FONDAMENTI DI FISICA MEDICA

PARTE 2: METODI D'IMMAGINE IN MEDICINA NUCLEARE (1CFU)

LECTURE 2 – SCINTIGRAFIA E SPECT

Luigi Rigon University of Trieste and INFN

Scintigrafia

- The essential physics of medical imaging Section III: Nuclear Medicine Jerrold T. Bushberg, *et al.* editors
- Introduction to medical physics De Ponti & Bertocchi, Chapter 6, Nuclear Medicine Imaging Stephen Keevil, *et al.* editors

- The basic principle of nuclear medicine (NM) imaging is the administration to patients of **radioactive tracers** (radiopharmaceuticals) that distribute in the body according to specific metabolic processes
- \Box Administration can be by:
	- intravenous injection
	- inhalation
	- **n** oral ingestion
	- direct injection into an organ

- \Box Tracer uptake times may take from a few minutes to a few hours before optimal distribution in the organ is achieved
- The patient can then be scanned and gamma ray photon emissions from the tracer detected

- □ Nuclear medicine imaging is essentially the detection of gamma photons of an energy that:
	- \blacksquare can exit the patient's body

and

 \blacksquare can be detected in the imaging system

- \Box Information from the emitted photons is used to create an image (or a sequence of images) showing the radiopharmaceutical (tracer) distribution inside the patient
- \Box Images can be acquired and reconstructed as static planar or tomographic images or can be collected over time in dynamic sequences

\Box Imaging modalities

 Planar (**Scintigraphy**) □ Static Dynamic

 SPECT (**S**ingle **P**hoton **E**mission **C**omputed **T**omography) **PET** (**P**ositron **E**mission **T**omography)

Half-lives of isotopes used in NM range:

- **F** from a few minutes (e.g. $15O$, 2 min; $13N$, 10 min; $11C$, 20 min)
- **n** to a few days (e.g. 67 Ga, 3.26 days; 111 ln, 2.81 days; 131 l, 8 days)
- \Box Tracers with very short half-lives can be used only at sites that are very close to where the isotopes are produced
- \Box Isotopes with long half-lives are not used because of radiation protection concerns for both the patient and their contacts

Static planar imaging

- **E.g.1: Static planar bone scan** (scintigraphy) of prostate cancer patient 3 h after intravenous administration of 99mTc-radiopharmaceutical
- □ Foci of uptake of the tracer indicate lesions at thoracic and lumbar vertebrae, both shoulders and throughout the pelvis

Posterior

Anterior

Static tomographic imaging

□ E.g.2: Cardiac static tomographic images D SPECT

L axial 883333 **□** coronal **□** saggittal

Dynamic planar imaging

□ E.g.3: Dynamic renal planar scintigraphy evaluation for living kidney donation.

- a) planar images over time
- **b**) ROIs used for evaluation
- \blacksquare c) Time-activity curves for the left kidney (red) and the right kidney (blue)

Gamma Camera (Hal Anger, 1957)

- \Box In order to image a point source accurately, a collimator is needed to absorb the gamma ray not striking the detector in the orthogonal direction
- □ Nearly 99.9% of the photons are absorbed by the collimator

- **Typical materials used are Pb (Z = 82) and W (Z = 74)**
- \Box Collimator design requires compromises to be made:
	- **If** Image resolution can be increased by reducing the diameter of the holes in the collimator, but this will decrease sensitivity
	- **E** Conversely, larger holes in the collimator increase sensitivity but decrease resolution
- \Box Higher radioisotope energies require an increase the thickness of the collimator, including the septa
- **D** Collimators are classified in terms of:
	- \blacksquare image characteristics (high-resolution, high sensitivity or general purpose)
	- **Q** gamma ray photon energy range (low, medium, high and ultrahigh energy collimators).

- In general collimators have parallel holes and septa to provide a direct correspondence between the radiopharmaceutical distribution and the reconstructed image
- **Holes and septa can** also be divergent or convergent to magnify or compress image size, respectively

Real Vs Ideal behavior of a collimator:

- \Box A The geometric intrinsic blur (the reciprocal of the spatial resolution) versus distance from the front face of the collimator for the different style designs
	- \blacksquare the spatial resolution of a collimator worsens with distance
	- \blacksquare in nuclear medicine, it is important to bring the detectors as close to the patient as possible
- \Box B detection efficiency versus distance from the face of the collimator for the different style designs
	- \blacksquare only for converging geometry the detection efficiency improve with the distance

2- Scintillator Crystal

□ Scintillator crystals act as an energy converter

- □ Scintillators may be organic or inorganic compounds with added impurities to create the activation energy levels
- \sim 1cm thick inorganic crystals are generally used in NM

2- Scintillator Crystal

Physical Characteristics of Crystals Used in Nuclear Medicine and PET Applications

3- Photomultiplier Tube (PMT)

3- PMT Array

4- Signal Analysis

- \Box Stopping γ ray photons in the scintillator crystal yields isotropic light emission around the point of interaction
- \Box Light is detected in several photomultiplier tubes
- □ Output signals from all the PMT are summed to produce a 'Z pulse' (total energy deposited by the γ ray photon)
- \Box Energy discrimination circuitry determines whether the Z pulse is from a primary/secondary γ ray photon: secondary γ ray events are rejcted

4- Signal Analysis

 \Box Interaction positions are identified by using a weighted average of the light contribution from each PMT

 $+Y$

 $+X$

Calibration

- □ Calibration is performed after installation and repeated if quality assurance measurements indicate increases in non-linearity
- \Box This calibration ensures accurate correspondence between the true γ ray photon interaction point and its representation in the image
- □ Calibration is performed using a line source moved sequentially across the image in the x and y directions or alternatively using a point source

SPECT (Single Photon Emission CT)

- The essential physics of medical imaging Section III: Nuclear Medicine Jerrold T. Bushberg, *et al.* editors
- Introduction to medical physics De Ponti & Bertocchi, Chapter 6, Nuclear Medicine Imaging Stephen Keevil, *et al.* editors

SPECT (Single Photon Emission CT)

- \Box In SPECT the gamma camera is appropriately rotated around the patient acquiring images at discrete angles typically 3° – 6° apart
- \Box Tomographic techniques (the same as in CT, i.e FBP and Iterative methods) are used for 3D reconstruction

Circular orbit

Body contour orbit

SPECT/CT

- □ A substantial difference of SPECT compared to CT concerns the patient's attenuation of photons:
	- \blacksquare in CT it is precisely this attenuation that creates the image
	- \blacksquare in SPECT instead this attenuation spoils the image, or adds artifacts to the signal coming from the radiopharmaceutical
- **E** Attenuation correction can be implemented in SPECT/CT devices

SPECT/CT fusion imaging

- \Box A hybrid system allows anatomical assessment (CT) and functional assessment (SPECT or PET \rightarrow) in a single examination session, without moving the patient from the couch (and therefore in the same spatial reference system)
- □ Once reconstructed, the CT and nuclear medicine images are spatially co-registered, thus allowing the reader to see the precise localization of the nuclear medicine data with respect to anatomy

SPECT/CT fusion imaging

- □ SPECT/CT fusion allows for proper anatomical localization of SPECT findings
- □ E.g. Labeling of a sentinel lymph node (SLN) using a Tc-99m radiopharmaceutical

