Ultrasonography (US)

- Ø **A small, spatially localized pulse of ultrasound is transmitted into the patient**
- Ø **US reflected echoes are produced and detected**

Transducer

Interrogate body with acoustic "pulses" generated by transducer array

Acquire and record echoes arising from tissue interfaces

Construct "acoustic image" of tissues

Ultrasonography (US)

"**US is a relatively inexpensive, portable, safe, and realtime modality, all of which make it one of the most widely used imaging modalities in medicine.**" *N.J. Hangiandreou RadioGraphics 2003; 23:1019–1033*

Basic US Physics

Sound Ø **mechanical waves . Propagation in fluid** ^l **Longitudinal waves**

Ø **Audible acoustic spectrum: 15 Hz – 20 kHz** Ø **Ultrasound :** n**>20 kHz** Ø **Infrasound:** n**<15 Hz**

SPL= spatial pulse length

Basic US Physics

ultrasound:

- Ø **Propagation into the soft tissues**
	- **. Strongly reflected from the bone**
- Ø **Undergo reflection and refraction**
	- ^l **Similar to optics**
- $\triangleright \lambda = c/v$ wavelength ^l **c speed of sound** Ø l **<< organs to be investigated**

Medical US Ø **Frequency range of ~2–15 MHz . Selected by the radiologist during the exam** Ø **Longitudinal wave speed** $c = (B/\rho)^{1/2}$

- **. B adiabatic bulk elastic modulus**
- **p** mean density
- ^l **c=1540 m/s + 6% soft tissue**
	- **c=1.54 mm/**µ**s**
	- **Experimental data**
	- **Not a strong function of the frequen**
- In bones c ~ 3500 m/s
- In air c=330 m/s

Medical US

DENSITY AND SPEED OF SOUND IN TABLE 14-1 TISSUES AND MATERIALS FOR MEDICAL ULTRASOUND

Basic US properties

 \triangleright **Wavelength** λ **= c/v**

- $\bf v$ = 1 MHz $\qquad \lambda$ = 1.5 10⁻³ m = 1.5 mm
- \sim $v = 10$ MHz $\lambda = 1.5$ 10⁻⁴ m = 0.15 mm
- $\bf{v} = 15 \text{ MHz}$ $\lambda = 1.0 \text{ 10}^{-5} \text{ m} = 0.1 \text{ mm}$
- \triangleright λ is dependent on the medium **.** v is unaffected by changes in sound speed
- Ø **The spatial resolution of the US image depend on the wavelength**
- Ø **The attenuation of the US beam energy depend on the frequency**

Exercise

A US pulse is 10-6 s long in time The applied frequency is $v = 12$ MHz

How long is the wavelenght? How long is the pulse in space ?

> *Results in mm c=1500 m/s*

https://www.youtube.com/watch?time_continue=1&v=cI7ULKNhVcw

Basic US properties

- Ø **US imaging is based on the time recording of the echo signal**
- Ø **If the distance between 2 interfaces is 7.5 cm:** the Δt of the 2 echo signals is 10⁻⁴ s
- **c=1500 m/s, d=15 cm**, Δ **t=10⁻⁴ s** • **echo resolution is feasible** • **US pulses are**
	- **~ 10-6 s long**
- **~2 mm spatial resolution in axial direction**

Basic US propertiesØ **Modern US equipment** Wave interference patterns **consists of multiple Input A.** Constructive $\frac{2}{1.5}$ 1.5 **sound transmitters** 0.5 0.5 -0.5 0.5 -1 -1 -1.5 -1.5 **aligned in an array B**. Destructive 1.5 1.5 **. creating sound beams** $\overline{1}$ 0.5 -0.5 -0.5 **independently** -1 -1.5 -1.5 $\overline{2}$ C. Complex Ø **Interaction of two or** 1.5 $0,5$ θ **more separate US** -0.5 и -1.5 -2 **beams in a medium can result in constructive and/or destructive wave interference**

Output

Acoustic parameters

Pressure amplitude

- Ø **the peak maximum or peak minimum value from the average pressure on the medium in the absence of a sound wave**
- Ø **SI unit: N/m2 = Pascal (Pa)**
- Ø **Diagnostic US beams typically deliver peak pressure levels that exceed 10 times the earth's atmospheric pressure**
	- ^l **The average atmospheric pressure on earth at sea level ~100000 Pa**

Acoustic parameters

Intensity

- Ø **the amount of power (energy per unit time) per unit area**
- Ø **I** ∝ **P2**
- Ø **Medical diagnostic US intensity levels are described in units of milliwatts/cm2**
	- ^l **The absolute intensity level depends upon the method of ultrasound production**

Ø **Relative intensity and pressure levels are described as a logarithmic ratio, the decibel (dB)**

relative intensity (dB) = $10 \log$

Acoustic parameters

In diagnostic US

Ø **the ratio of the intensity of the incident pulse to that of the returning echo spans a range of one million times**

- ^l **or more**
- **. The logarithm function compresses the large and expands the small ratios into a more manageable number range**

relative intensity (dB) = 10 log
$$
\left(\frac{I_2}{I_1}\right)
$$

TARLE 14-2 O AND CORRESPON **DECIBEL VALUES**

Acoustic field parameters Ø **sound intensity** ^l **Ideal conditions** *I* = *c* $(\rho v^2 + \frac{p^2}{\rho})$ $\frac{1}{2}$

$$
I = \frac{1}{2}(\rho v^2 + \frac{1}{\rho c^2})
$$

= $\frac{1}{2}(Zv^2 + \frac{p^2}{Z})$

^l **W/m2**

- ^l **c sound speed in the medium**
- **u** molecules velocity
- **.** p density
- ^l **p oscillating incremental pressure**
	- **Energy density**
- ^l **Z =** r**c = (**r**B)1/2 Acoustic impedance**

-()--()--()--()--()--()--()--()--()-

Longitudinal Wave

Acoustic parameters: a numerical example if I = 2 105 W/m2 and p=0: \triangleright v_{max} = (2 | / c_p)^{1/2} = 0.5 m/s $\bf{p} = 10^3 \text{ kg/m}^3$, c = 1500 m/s **Oscillation** $v=10^6$ Hz: $\sqrt{2 \times 10^{-3}}$ m **. Amplitude of the oscillation** ^Ø **Pmax= 8 atm** ^l **Local pressure** $\sqrt{a_{max}}$ = 3 10⁵ g *In medical imaging short pulse (1-2* µ*s) Average I ~ 5mW, I peak 5 W*

Acoustic impedance

- Ø **Acoustic impedance can be likened to the stiffness and flexibility of a compressible medium**
- Ø **When tissues with different compressibility are connected together, the energy transfer from one to another depends on stiffness**

Ø **Minor differences in stiffness or compressibility allow the continued propagation of energy**

^l **little reflection at the interface**

Acoustic impedance

Ø **Acoustic impedance gives rise to differences in transmission and reflection of ultrasound energy**

 $\mathbf{F}^{(1)}$

Ø **producing an image using pulse-echo techniques**

Refraction and Reflection Ø **Similar to optics .** Valid if d>> λ \triangleright Snell's law: $sin\theta_i$ /sin $\theta_t = c_1/c_2$ ^Ø **RI intensity reflection coefficient** \triangleright $R_{\text{I}} = I_{\text{refl}} / I_{\text{inc}}$

$$
R_{I} = \left(\frac{Z_{1}\cos\theta_{i} - Z_{2}\cos\theta_{t}}{Z_{1}\cos\theta_{i} + Z_{2}\cos\theta}\right)^{2}
$$

Ziskin M.C. Radiographic 1993; 13: 705-709

Reflection

Ø **For normal (or 90o) incidence**

 \triangleright R_I = I_{ref}/I_{inc}

^l**RI =0 ?**

^l**RI max?**

Reflection

PRESSURE AND REFLECTION TABLE 14-4 COEFFICIENTS FOR VARIOUS INTERFACES

$$
R_I = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2}\right)^2
$$

Ø **The relatively strong echoes are generated by a** muscle-fat interface (R_I=1.5%)

Ø **A liver-kidney interface generates weaker echoes (RI =0.03%)**

Refraction

Ø **Refraction describes the change in direction of the transmitted US energy** ^l **with nonperpendicular incidence**

Ø **Snell's law**

$$
\frac{\sin \theta_i}{\sin \theta_t} = \frac{c_1}{c_2}
$$

. If $c_1 = c_2$ no refraction **O** c speed of sound in the tissue

$> T_1 = 1 - R_1$

. the fraction of the incident intensity transmitted

Refraction

Ø **Snell's law**

$$
\left| \frac{\sin \theta_i}{\sin \theta_t} \right| = \frac{c_1}{c_2}
$$

. If $c_1 = c_2$ no refraction

 $> T_1 = 1 - R_1$

Scattering

Acoustic scattering arises from objects and interfaces that are : Ø **about the size of the wavelength** Ø **a rough or nonspecular reflector surface**

US attenuation $I(x)=I_0 e^{-\mu x}$

The loss of energy with distance traveled is due to:

Ø **Scattering**

Ø **Tissue absorption of the incident beam**

^l **Absorbed acoustic energy is converted to heat**

Attenuation and frequency µ **= 0.5 (dB/cm)/MHz**

Ratio between $L_{1/2}$ **and** λ **constrant** ~ 40

US transducers

Ø **US pulse are produced and the echoes are detected with a transducer** Ø **The ceramic element converts:** ^l **electrical energy into mechanical energy to produce US** ^l **mechanical energy into electrical energy**

for echoes detection

Piezoelectric Materials

Ø **Electrical energy is converted into mechanical energy by deformation of the crystal structure**

^l **well-defined molecular arrangement of electrical dipoles**

Ø **Mechanical pressure applied to its surface creates electrical energy**

. voltage

Resonance Transducers

Resonance transducers operate in a "resonance" mode

Ø **a voltage (~ 150 V) of short duration (~1** µ**s) is applied**

Ø **the piezoelectric material to initially contract and then subsequently vibrate at a natural resonance frequency** *The Essential Physics of Medical Imaging*

Bushberg et al, 2012 Lippincott Williams & Wilkins

US transducers

Major components: Ø**matching layer** Ø**the piezoelectric material**

- ^l **up to 100 individual elements**
- Ø**damping block**
- Ø**acoustic absorber**
- Ø**tuning coil** Ø**insulating cover**
-

Ø**sensor electrodes** *The Essential Physics of Medical Imaging Bushberg et al,Lippincott Williams & Wilkins*

Damping Block

- Ø **The damping block dampens the transducer vibration to create an US pulse with a short spatial pulse length (SPL)**
	- \cdot **necessary to preserve detail along the beam axis** Wavelength, λ
		- **axial resolution**

Damping Block Ø **Dampening the vibration introduces a broadband frequency spectrum**

$$
Q = \frac{f_0}{\text{bandwidth}}
$$

Ø **A "high Q" transducer has a narrow bandwidth and a corresponding long SPL**

. very little damping

Ø **A "low Q" transducer has a wide bandwidth and short SPL**

Damping and Q factor

low Q does not imply poor quality in the signal

Matching layer

Ø **The matching layer minimizes the acoustic impedance differences between the transducer and the patient**

> **.** layers of materials **with acoustic impedances that are intermediate to soft tissue and the transducer material**

In addition acoustic coupling gel is used between the transducer and the patient to eliminate air pockets

Transducer Arrays

- Ø **Transducer arrays have with many individual rectangular piezoelectric elements arranged in linear or curvilinear arrays**
	- ^l **128 to 512 individual rectangular elements**
	- **. Each element width typically less than 1/2** λ **and height of several mm**

Transducer Arrays

A phased-array transducer is usually comprised of 64 to 128 individual elements in a smaller package than a linear array transducer

Ø **activation/receive modes**

- ^l **linear**
	- **Sequential**
	- **Firing a subset of the total number of transducer elements as a group (about 20 elements)**
- ^l **phased**
	- **A beam is produced from all of the transducer elements fired with fractional time delays in order to steer and focus the beam**

Ultrasound Beam Properties

The US beam propagates as a longitudinal wave and exhibits 2 distinct beam patterns

Ø **a slightly converging beam out to a distance determined by the geometry and frequency of the transducer**

^l **the near field**

Ø **a diverging beam beyond that point**

. the far field

Image formation

- ü **Collection of the echoes over time and recording of the echo amplitudes**
- ü **Repetition of the process hundreds of times with a small incremental change in the direction of the pulse interrogates a volume**
	- **from which a grayscale tomographic image can be synthesized**

https://www.youtube.com/watch?time_continue=9&v=jxGUId2lBaA

WATTS / $cm²$ = JOULE / sec - cm²

Image formation

Time gain correction

TGC amplifies the acquired signals with respect to time after the initial pulse by operator adjustments

Equally reflective acoustic impedance boundaries

US image plane the volume of the acoustic pulse

Ø **The axial, lateral, and elevational dimensions determine the minimal volume element** Ø **Each dimension has an effect on the resolvability of objects in the image**

US axial resolution

The spatial pulse length (SPL) in the axial direction is equal to the number of cycles in the pulse multiplied by the US wavelength

US axial resolution

Ø **Short SPL produce US images with the greatest sharpness in the axial direction (axial resolution)**

- ^l **Short pulses are produced by electrically exciting the piezoelectric elements for about 1** µ**s or less**
- Ø **SPL remains constant as the pulse propagates to greater depths**
- Ø **Higher frequencies increase the spatial resolution**
	- ^l **SPL decreases**

US lateral resolution

Ø **US pulses that are narrow in the lateral direction produce images with greatest sharpness in that direction**

^l **lateral resolution**

US lateral resolution

Ø **Phased-array transducers have multiple user selectable transmit and receive focal zones**

> ^Ø **Each focal zone requires the excitation of the entire array for a given focal distance**

US lateral resolution

- Ø **Good lateral resolution over an extended depth is achieved, but the image frame rate is reduced**
	- ^Ø **Subsequent processing meshes the independently acquired data to enhance the lateral focal zone over a greater distance**

Elevational resolution

- Ø **The elevational dimension is perpendicular to the image plane**
	- ^Ø **Slice thickness plays a significant part in image resolution**
- Ø **Elevational resolution is dependent on the transducer element height**
	- **typically, the weakest measure of resolution for array transducers**

Elevational resolution

Ø **Elevational resolution with multiple transmit focusing zones is achieved with "1.5D" transducer arrays to reduce the slicethickness profile over an extended depth**

- Ø **Five to seven discrete arrays replace the single array**
	- ^Ø **Phase delay timing provides focusing in the elevational plane**

Multiple transmit focal zones: elevational plane

An US scanner

Image data acquisition

Beam former

Ø **The beam former generates the electronic delays for individual transducer elements in an array to achieve transmit and receive focusing**

- ^l **A beam former controls integrated circuits that provide for each of the transducer elements in the array**
	- **transmit/receive switches**
	- **digital-to-analog and analog-to-digital converters (ADCs)**

• **preamplification and time gain compensation (TGC) circuitry**

The transmitter (or the pulser)

Ø **The pulser provides the electrical voltage for exciting the piezoelectric transducer elements and controls the output transmit power by adjustment of the applied voltage**

- ^l **An increase in transmit amplitude creates higher intensity sound and improves echo detection from weaker reflectors**
	- **A direct consequence is higher signal-to-noise ratio in the images but also higher power deposition to the patient**

Transmit/Receive Switch

- Ø **The transmit/receive switch, synchronized with the pulser, isolates the high voltage associated with pulsing (~150 V) from the sensitive amplification stages during receive mode**
	- ^l **with induced voltages ranging from approximately 1 V to 2 μV from the returning echoes.**
	- ^l **over a period up to about 1 ms**

Image data acquisition

Pulse-Echo Operation

In the pulse-echo mode, the ultrasound beam is intermittently transmitted

- ^l **a majority of the time occupied by listening for echoes**
- ^l **One pulse-echo sequence produces one amplitude- modulated (A-line) of image data.**

$$
\text{Time } (\mu s) = \frac{2D(cm)}{c (cm/\mu s)} = \frac{2D(cm)}{0.154 cm/\mu s} = 13 \mu s / cm \times D(cm)
$$
\n
$$
\text{Distance } (cm) = \frac{c (cm/\mu s) \times \text{Time } (\mu s)}{2} = 0.077 \times \text{Time } (\mu s)
$$

the constant 2 represents the round-trip distance

Pulse-Echo Timing

$$
PRF = \frac{1}{PRP} = \frac{1}{500 \,\mu s} = \frac{1}{500 \times 10^{-6} \text{ s}} = \frac{2000}{s} = 2 \text{ kHz}
$$

The maximum PRF is determined by the time required for echoes from the most distant structures to reach the transducer

Real-Time Ultrasound Imaging

The 2D image is created from a number of A-lines, N (100 or more) Ø**A larger number of lines will produce a higher quality image** Ø**The finite time for pulseecho propagation places an upper limit on N and impacts the temporal resolution**

Frame Rate, FOV, Depth, Spatial Sampling Trade-Offs

Acquisition time for each line: Tline=13µ**s/cm x D (cm)**

It is required for the echo data to be unambiguously collected from a depth D

US signal processing

The user adjusts the Time Gain Compensation (TGC) and the noise rejection level

Time gain correction

TGC amplifies the acquired signals with respect to time after the initial pulse by operator adjustments

Equally reflective acoustic impedance boundaries

Microbubble for US

Ø **The US contrast agents are based on microbubbles that are made to oscillate and burst due to cavitation**

http://ubimon.doc.ic.ac.uk/isc/public/HPosters06_151-200/paper158.pdf SonoVue® microbubbles in a cellulose capillary tube. Image at x100 magnification

Microbubbles for US

- Ø **US contrast agents are small gas bubbles encapsulated by a stabilizing shell, with a typical diameter on the order of microns**
- Ø **Injected intravenously**
- Ø **Bubbles remain within the blood pool and circulate in a manner similar to red blood cells**

Microbolle per US

Ø **US pulses are typically applied with a frequency near the resonance frequency of the gas bubble** Ø **The bubbles increase and decrease in diameter, producing strong echoes from regions of perfused tissue**

Microbubbles and drug delivery

drug delivery through microbubbles: microbubbles containing the active substance are destroyed by US when they arrive at destination