
Lecture 1

Physics Simulations with Python:
prerequisites, tools and basic concepts

Laboratorio di Fisica Computazionale
Computational Physics Laboratory

Antimo Marrazzo (Physics Department, UniTS)
AA 2023/24 I semester











• «Python is an easy to learn, powerful programming language» (source: 
official Python tutorial)
• Few catches:
• Easy to start coding, difficult to loose accents from other languages
• You only miss what you know about: several powerful featues potentially 

unexploited 
• Often harder (or not obvious) to produce efficient code for numerical 

simulations, especially at the HPC level. (Fortran is a Formula TRANslator, it was 
designed for number crunching; Python is more general purpose, from web 
design to data analysis)

What is Python?



• Python is an interpreted, interactive, object-oriented programming language. 
It incorporates modules, exceptions, dynamic typing, very high level dynamic
data types, and classes. 
• It supports multiple programming paradigms beyond object-oriented

programming, such as procedural and functional programming.
• Python combines remarkable power with very clear syntax. 
• It has interfaces to many system calls and libraries, as well as to various

window systems, and is extensible in C or C++. It is also usable as an extension 
language for applications that need a programmable interface. Finally, Python 
is portable: it runs on many Unix variants including Linux and macOS, and on 
Windows.

[Source: docs.python.org]

What is Python? (really)



• It dramatically reduces the time to develop codes (especially true if the 
programmer time is worth more than CPU time)
• “Python as a glue”: ease of integrating C, C++ and Fortran code
• Great for prototyping code
• Great for data analysis, machine learning & visualizing data
• It can be made efficient with extensions and libraries
• It has becoming extremely popular also in computational science (existing 

projects and available libraries)
• NB: Pythonic strategies, tools and style are radically different w.r.t compiled 

codes…especially if you were originally trained with C or Fortran!

Why Python? 
(in a Computational Physics Laboratory)



• This course is about computational physics, *not* a coding class.
• We recommend to check out (and, in case, attend) one of these two courses

->I semester course 682SM Abilità informatiche e telematiche (Computer and 
Telematic Skills) by Milena Valentini and Sara Bertocco
->I semester course 998DF Strumenti Informatici per la Fisica (Information Technology 
for Physicists) by Daniele Coslovich
slides and other material available on the Teams channels, access codes available at 
https://www.units.it/en/distance-learning 

• We will not teach you how to code in Python from scratch
->check out 682SM or 998DF for a primer
->we will revise key concepts through short summaries and code examples

A disclaimer

https://www.units.it/en/distance-learning


• We will *not* require you to know how to code in Python
• The proven capability to develop a code for numerical simulations in modern 

Fortran AND Python (i.e. using both!) will be evaluated very positively.
• We will show you that implementing physics simulations sometimes requires 

different strategies in Python than in C or Fortran 90.
• Statistically speaking, last year many students spontaneously decided to 

implement the code for their final project both in Fortran 90 and Python:
• Fortran code embedded in Python via f2py
• Fortran code for number crunching & Python code for data analysis 

A disclaimer

Project for Exam - Computational Physics
Laboratory

Christian Kodarin

June 25, 2023

Abstract

The task was to implement the ±J random-bond Ising model with Monte

Carlo(MC) dynamics and to perform annealing routines to investigate its ground

state (GS) energy. This is the simplest model used to describe spin glass sys-

tems. The randomness of the interactions between neighbouring spins makes

the search for the ground state a di�cult task to pursue without the aid of

computational methods.

To tackle the problem a Python code has been written, to simulate MC

evolution of such a system on a square lattice. In second place, in order to

make viable the simulation of larger lattices and finer annealing schedules, a

Fortran module was developed and was integrated in Python using NumPy’s

F2Py utility, which had already proven to be very e↵ective in speeding up the

computational time of similar problems.

After this improvement, the GS of lattices as big as 100
2

spins have been

probed, yielding results in very good agreement with other results already

present in literature.

Tridimensional simple cubic lattice systems were investigated too, yielding

again results in good agreement with the present litearture.

Thanks to the possibility of fastly simulating such systems a variety of di↵er-

ent possible simulations become accessible only requiring minimal modifications

to the present code. As an example: changing the probability p of randomly

choosing the sign of the interaction would allow to investigate the dependence of

the critical temperature at which the phase transition in the (anti)ferromagnetic

ising model as a function of the number of ferromagnetic bonds in the system
1
.

1 Random-bond Ising model
2

This is a less general version of the Ising model. Interactions are limited to

nearest neighbours only, and every interaction Jij is randomly chosen to be ±J
with equal probability. Other models choose the interactions by drawing them

with a gaussian distribution centered on a value J0.

1
Honecker, Andreas, Marco Picco, and Pierre Pujol. ”Universality class of the Nishimori

point in the 2D±J random-bond Ising model.” Physical review letters 87.4 (2001): 047201.
2
Here and in the following all the physical quantities will be expressed in internal units.

1

Taken from a final project report



Homework #1
• Make sure you are familiar with these topics
• Basic Python syntax.
• Basic built-in datastructures (lists, tuples and dictionaries).
• Control structures (if-else, while, for).
• How to write and use functions and modules.
• Basic File I/O (read and write a formatted text file)

• If you come from modern Fortran, check out this Python-Fortran Rosetta 
Stone https://www.fortran90.org/src/rosetta.html (Python with NumPy and 
Fortran are actually rather similar in terms of expressiveness and features)

https://www.fortran90.org/src/rosetta.html


The Python interpreter
• Python is an interpreted language: the interpreter runs programs by 

executing one statement at a time.



IPython
• IPython is an enhanced Python interpreter with tab completion, history 

and other advanced features, including the support for interactive data 
visualizations and tools for parallel computing.



Jupyter Notebooks and Jupyter Lab 

• Jupyter Notebooks 
• Spin-off of IPython
• Web-based application for creating & sharing 

computational documents
• “Web-based” notebooks allow to mix code, text 

(e.g. Markdown, HTML) and interactive 
visualization
• They can be used with any programming 

language (but particularly useful in Python)

• Jupyter Lab
• Web-based interactive development

environment for notebooks, code, and data

Source: jupyter.org



Integrated Development Environments (a.k.a. IDEs)
• IDEs are pieces of software which aid computer programmers to write codes
• IDEs are designed to maximise productivity (i.e. save time)
• There exists a large number of them, with a wide range of functionalities:
• Basic features (code editor): vim, emacs, nano, …

-> very useful to use on remote machines (e.g. HPC clusters)
• More advanced (also GUI, compilers/interpreters, support for version control, …): 

Eclipse, Xcode, Visual Studio Code, …
->very powerful to develop code (and write in LaTeX as well!)



Virtual environments

• It is good practices to develop projects in isolated virtual environments on 
top of an existing Python installation, essentially folders which contains all the 
necessary executables to use the packages that a Python project would need, 
including their own independent set of Python packages.
• Very easy through the package virtualenv
• pip install virtualenv
• -> to create the environment: virtualenv yourpythonenv
• -> to enter the environment: source yourpythonenv/bin/activate (on Windows: 

yourpythonenv\Scripts\activate)
• -> to exit: deactivate



…let’s use Jupyter
Notebooks!



• An extensive list at https://wiki.python.org/moin/PythonBooks 
• For beginners with a Physics background (very recommended!)

Effective Computation in Physics: Field Guide to Research with Python
(A. Scopatz & K. D. Huff, O’Reilly, 2015)

• For advanced Python users: 
Fluent Python: Clear, Concise, Effective Programming (L. Ramalho, O’Reilly, 2015)

But … nobody learns coding on books!
1) Learn by doing: practice, practice and practice
2) Python official documentation: https://docs.python.org/3/
3) Stackoverflow: https://stackoverflow.com

Some references



The Ubuntu VMs in Aula Poropat are already configured for the course,
 you can use those (even from remote!)

At home
• Option 0 (Linux): for Ubuntu

• sudo apt-get install python3 ipython3 python3-pip python3-numpy python3-numexpr python3-
matplotlib cython3 python3-cffi python3-scipy

• pip3 install jupyter numba virtualenv
• Option 1 (Windows, Linux, MacOS): https://www.python.org/downloads/
• Option 2 (Windows, Linux, MacOS) [NOT RECOMMENDED!]: Anaconda installer 

(most packages you need for this course are pre-installed) 
• If you use Windows, consider also to install an Ubuntu VM with VirtualBox or use 

Windows Subsystem for Linux (WSL) 

Installing a Python development environement
(useful resources)


