FONDAMENTI DI FISICA MEDICA

PARTE 2: METODI D'IMMAGINE IN MEDICINA NUCLEARE (1CFU)

LECTURE 2 – SCINTIGRAFIA E SPECT

Luigi Rigon University of Trieste and INFN

Scintigrafia

- The essential physics of medical imaging Section III: Nuclear Medicine Jerrold T. Bushberg, et al. editors
- Introduction to medical physics
 De Ponti & Bertocchi, Chapter 6,
 Nuclear Medicine Imaging
 Stephen Keevil, et al. editors

- The basic principle of nuclear medicine (NM) imaging is the administration to patients of radioactive tracers (radiopharmaceuticals) that distribute in the body according to specific metabolic processes
- Administration can be by:
 - intravenous injection
 - inhalation
 - oral ingestion
 - direct injection into an organ

- Tracer uptake times may take from a few minutes to a few hours before optimal distribution in the organ is achieved
- The patient can then be scanned and gamma ray photon emissions from the tracer detected

- Nuclear medicine imaging is essentially the detection of gamma photons of an energy that:
 - can exit the patient's body

and

can be detected in the imaging system

- Information from the emitted photons is used to create an image (or a sequence of images) showing the radiopharmaceutical (tracer) distribution inside the patient
- Images can be acquired and reconstructed as static planar or tomographic images or can be collected over time in dynamic sequences

Imaging modalities

Planar (Scintigraphy)
 Dynamic

 SPECT

 (Single Photon Emission Computed Tomography)

 PET

 (Positron Emission Tomography)

Half-lives of isotopes used in NM range:

- from a few minutes
 (e.g. ¹⁵O, 2 min; ¹³N, 10 min; ¹¹C, 20 min)
- to a few days (e.g. ⁶⁷Ga, 3.26 days; ¹¹¹In, 2.81 days; ¹³¹I, 8 days)
- Tracers with very short half-lives can be used only at sites that are very close to where the isotopes are produced
- Isotopes with long half-lives are not used because of radiation protection concerns for both the patient and their contacts

Static planar imaging

- E.g.1: Static planar bone scan (scintigraphy) of prostate cancer patient 3 h after intravenous administration of 99mTc-radiopharmaceutical
- Foci of uptake of the tracer indicate lesions at thoracic and lumbar vertebrae, both shoulders and throughout the pelvis

Static tomographic imaging

E.g.2: Cardiac static tomographic images SPECT

 axial

 coronal

 saggittal

Dynamic planar imaging

E.g.3: Dynamic renal planar scintigraphy evaluation for living kidney donation.

- a) planar
 images over
 time
- b) ROIs used for evaluation
- c) Time—activity curves for the left kidney (red) and the right kidney (blue)

Gamma Camera (Hal Anger, 1957)

- In order to image a point source accurately, a collimator is needed to absorb the gamma ray not striking the detector in the orthogonal direction
- Nearly 99.9% of the photons are absorbed by the collimator

- Typical materials used are Pb (Z = 82) and W (Z = 74)
- Collimator design requires compromises to be made:
 - Image resolution can be increased by reducing the diameter of the holes in the collimator, but this will decrease sensitivity
 - Conversely, larger holes in the collimator increase sensitivity but decrease resolution
- Higher radioisotope energies require an increase the thickness of the collimator, including the septa
- Collimators are classified in terms of:
 - image characteristics (high-resolution, high sensitivity or general purpose)
 - gamma ray photon energy range (low, medium, high and ultrahigh energy collimators).

- In general collimators have parallel holes and septa to provide a direct correspondence between the radiopharmaceutical distribution and the reconstructed image
- Holes and septa can also be divergent or convergent to magnify or compress image size, respectively

Real Vs Ideal behavior of a collimator:

- A The geometric intrinsic blur (the reciprocal of the spatial resolution) versus distance from the front face of the collimator for the different style designs
 - the spatial resolution of a collimator worsens with distance
 - in nuclear medicine, it is important to bring the detectors as close to the patient as possible
- B detection efficiency versus distance from the face of the collimator for the different style designs
 - only for converging geometry the detection efficiency improve with the distance

2- Scintillator Crystal

Scintillator crystals act as an energy converter

- Scintillators may be organic or inorganic compounds with added impurities to create the activation energy levels
- ~1cm thick inorganic crystals are generally used in NM

2- Scintillator Crystal

Physical Characteristics of Crystals Used in Nuclear Medicine and PET Applications

	Nal(Tl)	$\begin{array}{l} \text{Bi}_{4}\text{Ge}_{3}\text{O}_{12}\\ (\text{BGO}) \end{array}$	Lu_2SiO_5 (LSO:Ce)
Light yield (photons/keV)	38	8.2	25
Emission peak (nm)	410	480	420
Decay time (ns)	230	300	40
Density (g/cm ³)	3.7	7.1	7.4
$1/\mu$ (cm) – 140 keV	0.41	0.086	0.11
$1/\mu$ (cm) – 511 keV	3.1	1.1	1.2

3- Photomultiplier Tube (PMT)

3- PMT Array

4- Signal Analysis

- Stopping γ ray photons in the scintillator crystal yields isotropic light emission around the point of interaction
- Light is detected in several photomultiplier tubes
- Output signals from all the PMT are summed to produce a 'Z pulse' (total energy deposited by the γ ray photon)
- Energy discrimination circuitry determines whether the Z pulse is from a primary/secondary γ ray photon: secondary γ ray events are rejcted

4- Signal Analysis

Interaction positions are identified by using a weighted average of the light contribution from each PMT

+Y

+X

Calibration

- Calibration is performed after installation and repeated if quality assurance measurements indicate increases in non-linearity
- This calibration ensures accurate correspondence between the true γ ray photon interaction point and its representation in the image
- Calibration is performed using a line source moved sequentially across the image in the x and y directions or alternatively using a point source

SPECT (Single Photon Emission CT)

- The essential physics of medical imaging Section III: Nuclear Medicine Jerrold T. Bushberg, et al. editors
- Introduction to medical physics
 De Ponti & Bertocchi, Chapter 6,
 Nuclear Medicine Imaging
 Stephen Keevil, et al. editors

SPECT (Single Photon Emission CT)

- In SPECT the gamma camera is appropriately rotated around the patient acquiring images at discrete angles typically 3° 6° apart
- Tomographic techniques (the same as in CT, i.e FBP and Iterative methods) are used for 3D reconstruction

Body contour orbit

SPECT/CT

- A substantial difference of SPECT compared to CT concerns the patient's attenuation of photons:
 - in CT it is precisely this attenuation that creates the image
 - in SPECT instead this attenuation spoils the image, or adds artifacts to the signal coming from the radiopharmaceutical
- Attenuation correction can be implemented in SPECT/CT devices

SPECT/CT fusion imaging

- A hybrid system allows anatomical assessment (CT) and functional assessment (SPECT or PET) in a single examination session, without moving the patient from the couch (and therefore in the same spatial reference system)
- Once reconstructed, the CT and nuclear medicine images are spatially co-registered, thus allowing the reader to see the precise localization of the nuclear medicine data with respect to anatomy

SPECT/CT fusion imaging

- SPECT/CT fusion allows for proper anatomical localization of SPECT findings
- E.g. Labeling of a sentinel lymph node (SLN) using a Tc-99m radiopharmaceutical

