient power and SNR.

Total MR
signal

Lower field
slower precession

Higher field
higher precession

Gradient direction

Higher frequencyLower frequency

+ +

=

Fourier transform

Frequency/position
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Figure 8.18 Alternative description of frequency encoding in
terms of position-dependent frequency changes.
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To decrease the field of view (zoom in) while
maintaining the matrix size you can either increase
the gradients or increase the sampling time (in the FE
direction only).

Resolution and Field-of-View Maths

The maximum resolution is given by the pixel size

Δx ¼ 1
γ � GFE �M � Δt Δy ¼ 1

γ � ΔG � N � τ
The size of the image or the field of view (FOV) is
given by the inverse of the minimum spatial fre-
quency step

FOVFE ¼ 1
γ � GFE � Δt FOVPE ¼ 1

γ � ΔG0 � τ
Notice that the Fourier transform principle of ‘less is
more’ applies: it is the maximum size of the gradient
which controls the pixel size, while the time
between samples or phase-encode step size con-
trols the FOV.

8.6 Consequences of Fourier Imaging
The consequences of Fourier imaging relate to the
properties of k-space, the determination of resolution
and field of view and the generation of typical
artefacts.

8.6.1 Adventures in k-Space
In simplest terms k-space is the raw data matrix which
stores the already-encoded MR signals (Figure 8.17). We
can think of the application of the gradients as defining
a path or a trajectory through k-space, as shown in
Figure 8.20. At time A, the application of the frequency-
and phase-encoding gradients, the signal is at the centre
of k-space (corresponding to a summation of the total
MR signal from the object). The dephase portion of GFE

gradient combined with the maximal negative GPE step
moves it to the bottom left corner at time B. The read-
out part of GFE moves it along a line of kFE from left to
right. The peak of the gradient echo occurs on crossing
the kPE axis (time C). Provided the MR signal has totally
decayed before the next excitation we will start at the
centre again. This time GPE moves us to the second
bottom line of k-space. By the end of the scan we will
have acquired NPE gradient echoes, each corresponding
to a different kPE position. This gives us a full sample of
the spatial frequencies in the image.

The pixel size is defined by the total length of the k-
space axes. The FOV is determined by the separation
of the kPE lines and of the samples along each kFE line
as shown in Figure 8.21. We have already seen that the
central portion of k-space determines the overall
brightness or contrast of the image while the outer
regions determine the fine detail (Figure 8.11).

I

R

M

f

PhaseMagnitude

Imaginary Real

M = (R2 + I2)1/2

φ = tan–1(I/R) 

Figure 8.19 Reconstruction of a
magnitude (M) image from real and
imaginary parts following Fourier
transformation. A phase (ϕ) image can
also be calculated.
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k-Space Exploration

For a 2D object represented by the function f(x, y),
the spatial frequencies kx, ky are given by

F kx ; ky
� � ¼

ðð
f x; yð Þ � exp i2π � x � kx þ y � ky

� �� � � dxdy

and the object expressed in terms of the spatial
frequencies is

f x;yð Þ¼
ðð
F kx;ky
� � �exp �i2π � x � kx þ y � ky

� �� � �dkxdky
The functions f and F are a Fourier transform pair. The
quantities x and kx bear a reciprocal arrangement, i.e.
small spatial objects (little x) have big k values and
vice versa. Less is more again! Thus the highest
spatial frequency represents the smallest object
detectable (i.e. the pixel size)

kPE

kFE

DkPE

DkFE

FOV = 1/ Dk 

Dx = 1/FOVk 

FOVk 

(a) (b)

Figure 8.21 Relationship between (a) k-space and (b) image resolution and FOV.

kFE

kPE
GPE

GFE

A B C D A

B
C

D

Figure 8.20 k-space path for a pair of
frequency- and phase-encode gradients,
showing echo formation. Following the
RF pulse, and before the gradients are
applied, the signal is at the centre of k-
space. This means that it represents the
total image brightness irrespective of
spatial localization.
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Δx ¼ 1
NΔk

¼ 1
FOVk

and the largest object (i.e. the field of view)

FOVx ¼ 1
Δkx

For example, in the phase-encode axis, if the max-
imum gradient strength is 8.6 mT m–1 applied for
0.7 ms with 256 steps

Δk ¼ 8:6
128

× 0:7× 42:56 ¼ 2 m�1

(remember we step through GPE from �N/2 to N/2–1)
so the FOV is 0.5 m or 500 mm. (Hint: if you use units
of mT m–1, ms and use in MHz T–1, you get k in m–1.)
Similarly,

FOVk ¼ 2× 8:6× 0:7× 42:56 ¼ 512 m�1

The pixel size in mm is therefore

Δy ¼ 1000
512

¼ 1:95 mm

For a readout gradient of amplitude 5.87 mT m–1 and
a total data sampling time of 2.048 ms

FOVk ¼ 42:56× 5:87× 2:048 ¼ 512 m�1

giving the same pixel size Δx = 1.95 mm. If
256 samples are taken (a sampling time of 8 μs) Δk
will be 2 m–1 and the frequency-encode FOV will be
500 mm again.

The MRI image-formation process can be thought
of as a sampling of k-space. If sampling conventions
(i.e. the Nyquist criterion) are not fulfilled with regard
to the spatial frequencies in the object, then artefacts
will occur as shown in Section 8.6.2.

In a generalized form for an arbitrarily shaped
gradient we can write

k ¼ γ �
ðt

0

G tð Þdt

which defines any k-space trajectory.

8.6.2 Artefacts
Fourier imaging is susceptible to specific artefacts, e.g.
phase wrap and Gibbs’ ringing (see Section 7.4).
Aliasing occurs because the anatomy being scanned
exceeds the FOV in the PE direction causing image
wrap-around. In Fourier terms this means that the
sampling interval Δk is insufficient. Phase encoding

will occur as in Section 8.5.2 and Figure 8.13, but as
the gradient field is physically larger than the selected
FOV, the twisting of the columns of vectors outside
the FOV will be too tight. This will exceed the Nyquist
criterion and is therefore interpreted erroneously.
Phase-encode oversampling reduces the problem.
Aliasing is not commonly a problem in the
frequency-encode direction as the signal from outside
the FOV is encoded as a real frequency which can be
removed by electronic filtering.

Haunted by Fourier

It can be argued that the fundamental weakness of
Fourier transform encoding and reconstruction is its
susceptibility to modulation artefacts which produce
‘ghost’ replications of the image displaced relative to
the true image and often aliased in the phase-encode
direction. Any interaction which results in a modula-
tion of either the frequency (FM) or amplitude (AM) of
the MR signal will result in ghosting artefacts.

Consider a one-dimensional example of a signal
s0(t) giving an image i0(ω) by its FT

i0 ωð Þ ¼ FT s0 tð Þf g
Suppose we have a temporal modulation of this
signal such that

s ¼ s0 1�m � cosωmtð Þ
where m is the modulation amplitude and ωm is the
modulation frequency (i.e. this is amplitude modula-
tion or AM). We can then apply the Fourier modula-
tion theory to predict the image in terms of
modulation frequency ω

i ωð Þ ¼ i0 ωð Þ þm
2
i0 ω� ωmð Þ þm

2
i0 ωþ ωmð Þ

The encoding produces an equivalence between fre-
quency (or ‘pseudo-frequency’) and position, giving a
resultant image

i yð Þ ¼ i0 yð Þ þm
2
i0 y � Δyð Þ þm

2
i0 y þ Δyð Þ

This is a combination of the true image plus two
shifted ghost images with intensity m/2. Converting
the modulation frequency in terms appropriate to
k-space (PE) we get a distance shift Δy given by

Δy ¼ 1
pΔk

Δy ¼ FOVPE

p

where p is the periodicity of the modulation in
numbers of PE lines. In real time this becomes
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Δy ¼ FOVPE � TR
Tm

where Tm is the real time period of the modulation.
The effect of signal averaging is to change the peri-
odicity of the modulation relative to the phase-
encode time scale. If TR = Tm/n there will be n ghosts,
separated by FOV/n.

Gibbs’ artefact is a ringing of signal on sharp
edges in the image. In k-space terms it is a truncation
effect; that is, there are not enough k-values to repre-
sent the detail. In basic Fourier theory the transform
of a sharp (high-frequency) detail will involve spectral
components at all frequencies, theoretically extending
infinitely over k-space. Obviously an infinite k-space
is impossible. The ringing occurs because of the
abrupt ending, or truncation, of k-space. Filtering
the data by multiplying it by a smooth function prior
to Fourier transformation helps to reduce ringing, at
the cost of spatial resolution. The best remedy is more
k-space samples, i.e. to increase the PE matrix.

Ghosting is slightly different in that it arises from
a modulation, i.e. a variation in amplitude or time, of
the MR signal over the lines of k-space (kPE) possibly
arising from physiological motion or equipment
imperfections. The shift of the ghost images is
inversely proportional to the period of the unwanted
modulation. The fastest perceptible modulation is
from one line to the next (period = Δk/2). This gives
a ghost separation of half the FOV. Slower modula-
tions, covering several TR intervals, will result in less
shifted ghosts. The size (or depth) of the modulation
determines the amplitude of the ghost images.

8.7 Speeding It Up
There are three things we can do to speed up the data
acquisition which involve tricks in k-space: they are
half Fourier, reduced matrix and rectangular field
of view (RFOV). We also encountered these in
Chapter 6. Some are illustrated in Figure 8.22, along
with a fourth option, partial echo. Partial echo is
like half Fourier but applied to frequency encoding
(see Box ‘Real or Imaginary’).

8.7.1 Half Fourier
The most radical trick we can do is called ‘half Four-
ier’, ‘halfscan’ or ‘half NEX’, in which we only acquire
slightly more than half the data, i.e. we omit half the
phase-encoding gradient steps (either the positive or
negative ones). In terms of k-space we acquire just the
lower (or upper) half (Figure 8.22a) and then estimate
the other half of the data using a mathematical trick
called complex conjugate synthesis. This is a property
of Fourier transform of ‘real’ functions. This produces
a time saving of approximately 50%, does not signifi-
cantly affect spatial resolution but loses about 30% in
signal-to-noise ratio (SNR).

8.7.2 Reduced Matrix
Secondly, we can apply a reduced matrix, or reduced
acquisition, i.e. just not bother to acquire the largest
phase-encoded lines of data (k-space) (Figure 8.22c).
Instead, we replace the omitted k-space data with
zeros (zero-filling). The time saving will be propor-
tional to the number of PE lines missed out. The

kPE kPE kPE 

kFE kFE kFE 

(a) (b) (c)

Figure 8.22 Fourier transform speed tricks: (a) half Fourier, (b) partial echo, which can be used to reduce TE and TR but does not reduce the
number of PE lines, and (c) reduced matrix.
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downside of this technique is a loss of spatial reso-
lution in the phase-encode axis. Small improvements
in SNR are made.

Real or Imaginary

A property of ‘real’ functions is that their Fourier
transforms possess complex conjugate symmetry. In
a perfect magnetic field we would expect the
encoded MR signal to be real, i.e.

S kFE; kPEð Þ ¼ S� �kFE;�kPEð Þ
where S* denotes the complex conjugate of S (see
Appendix A.4). We can say that signals in k-space
have 180° rotational symmetry about the origin
(zero), so that values in the top right-hand corner of
k-space should be equal to those in the bottom left-
hand corner.

This means we can synthesize one-half of k-space
from the other, simply by making a copy of the
acquired data and swinging it through 180° to fill
the other half. In half-Fourier scanning we use this
property to reduce the number of phase-encode
steps. However, since the magnetic field is never
perfect we actually have to collect slightly more than
half the data in order to apply phase corrections
to the synthesized part. Another application of
complex conjugate symmetry is in partial or frac-
tional echo techniques where up to about 40%
of the kFE data are not acquired directly, but synthe-
sized (Figure 8.22b). Once again field imperfections
prevent a reduction of exactly 50% in the data.
Fractional echo is used in rapid imaging to reduce
TE and TR.

A ‘k-space shutter’ is similar, except that it chops
off the corners of k-space and thus affects resolution
in both frequency and phase-encode directions. This
offers no time saving in 2D scanning, but it can help
in 3D acquisitions.

8.7.3 Rectangular Field of View
Finally, sometimes we can acquire a rectangular field
of view. In the explanations above we have assumed a
square field of view (FOV) with an equal matrix size
in both directions, e.g. 256 × 256. Often the anatom-
ical region to be scanned is not of similar dimensions
in either axis of the image plane, so we can reduce
both the phase-encode FOV and the PE matrix.
Typical examples are for sagittal or coronal scanning
of the knee or spine, where an unequal number of

phase-encode to frequency-encode points gives a
more efficient coverage of space. To save time (and
avoid phase wrap) we always choose the phase-encode
axis to be the smaller of the two physical dimensions,
i.e. for a sagittal spine we would choose posterior–
anterior for phase encoding, while for a transverse
head we would commonly choose left–right for the
phase-encode direction.

In k-space the effect of a rectangular field of view
is to ‘space out’ the lines in the PE axis (Figure 8.23).
Only the field of view is affected as the value of kmax

remains the same. A time saving of up to 50% is
achievable with no resolution loss and only a slight
loss of SNR.

It Looks Good, but is it Real?

‘Zero-filling’ is a very common feature of MRI. Since
computers like to work in powers of 2, any non-
square matrix (where NPE 6¼ NFE) must be filled up
with zeroes before it can be Fourier-transformed.
The zeroes are added at the edge of k-space, which
corresponds to the high spatial frequencies.
This means a smaller pixel size, which is equivalent
to interpolating the pixels in the image. However,
the zeroes do not contain any signal information
about the high spatial frequencies, so it is not
real data.

It is also possible for the user to decide to add
extra zeroes to improve the apparent resolution
of the final image. Remembering that the edge of
k-space contains information about high spatial
resolution, adding zeroes all around the edge of
the acquired k-space can artificially reduce the pixel
size. On GE Healthcare scanners these are the
‘zip512’ and ‘zip1024’ options, on Siemens it is the
‘interpolate’ box, and on Philips you set the recon-
struction matrix independently from the scan
matrix.

The extra zeroes contain no signal, but also no
noise, so they have no effect on the SNR of the
image. The acquired pixel resolution is unchanged
but the displayed pixels are smaller. As with reducing
the phase-encode matrix, the rule of thumb is that
you shouldn’t zero-fill by more than a factor of two.

8.8 3D FT
A fully three-dimensional technique may sometimes
prove advantageous over two-dimensional multi-slice
acquisition. The principle is simply to apply a second
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phase-encode axis, ensuring that for every gradient
step in the new axis we apply the whole set of other
axes steps: i.e. for a L × M × N 3D matrix, we acquire

L × M MR signals. The scan time for basic 3D acqui-
sitions is then

Scan time ¼ NSA×TR ×NPE × number of slices

where, as before, NSA is number of signal averages
and NPE the size of the phase-encode matrix.

In practice, multiple slabs are often acquired, with
excitation being restricted to a slab or group of slabs
by selective excitation and within-slab resolution
being produced by stepped rephase gradients
(Figure 8.24). In multi-slab or multi-chunk 3D FT
we combine interleaved slab or thick-slice selection
with additional slice phase encoding to obtain mul-
tiple 3D volumes in a single scan. This is a popular
technique for producing high axial resolution images
of the spine through the vertebrae.

See also:

� Image artefacts: Chapter 7
� Optimizing SNR and resolution: Chapter 6
� Acronyms anonymous: Chapters 12 and 13
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Figure 8.24 Simple 3D FT pulse sequence.
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