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Introduction

The aim of these lecture notes is to provide an introduction to methods and
techniques used in the numerical solution of simple (non-relativistic) quantum-
mechanical problems, with special emphasis on atomic and condensed-matter
physics. The practical sessions are meant to be a sort of “computational lab-
oratory”, introducing the basic ingredients used in the calculation of materials
properties at a much larger scale. The latter is a very important field of today’s
computational physics, due to its technological interest and potential applica-
tions.

The codes provided during the course are little more than templates. Stu-
dents are expected to analyze them, to run them under various conditions, to
examine their behavior as a function of input data, and most important, to
interpret their output from a physical point of view. The students will be asked
to extend or modify those codes, by adding or modifying some functionalities.

For further insight on the theory of Quantum Mechanics, many excellent
textbooks are available (e.g. Griffiths, Schiff, or the ever-green Dirac and Lan-
dau). For further insight on the properly computational aspects of this course,
we refer to the specialized texts quoted in the Bibliography section, and in
particular to the book of Thijssen.

0.1 About Software

This course assumes some basic knowledge of how to write and execute simple
programs, and how to plot their results. All that is needed is a Fortran or C
compiler and some visualization software. The target machine is a PC running
Linux, but you can also use a Macintosh or a Windows PC, as long as the
mentioned software is installed and working, and if you know how to use it
in practice. For Windows 10, the path of least resistance is to enable the
Windows Subsystem for Linux (WSL-2) and to install a Linux distribution and
an X window client. This gives access to a very functional Linux shell.

0.1.1 Compilers

In order to run a code written in any programming language, we must first
translate it into machine language, i.e. a language that the computer can
understand. The translation is done by an interpreter or by a compiler: the
former translates and immediately executes each instruction, the latter takes
the file, produces the so-called object code that together with other object codes
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and with libraries is finally assembled into an executable file. Python, Java, or at
an higher level, Matlab, Mathematica, are examples of “interpreted” language.
Fortran, C, C++ are “compiled” languages.

Our codes are written in Fortran 90 (or 95, or later). This is a sophisti-
cated and complex language offering dynamical memory management, arrays
operations (e.g. matrix-vector products), modular and object-based structure.
Fortran 90 maintains a wide compatibility with existing Fortran 77 codes, while
remaining as efficient as Fortran 77 was. It is worth mentioning that the first
applications of computers to physics date back to well before the birth of mod-
ern computer languages like C++, python, or even C: there is a large number
of codes and libraries written in Fortran 77 (or even Fortran 66!) and still
widely used in physics. Even among physicists, however, Fortran is no longer
as common and widespread as it used to be, but online resources are still easy to
find1. The codes themselves are very simple and make little usage of advanced
language features. In any case, there is no problem if a student prefers to use
a more widespread language like C/C++. A version of all codes in C is also
available, with no warranty about the quality of the C code in terms of elegance
and good coding practice.

In all cases, you need a C or Fortran compiler. The C compiler gcc is
free and can be installed on all operating systems (in Linux PCs it is always
present). Less-then-archaic versions of gcc include a Fortran compiler, called
gfortran.

0.1.2 Visualization Tools

Visualization of data produced by the codes (wave functions, charge densities,
various other quantities) has a central role in the analysis and understanding
of the results. Code gnuplot can be used to make two-dimensional or three-
dimensional plots of data or of analytical expressions. gnuplot is open-source
software, available for all operating systems and often found pre-installed on
Linux PCs. An introduction to gnuplot, with many links to more resources,
can be found in http://www.gnuplot.info/help.html.

Another software that can be used is Grace2, formerly known as xmgr. This
is also open-source and highly portable, has a graphical user interface and thus
it is easier to use than gnuplot, whose syntax is not always easy to remember.

0.1.3 Mathematical Libraries

The usage of efficient mathematical libraries is crucial in “serious” calculations.
Some of the codes use routines from the BLAS3 (Basic Linear Algebra Subpro-
grams) library and from LAPACK4 (Linear Algebra PACKage). The latter is
an important and well-known library for all kinds of linear algebra operations:

1see for instance http://fortran.bcs.org/resources.php
2http://plasma-gate.weizmann.ac.il/Grace
3http://www.netlib.org/blas
4http://www.netlib.org/lapack
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solution of linear systems, eigenvalue problems, etc.. LAPACK calls BLAS rou-
tines for all CPU-intensive calculations. Highly optimized versions of the latter
are available for many different operating systems and architectures.

The original BLAS and LAPACK routines are written in Fortran 77. They
are often found precompiled on many machines and can be linked directly by
the compiler by adding -llapack -lblas. If called by a C code, it may be
needed to add an underscore ( ) in the calling program, as in: dsyev , dgemm .
This is due to different, and machine-dependent, C-Fortran conventions for the
naming of “symbols” (i.e. compiled routines). Note that the C compiler may
also need -lm to link general mathematical libraries (i.e. operations like the
square root).

0.1.4 Pitfalls in C-Fortran interlanguage calls

In addition to the above-mentioned potential mismatches between C and For-
tran naming conventions, there are a few more pitfalls one has to be aware of
when Fortran routines are called by C (or vice versa).

• Fortran passes pointers to subroutines and functions; C passes values.
In order to call a Fortran routine from C, or vice versa, all C variables
appearing in the call must be either pointers or arrays.

• In C, indices of vectors and arrays start from 0; in Fortran, they start
from 1, unless differently specified in array declaration or allocation.

• Matrices in C are stored in memory row-wise, that is: a[i][j+1] follows
a[i][j] in memory. In Fortran, they are stored column-wise, that is, the
other way round: a(i+1,j) follows a(i,j) in memory.

An additional problem is that C does not provide run-time allocatable matrices
like Fortran does, but only fixed-dimension matrices and arrays of pointers.
The former are impractical, the latter are not usable as arguments to pass to
Fortran. It would be possible, using either non-standard C syntax, or using
C++ and the new command, to define dynamically allocated matrices similar
to those used in Fortran. We have preferred for our simple C codes to “simulate”
Fortran-style matrices (i.e. stored in memory column-wise) by mapping them
onto one-dimensional C vectors.

We remark that Fortran 90 has a more advanced way of passing arrays to
subroutines using “array descriptors”. The codes used in this course however do
not make use of this possibility but use the old-style Fortran 77 way of passing
arrays via pointers.
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Chapter 1

One-dimensional Schrödinger
equation

In this chapter we start from the harmonic oscillator to introduce a general
numerical methodology to solve the one-dimensional, time-independent Schrö-
dinger equation. The analytical solution of the harmonic oscillator will be first
derived and described. A specific integration algorithm (Numerov) will be used.
The extension of the numerical methodology to other, more general types of
potentials does not present any special difficulty.

For a particle of mass m under a potential V (x), the one-dimensional, time-
independent Schrödinger equation is given by:

− h̄2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x), (1.1)

where ψ(x) is the wave function, that can be chosen to be real, and h̄ is the
Planck constant h divided by 2π. In the following we are focusing on the discrete
spectrum: the set of isolated energy values for which Eq.(1.1) has normalizable
solutions, localized in space.

1.1 The harmonic oscillator

The harmonic oscillator is a fundamental problem in classical dynamics as well
as in quantum mechanics. It represents the simplest model system in which
attractive forces are present and is an important paradigm for all kinds of vi-
brational phenomena. For instance, the vibrations around equilibrium positions
of a system of interacting particles may be described, via an appropriate coor-
dinate transformation, as a set of independent harmonic oscillators known as
normal vibrational modes. The same holds in quantum mechanics. The study
of the quantum oscillator allows a deeper understanding of quantization and of
its effects and of wave functions of bound states.

In this chapter we first remind the main results of the theory of the har-
monic oscillator, then we show how to set up a computer code that allows to
numerically solve the Schrödinger equation for the harmonic oscillator. The
resulting code can be easily modified and adapted to a different, not simply
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quadratic, interaction potential. This allows to study problems that, unlike the
harmonic oscillator, do not have a simple analytical solution.

1.1.1 Units

The Schrödinger equation for a one-dimensional harmonic oscillator is, in usual
notations:

d2ψ

dx2
= −2m

h̄2

(
E − 1

2
Kx2

)
ψ(x) (1.2)

where K is the force constant. The force on the mass is F = −Kx, proportional
to the displacement x and directed towards the origin. Classically such an
oscillator has a frequency (angular frequency)

ω =

√
K

m
. (1.3)

It is convenient to work with adimensional units, the same that are used by the
codes presented at the end of this chapter. Let us introduce an adimensional
variable ξ and a length λ such that x = λξ. By substituting into Eq.(1.2), one
finds

d2ψ

dξ2
=

(
−2mEλ2

h̄2 +
mKλ4

h̄2 ξ2

)
ψ. (1.4)

The natural choice is to set mKλ4/h̄2 = 1, leading to λ = (h̄2/mK)1/4 and,
using Eq.(1.3), to

ξ =

(
mω

h̄

)1/2

x (1.5)

By further introducing an adimensional “energy” ε such that

ε =
E

h̄ω
, (1.6)

one finally rewrites Eq.(1.2) in adimensional units:

d2ψ

dξ2
= −2

(
ε− ξ2

2

)
ψ(ξ). (1.7)

1.1.2 Exact solution

One can easily verify that for large ξ (such that ε can be neglected) the solutions
of Eq.(1.7) must have an asymptotic behavior like

ψ(ξ) ∼ ξne±ξ
2/2 (1.8)

where n is any finite value. The + sign in the exponent must however be
discarded: it would give raise to diverging, non-physical solutions (in which the
particle would tend to leave the ξ = 0 point, instead of being attracted towards
it by the elastic force). It is thus convenient to extract the asymptotic behavior
and assume

ψ(ξ) = H(ξ)e−ξ
2/2 (1.9)
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where H(ξ) is a well-behaved function for large ξ (i.e. the asymptotic behavior
is determined by the second factor e−ξ

2/2). In particular, H(ξ) must not grow
like eξ

2
, or else we fall back into a undesirable non-physical solution.

Under the assumption of Eq.(1.9), Eq.(1.7) becomes an equation for H(ξ):

d2H

dξ2
(ξ)− 2ξ

dH

dξ
(ξ) + (2ε− 1)H(ξ) = 0. (1.10)

It is immediate to notice that ε0 = 1/2, H0(ξ) = 1 is the simplest solution.
This is the ground state, i.e. the lowest-energy solution, as will soon be clear.

In order to find all solutions, we expand H(ξ) into a series, in principle with
infinite terms:

H(ξ) =
∞∑
n=0

Anξ
n, (1.11)

we derive the series to find dH/dξ and d2H/dξ2, plug the results into Eq.(1.10)
and regroup terms with the same power of ξ. We find an equation

∞∑
n=0

[(n+ 2)(n+ 1)An+2 + (2ε− 2n− 1)An] ξn = 0 (1.12)

that can be satisfied for any value of ξ only if the coefficients of all the orders
are zero:

(n+ 2)(n+ 1)An+2 + (2ε− 2n− 1)An = 0. (1.13)

Thus, once A0 and A1 are given, Eq.(1.13) allows to determine by recursion the
solution under the form of a power series.

For large n, the coefficient of the series behave like An+2 ∼ 2An/n, that is:

An+2 ∼
1

(n/2)!
. (1.14)

This asymptotic behavior is the same as for the series expansion exp(ξ2) =∑
n ξ

2n/n!, indicating that the recursion relation Eq.(1.13) produces a function
H(ξ) that grows like exp(ξ2) and yields a diverging nonphysical solution.

The only way to prevent this from happening is to have in Eq.(1.13) all
coefficients beyond a given n vanish, so that the infinite series reduces to a
finite-degree polynomial. This happens if and only if

ε = n+
1

2
(1.15)

where n is a non-negative integer.
Allowed energies for the harmonic oscillator are thus quantized:

En =

(
n+

1

2

)
h̄ω n = 0, 1, 2, . . . (1.16)

The corresponding polynomialsHn(ξ) are known as Hermite polynomials. Hn(ξ)
is of degree n in ξ, has n nodes, is even [Hn(−ξ) = Hn(ξ)] for even n, odd
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Figure 1.1: Wave functions and probability density for the harmonic oscillator.

[Hn(−ξ) = −Hn(ξ)] for odd n. Since e−ξ
2/2 is node-less and even, the complete

wave function corresponding to the energy En:

ψn(ξ) = Hn(ξ)e−ξ
2/2 (1.17)

has n nodes and the same parity as n. The fact that all solutions of the
Schrödinger equation are either odd or even functions is a consequence of the
symmetry of the potential: V (−x) = V (x).

The lowest-order Hermite polynomials are

H0(ξ) = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2, H3(ξ) = 8ξ3 − 12ξ. (1.18)

1.1.3 Comparison with classical probability density

The probability density for wave function ψn(x) of the harmonic oscillator has in
general n+1 peaks, whose height increases while approaching the corresponding
classical inversion points (i.e. points where V (x) = E).

These probability density can be compared to that of the classical harmonic
oscillator, in which the mass moves according to x(t) = x0 sin(ωt). The proba-
bility ρ(x)dx to find the mass between x and x+ dx is proportional to the time
needed to cross such a region, i.e. it is inversely proportional to the speed as a
function of x:

ρ(x)dx ∝ dx

v(x)
. (1.19)

Since v(t) = x0ω cos(ωt) = ω
√
x2

0 − x2
0 sin2(ωt), we have

ρ(x) ∝ 1√
x2

0 − x2
. (1.20)

This probability density has a minimum for x = 0, diverges at inversion points,
is zero beyond inversion points.
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The quantum probability density for the ground state is completely different:
has a maximum for x = 0, decreases for increasing x. At the classical inversion
point its value is still ∼ 60% of the maximum value: the particle has a high
probability to be in the classically forbidden region (for which V (x) > E).

In the limit of large quantum numbers, i.e., large n values, the quantum
density tends however to look similar to the quantum one, but it still displays
the oscillatory behavior in the allowed region, typical for quantum systems.

1.2 Quantum mechanics and numerical codes

1.2.1 Quantization

A first aspect to be considered in the numerical solution of quantum problems
is the presence of quantization of energy levels for bound states, such as for
instance Eq.(1.16) for the harmonic oscillator. The acceptable energy values En
are not known a priori. Thus in the Schrödinger equation (1.1) the unknown
is not just ψ(x) but also E. For each allowed energy level, or eigenvalue, En,
there will be a corresponding wave function, or eigenfunction, ψn(x).

What happens if we try to solve the Schrödinger equation for an energy E
that does not correspond to an eigenvalue? In fact, a “solution” exists for any
value of E, but not a physical one. The quantization of the energy originates
from boundary conditions, requiring no nonphysical divergence of the wave
function in the forbidden regions. Thus, if E is not an eigenvalue, we will
observe a divergence of ψ(x). Numerical codes searching for allowed energies
must be able to recognize when the energy is not correct and search for a better
energy, until it coincides – within numerical or predetermined accuracy – with
an eigenvalue. The first code presented at the end of this chapter implements
such a strategy.

1.2.2 A pitfall: pathological asymptotic behavior

An important aspect of quantum mechanics is the existence of “negative” ki-
netic energies: i.e., the wave function can be non zero (and thus the probability
to find a particle can be finite) in regions for which V (x) > E, forbidden ac-
cording to classical mechanics. Based on (1.1) and assuming the simple case in
which V is (or can be considered) constant, this means

d2ψ

dx2
= k2ψ(x) (1.21)

where k2 is a positive quantity. This in turns implies an exponential behavior,
with both ψ(x) ' exp(kx) and ψ(x) ' exp(−kx) satisfying (1.21). As a rule
only one of these two possibilities has a physical meaning: the one that gives
raise to a wave function that decreases exponentially at large |x|.

It is very easy to distinguish between the “good” and the “bad” solution for
a human, much less so for a numerical code that produces whatever comes out
from the equations. If even a tiny amount of the “bad” solution, for instance
due to numerical noise, is present, the integration algorithm will inexorably
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make it grow in the classically forbidden region. As the integration goes on,
the “bad” solution will dominate the “good” one and eventually produce crazy
numbers (or crazy NaN’s: Not a Number). Thus a nice-looking wave function
in the classically allowed region, smoothly decaying in the classically forbidden
region, may suddenly start to diverge at some point, unless a wise strategy is
employed to prevent it. The second code presented at the end of this chapter
implements such a strategy.

1.3 Numerov’s method

In order to solve numerically the time-independent Schrödinger equation in one
dimension, one has to discretize it on a suitable finite grid of points and to
integrate (solve) it, the solution being also given on the grid of points.

There are many big thick books on this subject, describing old and new
methods, from the very simple to the very sophisticated, for all kinds of dif-
ferential equations and all kinds of discretization and integration algorithms.
In the following, we will consider Numerov’s method, named after Russian as-
tronomer Boris Vasilyevich Numerov, as an example of a simple yet powerful
and accurate algorithm.

Numerov’s method is useful to integrate second-order differential equations
of the general form

d2y

dx2
= −g(x)y(x) + s(x) (1.22)

where g(x) and s(x) are known functions. The Schrödinger equation, Eq.(1.1),
has this form, with g(x) = (2m/h̄2)[E−V (x)] and s(x) = 0. We will see in the
next chapter that also the radial Schrödinger equations for three-dimensional
systems having spherical symmetry belongs to such class. Another important
equation falling into this category is Poisson’s equation of electromagnetism,

d2φ

dx2
= −4πρ(x) (1.23)

where ρ(x) is the charge density. In this case g(x) = 0 and s(x) = −4πρ(x).
Let us consider a finite box containing the system: for instance, −xmax ≤

x ≤ xmax, with xmax large enough for our solutions to decay to negligibly small
values. Let us divide our finite box into N small intervals of equal size, ∆x
wide. We call xi the points of the grid so obtained, yi = y(xi) the values of the
unknown function y(x) on grid points. In the same way we indicate by gi and
si the values of the (known) functions g(x) and s(x) in the same grid points. In
order to obtain a discretized version of the differential equation (i.e. to obtain
an equation involving finite differences), we expand y(x) into a Taylor series
around a point xn, up to fifth order:

yn−1 = yn − y′n∆x+ 1
2y
′′
n(∆x)2 − 1

6y
′′′
n (∆x)3 + 1

24y
′′′′
n (∆x)4 − 1

120y
′′′′′
n (∆x)5

+O[(∆x)6]
yn+1 = yn + y′n∆x+ 1

2y
′′
n(∆x)2 + 1

6y
′′′
n (∆x)3 + 1

24y
′′′′
n (∆x)4 + 1

120y
′′′′′
n (∆x)5

+O[(∆x)6].
(1.24)
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We have switched to notation y′(x) = dy/dx etc. for compactness. If we sum
the two equations, we obtain:

yn+1 + yn−1 = 2yn + y′′n(∆x)2 +
1

12
y′′′′n (∆x)4 +O[(∆x)6]. (1.25)

Eq.(1.22) tells us that
y′′n = −gnyn + sn ≡ zn. (1.26)

The quantity zn above is introduced to simplify the notations. The following
relation holds:

zn+1 + zn−1 = 2zn + z′′n(∆x)2 +O[(∆x)4]. (1.27)

This is the simple formula for the discretized second derivative, that can be
obtained in a straightforward way by Taylor expansion up to third order. Thus:

y′′′′n ≡ z′′n =
zn+1 + zn−1 − 2zn

(∆x)2
+O[(∆x)2]. (1.28)

By inserting back these results into Eq.(1.25) one finds

yn+1 = 2yn − yn−1 + (−gnyn + sn)(∆x)2

+ 1
12(−gn+1yn+1 + sn+1 − gn−1yn−1 + sn−1 + 2gnyn − 2sn)(∆x)2

+O[(∆x)6]
(1.29)

and finally the Numerov’s formula

yn+1

[
1 + gn+1

(∆x)2

12

]
= 2yn

[
1− 5gn

(∆x)2

12

]
− yn−1

[
1 + gn−1

(∆x)2

12

]
+(sn+1 + 10sn + sn−1) (∆x)2

12 +O[(∆x)6]
(1.30)

that allows to obtain yn+1 starting from yn and yn−1, and recursively the func-
tion in the entire box.

The value of the function in the first two points are needed in order to start
the recurrence. We remark that such initial conditions differ from the more
traditional ones for second-order differential equations:

y(x0) = y0, y′(x0) = y′0, (1.31)

in which the value at one point and the derivative in the same point are specified.
It is of course possible to integrate both in the direction of positive x and

in the direction of negative x. In the presence of inversion symmetry, it will be
sufficient to integrate in just one direction.

In our case—Schrödinger equation—the sn terms are absent. It is convenient
to introduce an auxiliary array fn, defined as

fn ≡ 1 + gn
(∆x)2

12
, where gn =

2m

h̄2 [E − V (xn)], (1.32)

and to rewrite Numerov’s formula as

yn+1 =
(12− 10fn)yn − fn−1yn−1

fn+1
. (1.33)

The value of the energy is now hidden into gn and fn.

11



1.3.1 Code: harmonic0

Code harmonic0.f901 (or harmonic0.c2) solves the Schrödinger equation for
the quantum harmonic oscillator, Eq.(1.7) in adimensional units. using the
Numerov’s algorithm above described for integration, and searching eigenvalues
with a pre-determined number n of nodes using the “shooting method”.

The shooting method is quite similar to the bisection procedure for the
search of the zero of a function. We define an initial energy range [Emin, Emax]
that must contain the eigenvalue En. We start with an energy E equal to the
mid-point of the energy range, E = (Emax + Emin)/2. The wave function is
integrated starting from x = 0 in the direction of positive x; at the same time,
the number of nodes (i.e. of changes of sign of the function) is counted. If the
number of nodes is larger than n, E is too high; if the number of nodes is smaller
than n, E is too low. We then choose the lower half-interval [Emin, Emax = E],
or the upper half-interval [Emin = E,Emax], respectively, select a new trial
eigenvalue E in the mid-point of the new interval, iterate the procedure. When
the energy interval is smaller than a pre-determined threshold, we assume that
convergence has been reached.

For negative x the function is constructed using symmetry, since ψn(−x) =
(−1)nψn(x). This is of course possible only because V (−x) = V (x), otherwise
integration would have to be performed on the entire interval. The parity of the
wave function determines the choice of the starting points for the recursion. For
n odd, the two first points can be chosen as y0 = 0 and an arbitrary finite value
for y1. For n even, y0 is arbitrary and finite, y1 is determined by Numerov’s
formula, Eq.(1.33), with f1 = f−1 and y1 = y−1:

y1 =
(12− 10f0)y0

2f1
. (1.34)

The code prompts for some input data:

• the limit xmax for integration (typical values: 5÷ 10);

• the number N of grid points (typical values range from hundreds to a few
thousand); note that the grid point index actually runs from 0 to N , so
that ∆x = xmax/N ;

• the name of the file where output data is written;

• the required number n of nodes (the code will stop if n is negative).

Finally the code prompts for a trial energy. You should answer 0 in order to
search for an eigenvalue with n nodes. The code will start iterating on the
energy, printing on standard output (i.e. at the terminal): iteration number,
number of nodes found (on the positive x axis only), the current energy eigen-
value estimate. It is however possible to specify an energy, not necessarily an
eigenvalue, to force the code to perform an integration at fixed energy and see

1http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/harmonic0.f90
2http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/harmonic0.c
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the resulting wave function. It is useful for testing purposes and to better un-
derstand how the eigenvalue search works (or doesn’t work). Note that in this
case the required number of nodes will not be honored; however the integra-
tion will be different for odd or even number of nodes, because the parity of n
determines how the first two grid points are chosen.

The output file contains five columns: respectively, x, ψ(x), |ψ(x)|2, ρcl(x)
and V (x). ρcl(x) is the classical probability density (normalized to 1) of the
harmonic oscillator, given in Eq.(1.20). All these quantities can be plotted as a
function of x using any plotting program, such as gnuplot, shortly described in
the introduction. Note that the code will prompt for a new value of the number
of nodes after each calculation of the wave function: answer -1 to stop the code.
If you perform more than one calculation, the output file will contain the result
for all of them in sequence. Also note that the wave function are written for
the entire box, from −xmax to xmax.

It will become quickly evident that the code “sort of” works: the results
look good in the region where the wave function is not vanishingly small, but
invariably, the pathological behavior described in Sec.(1.2.2) sets up and wave
functions diverge at large |x|. As a consequence, it is impossible to normalize
the ψ(x). The code definitely needs to be improved. The proper way to deal
with such difficulty is to find an inherently stable algorithm.

1.3.2 Code: harmonic1

Code harmonic1.f903 (or harmonic1.c4) is the improved version of harmonic0
that does not suffer from the problem of divergence at large x.

Two integrations are performed: a forward recursion, starting from x = 0,
and a backward one, starting from xmax. The eigenvalue is fixed by the condition
that the two parts of the function match with continuous first derivative (as
required for a physical wave function, if the potential is finite). The matching
point is chosen in correspondence of the classical inversion point, xcl, i.e. where
V (xcl) = E. Such point depends upon the trial energy E. For a function
defined on a finite grid, the matching point is defined with an accuracy that is
limited by the interval between grid points. In practice, one finds the index icl

of the first grid point xc = icl∆x such that V (xc) > E; the classical inversion
point will be located somewhere between xc −∆x and xc.

The outward integration is performed until grid point icl, yielding a func-
tion ψL(x) defined in [0, xc]; the number n of changes of sign is counted in the
same way as in harmonic0. If n is not correct the energy is adjusted (lowered
if n too high, raised if n too low) as in harmonic0. We note that it is not
needed to look for changes of sign beyond xc: in fact we know a priori that in
the classically forbidden region there cannot be any nodes (no oscillations, just
decaying solutions).

If the number of nodes is the expected one, the code starts to integrate
inward from the rightmost points. Note the statement y(mesh) = dx: its only
goal is to force solutions to be positive, since the solution at the left of the

3http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/harmonic1.f90
4http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/harmonic1.c
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matching point is also positive. The value dx is arbitrary: the solution is
anyway rescaled in order to be continuous at the matching point. The code
stops the same index icl corresponding to xc. We thus get a function ψR(x)
defined in [xc, xmax].

In general, the two parts of the wave function have different values in xc:
ψL(xc) and ψR(xc). We first of all re-scale ψR(x) by a factor ψL(xc)/ψR(xc),
so that the two functions match continuously in xc. Then, the whole function
ψ(x) is renormalized in such a way that

∫
|ψ(x)|2dx = 1.

Now comes the crucial point: the two parts of the function will have in
general a discontinuity at the matching point ψ′R(xc)−ψ′L(xc). This difference
should be zero for a good solution, but it will not in practice, unless we are
really close to the good energy E = En. The sign of the difference allows us
to understand whether E is too high or too low, and thus to apply again the
bisection method to improve the estimate of the energy.

In order to calculate the discontinuity with good accuracy, we write the
Taylor expansions:

yLi−1 = yLi − y′Li ∆x+ 1
2y
′′L
i (∆x)2 +O[(∆x)3]

yRi+1 = yRi + y′Ri ∆x+ 1
2y
′′R
i (∆x)2 +O[(∆x)3]

(1.35)

For clarity, in the above equation i indicates the index icl. We sum the two
Taylor expansions and obtain, noting that yLi = yRi = yi, and that y′′Li = y′′Ri =
y′′i = −giyi as guaranteed by Numerov’s method:

yLi−1 + yRi+1 = 2yi + (y′Ri − y′Li )∆x− giyi(∆x)2 +O[(∆x)3] (1.36)

that is

y′Ri − y′Li =
yLi−1 + yRi+1 − [2− gi(∆x)2]yi

∆x
+O[(∆x)2] (1.37)

or else, by using the notations as in Eq.(1.32),

y′Ri − y′Li =
yLi−1 + yRi+1 − (14− 12fi)yi

∆x
+O[(∆x)2] (1.38)

In this way the code calculated the discontinuity of the first derivative. If the
sign of y′Ri −y′Li is positive, the energy is too high (can you give an argument for
this?) and thus we move to the lower half-interval; if negative, the energy is too
low and we move to the upper half interval. As usual, convergence is declared
when the size of the energy range has been reduced, by successive bisection, to
less than a pre-determined tolerance threshold.

During the procedure, the code prints on standard output a line for each
iteration, containing: the iteration number; the number of nodes found (on the
positive x axis only); if the number of nodes is the correct one, the discontinuity
of the derivative y′Ri −y′Li (zero if number of nodes not yet correct); the current
estimate for the energy eigenvalue. At the end, the code writes the final wave
function (this time, correctly normalized to 1!) to the output file.
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1.3.3 Laboratory

Here are a few hints for “numerical experiments” to be performed in the com-
puter lab (or afterward), using both codes:

• Calculate and plot eigenfunctions for various values of n. It may be
useful to plot, together with eigenfunctions or eigenfunctions squared, the
classical probability density, contained in the fourth column of the output
file. It will clearly show the classical inversion points. With gnuplot, e.g.:

plot "filename" u 1:3 w l, "filename" u 1:4 w l

(u = using, 1:3 = plot column3 vs column 1, w l = with lines; the second
”filename” can be replaced by ””).

• Look at the wave functions obtained by specifying an energy value not
corresponding to an eigenvalue. Notice the difference between the results
of harmonic0 and harmonic1 in this case.

• Look at what happens when the energy is close to but not exactly an
eigenvalue. Again, compare the behavior of the two codes.

• Examine the effects of the parameters xmax, mesh. For a given ∆x, how
large can be the number of nodes?

• Verify how close you go to the exact results (remember that there is a
convergence threshold on the energy hardwired in the code). What are
the factors that affect the accuracy of the results?

Possible code modifications and extensions:

• Modify the potential, keeping inversion symmetry. This will require very
little changes to be done. You might for instance consider a “double-well”
potential described by the form:

V (x) = ε

[(
x

δ

)4

− 2

(
x

δ

)2

+ 1

]
, ε, δ > 0. (1.39)

• Modify the potential, breaking inversion symmetry. You might consider
for instance the Morse potential:

V (x) = D
[
e−2ax − 2e−ax + 1

]
, (1.40)

widely used to model the potential energy of a diatomic molecule. Which
changes are needed in order to adapt the algorithm to cover this case?
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Chapter 2

Schrödinger equation for
central potentials

In this chapter we extend the concepts and methods introduced in the previous
chapter for a one-dimensional problem to a specific and very important class
of three-dimensional problems: a particle of mass m under a central potential
V (r), i.e. depending only upon the distance r from a fixed center. The Schrö-
dinger equation we are going to study in this chapter is thus

Hψ(r) ≡
[
− h̄2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r). (2.1)

The problem of two interacting particles via a potential depending only upon
their distance, V (|r1 − r2|), e.g. the Hydrogen atom, reduces to this case, with
m equal to the reduced mass of the two particles.

The general solution proceeds via the separation of the Schrödinger equation
into an angular and a radial part. In this chapter we consider the numerical
solution of the radial Schrödinger equation. A non-uniform grid is introduced
and the radial Schrödinger equation is transformed to an equation that can still
be solved using Numerov’s method introduced in the previous chapter.

2.1 Variable separation

Let us introduce a polar coordinate system (r, θ, φ), where θ is the polar angle,
φ the azimuthal one, and the polar axis coincides with the z Cartesian axis.
After some algebra, one finds the Laplacian operator in polar coordinates:

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
(2.2)

It is convenient to introduce the operator L2 = L2
x +L2

y +L2
z, the square of the

angular momentum vector operator, L = −ih̄r × ∇. Both ~L and L2 act only
on angular variables. In polar coordinates, the explicit representation of L2 is

L2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (2.3)
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The Hamiltonian can thus be written as

H = − h̄2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
+

L2

2mr2
+ V (r). (2.4)

The term L2/2mr2 has a classical analogous: the radial motion of a mass having
classical angular momentum Lcl can be described by an effective radial potential
V̂ (r) = V (r) + L2

cl/2mr
2, where the second term (the “centrifugal potential”)

takes into account the effects of rotational motion. For high Lcl the centrifugal
potential “pushes” the equilibrium position outwards.

In the quantum case, both L2 and one component of the angular momentum,
for instance Lz:

Lz = −ih̄ ∂

∂φ
(2.5)

commute with the Hamiltonian, so L2 and Lz are conserved and H, L2, Lz have
a (complete) set of common eigenfunctions. We can thus use the eigenvalues of
L2 and Lz to classify the states. Let us now proceed to the separation of radial
and angular variables, as suggested by Eq.(2.4). Let us assume

ψ(r, θ, φ) = R(r)Y (θ, φ). (2.6)

After some algebra we find that the Schrödinger equation can be split into an
angular and a radial equation. The solution of the angular equations are the
spherical harmonics, known functions that are eigenstates of both L2 and Lz:

LzY`m(θ, φ) = mh̄Y`m(θ, φ), L2Y`m(θ, φ) = `(`+ 1)h̄2Y`m(θ, φ) (2.7)

(` ≥ 0 and m = −`, ..., ` are integer numbers).
The radial equation is

− h̄2

2m

1

r2

∂

∂r

(
r2∂Rn`

∂r

)
+

[
V (r) +

h̄2`(`+ 1)

2mr2

]
Rn`(r) = En`Rn`(r). (2.8)

In general, the energy will depend upon ` because the effective potential does;
moreover, for a given `, we expect to find bound states with discrete energies
and we have indicated with n the corresponding index.

Finally, the complete wave function will be

ψn`m(r, θ, φ) = Rn`(r)Y`m(θ, φ) (2.9)

The energy does not depend upon m. As already observed, m classifies the
projection of the angular momentum on an arbitrarily chosen axis. Due to
spherical symmetry of the problem, the energy cannot depend upon the orien-
tation of the vector L, but only upon his modulus. An energy level En` will
then have a degeneracy 2` + 1 (or larger, if there are other observables that
commute with the Hamiltonian and that we haven’t considered).
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2.1.1 Radial equation

The probability p(r)dr to find the particle at a distance between r and r + dr
from the center is given by the integration over angular variables only of the
wavefunction squared:

p(r)dr =

∫
Ω
|ψn`m(r, θ, φ)|2rdθ r sin θ dφdr = |Rn`|2r2dr = |χn`|2dr (2.10)

where we have introduced an auxiliary function χ(r), sometimes called orbital
wavefunction,

χ(r) = rR(r) (2.11)

and exploited the normalization of the spherical harmonics:∫ 2π

0
dφ

∫ π

0
dθ|Y`m(θ, φ)|2 sin θ = 1 (2.12)

As a consequence the normalization condition for χ is∫ ∞
0
|χn`(r)|2dr = 1 (2.13)

The function |χ(r)|2 can thus be directly interpreted as the radial probability
density. Let us re-write the radial equation for χ(r) instead of R(r). Its is
straightforward to find that Eq.(2.8) becomes

− h̄2

2m

d2χ

dr2
+

[
V (r) +

h̄2`(`+ 1)

2mr2
− E

]
χ(r) = 0. (2.14)

We note that this equation has the same form as the one-dimensional Schrö-
dinger equation, Eq.(1.1), for a particle under an effective potential and r ≥ 0:

V̂ (r) = V (r) +
h̄2`(`+ 1)

2mr2
. (2.15)

As already explained, the second term is the centrifugal potential. The same
methods used to find the solution of Eq.(1.1), and in particular, Numerov’s
method, can be used to find the radial part of the eigenfunctions of the energy.

2.2 Coulomb potential

The most important and famous case is when V (r) is the Coulomb potential:

V (r) = − Ze2

4πε0r
, (2.16)

where e = 1.6021 × 10−19 C is the electron charge, Z is the atomic number
(number of protons in the nucleus), ε0 = 8.854187817× 10−12 in MKSA units.
Physicists tend to prefer the CGS system, in which the Coulomb potential is
written as:

V (r) = −Zq2
e/r. (2.17)
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In the following we will use q2
e = e2/(4πε0) so as to fall back into the simpler

CGS form.
It is often practical to work with atomic units (a.u.): assuming that h̄ = 1,

me = 1/2, q2
e = 2, the length is expressed in units of Bohr radii (or simply,

“Bohr”), a0:

a0 =
h̄2

meq2
e

= 0.529177 Å = 0.529177× 10−10 m, (2.18)

while energies are expressed in units of Rydberg (Ry):

1 Ry =
meq

4
e

2h̄2 = 13.6058 eV. (2.19)

when me = 9.11× 10−31 Kg is the electron mass, not the reduced mass of the
electron and the nucleus.

By assuming instead h̄ = 1,me = 1, qe = 1, we obtain another set of atomic
units, in which the Hartree (Ha) is the unit of energy instead of the Ry:

1 Ha = 2 Ry =
meq

4
e

h̄2 = 27.212 eV. (2.20)

Beware! Never talk about ”atomic units” without first specifying which ones.
In the following, the first set (”Rydberg” units) will be occasionally used.

We note first of all that for small r the centrifugal potential is the dominant
term in the potential. The behavior of the solutions for r → 0 will then be
determined by

d2χ

dr2
' `(`+ 1)

r2
χ(r) (2.21)

yielding χ(r) ∼ r`+1, or χ(r) ∼ r−`. The second possibility is not physical
because χ(r) is not allowed to diverge.

For large r instead we remark that bound states may be present only if
E < 0: there will be a classical inversion point beyond which the kinetic energy
becomes negative, the wave function decays exponentially, only some energies
can yield valid solutions. The case E > 0 corresponds instead to a problem of
electron-nucleus scattering, with propagating solutions and a continuum energy
spectrum. Here we deal with bound states; unbound states are the subject of
the next chapter.

The asymptotic behavior of the solutions for large r → ∞ will thus be
determined by

d2χ

dr2
' −2me

h̄2 Eχ(r) (2.22)

yielding χ(r) ∼ exp(±kr), where k =
√
−2meE/h̄. The + sign must be dis-

carded as nonphysical. It is thus sensible to assume for the solution a form
like

χ(r) = r`+1e−kr
∞∑
n=0

Anr
n (2.23)

which guarantees in both cases, small and large r, a correct behavior, as long
as the series does not diverge exponentially.
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2.2.1 Energy levels

The radial equation for the Coulomb potential can then be solved along the
same lines as for the harmonic oscillator, Sec.1.1. The expansion of Eq.(2.23)
is introduced into Eq.(2.14), a recursion formula for coefficients An is derived,
one finds that the series in general diverges like exp(2kr) unless it is truncated
to a finite number of terms, and this happens only for some particular values
of E:

En = −Z
2

n2

meq
4
e

2h̄2 = −Z
2

n2
Ry (2.24)

where n ≥ ` + 1 is an integer known as main quantum number. For a given `
we find solutions for n = `+ 1, `+ 2, . . .; or, for a given n, possible values for `
are ` = 0, 1, . . . , n− 1.

Although the effective potential appearing in Eq.(2.14) depends upon `,
and the angular part of the wave function also strongly depends upon `, the
energies, Eq.(2.24) depend only upon n. We have thus a degeneracy on the
energy levels with the same n and different `, in addition to the one due to the
2`+ 1 possible values of the quantum number m (as implied in Eq.(2.8) where
m does not appear). The total degeneracy (not considering spin) for a given n
is thus

n−1∑
`=0

(2`+ 1) = n2. (2.25)

2.2.2 Radial wave functions

Finally, the solution for the radial part of the wave functions is

χn`(r) =

√
(n− `− 1)!Z

n2[(n+ `)!]3a3
0

x`+1e−x/2L2`+1
n+1 (x) (2.26)

where

x ≡ 2Z

n

r

a0
= 2

√
−2meEn

h̄2 r (2.27)

and L2`+1
n+1 (x) are Laguerre polynomials of degree n− `− 1. The coefficient has

been chosen in such a way that the following orthonormality relations hold:∫ ∞
0

χn`(r)χn′`(r)dr = δnn′ . (2.28)

The ground state has n = 1 and ` = 0: 1s in “spectroscopic” notation (2p is
n = 2, ` = 1, 3d is n = 3, ` = 2, 4f is n = 4, ` = 3, and so on). For the Hydrogen
atom (Z = 1) the ground state energy is −1Ry and the binding energy of the
electron is 1 Ry (apart from the small correction due to the difference between
electron mass and reduced mass). The wave function of the ground state is a
simple exponential. With the correct normalization:

ψ100(r, θ, φ) =
Z3/2

a
3/2
0

√
π

e−Zr/a0 . (2.29)
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The dominating term close to the nucleus is the first term of the series,
χn`(r) ∼ r`+1. The larger `, the quicker the wave function tends to zero when
approaching the nucleus. This reflects the fact that the function is “pushed
away” by the centrifugal potential. Thus radial wave functions with large ` do
not appreciably penetrate close to the nucleus.

At large r the dominating term is χ(r) ∼ rn exp(−Zr/na0). This means
that, neglecting the other terms, |χn`(r)|2 has a maximum about r = n2a0/Z.
This gives a rough estimate of the “size” of the wave function, which is mainly
determined by n.

In Eq.(2.26) the polynomial has n− `−1 degree. This is also the number of
nodes of the function. In particular, the eigenfunctions with ` = 0 have n − 1
nodes; those with ` = n− 1 are node-less. The form of the radial functions can
be seen for instance on the Wolfram Research site1 or explored via the Java
applet at Davidson College2

2.3 Code: hydrogen radial

The code hydrogen radial.f903 or hydrogen radial.c4 solves the radial equa-
tion for a one-electron atom. It is based on harmonic1, but solves a slightly
different equation on a logarithmically spaced grid. Moreover it uses a more
sophisticated approach to locate eigenvalues, based on a perturbative estimate
of the needed correction.

The code uses atomic (Rydberg) units, so lengths are in Bohr radii (a0 = 1),
energies in Ry, h̄2/(2me) = 1, q2

e = 2.

2.3.1 Logarithmic grid

The straightforward numerical solution of Eq.(2.14) runs into the problem of
the singularity of the potential at r = 0. One way to circumvent this difficulty
is to work with a variable-step grid instead of a constant-step one, as done in
the previous chapter. Such grid becomes denser and denser as we approach the
origin. Real-life solutions of the radial Schrödinger equation in atoms, especially
heavy one, invariably involve such kind of grids, since wave functions close to
the nucleus vary on a much smaller length scale than far from the nucleus. A
detailed description of the scheme presented here can be found in chap.6 of The
Hartree-Fock method for atoms, C. Froese Fischer, Wiley, 1977.

Let us introduce a new integration variable x and a constant-step grid in
x, so as to be able to use Numerov’s method without changes. We define a
mapping between r and x via

x = x(r). (2.30)

The relation between the constant-step grid spacing ∆x and the variable-step
grid spacing is given by

∆x = x′(r)∆r. (2.31)

1http://library.wolfram.com/webMathematica/Physics/Hydrogen.jsp
2http://webphysics.davidson.edu/physlet resources/cise qm/html/hydrogenic.html
3http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/hydrogen radial.f90
4http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/hydrogen radial.c
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We make the specific choice

x(r) ≡ log
Zr

a0
(2.32)

(note that with this choice x is adimensional) yielding

∆x =
∆r

r
. (2.33)

The ∆r/r ratio remains thus constant on the grid of r so defined. This kind of
grid is usually called logarithmic grid, but some people see the thing the other
way round and call it exponential!

There is however a problem: by transforming Eq.(2.14) in the new vari-
able x, a term with first derivative appears, preventing the usage of Numerov’s
method (and of other integration methods as well). The problem can be cir-
cumvented by transforming the unknown function as follows:

y(x) =
1√
r
χ (r(x)) . (2.34)

It is easy to verify that by transforming Eq.(2.14) so as to express it as a
function of x and y, the terms containing first-order derivatives disappear, and
by multiplying both sides of the equation by r3/2 one finds

d2y

dx2
+

[
2me

h̄2 r2 (E − V (r))−
(
`+

1

2

)2
]
y(x) = 0 (2.35)

where V (r) = −Zq2
e/r for the Coulomb potential. This equation no longer

presents any singularity for r = 0, is in the form of Eq.(1.22), with

g(x) =
2me

h̄2 r(x)2 (E − V (r(x)))−
(
`+

1

2

)2

(2.36)

and can be directly solved using the numerical integration formulae Eqs.(1.32)
and (1.33) and an algorithm very similar to the one of Sec.1.3.2.

Subroutine do mesh computes and stores the values of r,
√
r, r2 for each

grid point. The potential is also calculated and stored in init pot. The grid
is calculated starting from a minimum value, set in the code to x = −8, corre-
sponding to Zrmin ' 3.4 × 10−3 Bohr radii. Note that the grid in r does not
include r = 0: this would correspond to x = −∞. The known analytical behav-
ior for r → 0 and r →∞ are used to start the outward and inward recurrences,
respectively.

2.3.2 Improving convergence with perturbation theory

A few words are needed to explain this section of the code:

i = icl

ycusp = (y(i-1)*f(i-1)+f(i+1)*y(i+1)+10.d0*f(i)*y(i)) / 12.d0

dfcusp = f(i)*(y(i)/ycusp - 1.d0)

! eigenvalue update using perturbation theory

de = dfcusp/ddx12 * ycusp*ycusp * dx
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whose goal is to give an estimate, to first order in perturbation theory, of the
difference δe between the current estimate of the eigenvalue and its final value.

Reminder: icl is the index corresponding to the classical inversion point.
Integration is made with forward recursion up to this index, with backward
recursion down to this index. icl is thus the index of the matching point
between the two functions. The function at the right is rescaled so that the
total function is continuous, but the first derivative dy/dx will be in general
discontinuous, unless we have reached a good eigenvalue.

In the section of the code shown above, y(icl) is the value given by Nu-
merov’s method using either icl-1 or icl+1 as central point; ycusp is the value
predicted by the Numerov’s method using icl as central point. The problem
is that ycusp6=y(icl).

What about if our function is the exact solution, but for a different problem?
It is easy to find what the different problem could be: one in which a delta func-
tion, v0δ(x−xc), is superimposed at xc ≡x(icl) to the potential. The presence
of a delta function causes a discontinuity (a ”cusp”) in the first derivative, as
can be demonstrated by a limit procedure, and the size of the discontinuity is
related to the coefficient of the delta function. Once the latter is known, we
can give an estimate, based on perturbation theory, of the difference between
the current eigenvalue (for the ”different” potential) and the eigenvalue for the
”true” potential.

One may wonder how to deal with a delta function in numerical integration.
In practice, we assume the delta to have a value only in the interval ∆x centered
on y(icl). The algorithm used to estimate its value is quite sophisticated. Let
us look again at Numerov’s formula, Eq.(1.33): note that the formula actually
provides only the product y(icl)f(icl). From this we usually extract y(icl)
since f(icl) is assumed to be known. Now we suppose that f(icl) has a
different and unknown value fcusp, such that our function satisfies Numerov’s
formula also in point icl. The following must hold:

fcusp*ycusp = f(icl)*y(icl)

since this product is provided by Numerov’s method (by integrating from icl-1

to icl+1), and ycusp is that value that the function y must have in order to
satisfy Numerov’s formula also in icl. As a consequence, the value of dfcusp
calculated by the program is just fcusp-f(icl), or δf .

The next step is to calculate the variation δV of the potential V (r) appearing
in Eq.(2.35) corresponding to δf . By differentiating Eq.(2.36) one finds δg(x) =
−(2me/h̄

2)r2δV . Since f(x) = 1 + g(x)(∆x)2/12, we have δg = 12/(∆x)2δf ,
and thus

δV = − h̄2

2me

1

r2

12

(∆x)2
δf. (2.37)

First-order perturbation theory gives then the corresponding variation of the
eigenvalue:

δe = 〈ψ|δV |ψ〉 =

∫
|y(x)|2r(x)2δV dx. (2.38)
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Note that the change of integration variable from dr to dx adds a factor r to
the integral:∫ ∞

0
f(r)dr =

∫ ∞
−∞

f(r(x))
dr(x)

dx
dx =

∫ ∞
−∞

f(r(x))r(x)dx. (2.39)

We write the above integral as a finite sum over grid points, with a single
non-zero contribution coming from the region of width ∆x centered at point
xc =x(icl). Finally:

δe = |y(xc)|2r(xc)2δV∆x = − h̄2

2me

12

(∆x)2
|y(xc)|2∆xδf (2.40)

is the difference between the eigenvalue of the current potential (i.e. with a
superimposed Delta function) and that of the true potential. This expression
is used by the code to calculate the correction de to the eigenvalue. Since in
the first step this estimate may have large errors, the line

e = max(min(e+de,eup),elw)

prevents the usage of a new energy estimate outside the bounds [elw,eip]. As
the code proceeds towards convergence, the estimate becomes better and better
and convergence is very fast in the final steps.

2.3.3 Laboratory

• Examine solutions as a function of n and `; verify the presence of acci-
dental degeneracy.

• Examine solutions as a function of the nuclear charge Z.

• Compare the numerical solution with the exact solution, Eq.(2.29), for
the 1s case (or other cases if you know the analytic solution).

• Slightly modify the potential as defined in subroutine init pot, verify
that the accidental degeneracy disappears. Some suggestions: V (r) =
−Zq2

e/r
1+δ where δ is a small, positive or negative, number; or add an

exponential Yukawa damping, V (r) = −Zq2
e exp(−Qr)/r, where Q is a

number of the order of 0.05 a.u..

• Calculate the expectation values of r and of 1/r, compare them with the
known analytical results.

Possible code modifications and extensions:

• Consider a different mapping: r(x) = r0(exp(x)− 1), that unlike the one
we have considered, includes r = 0. Which changes must be done in order
to adapt the code to this mapping?
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Chapter 3

Scattering from a potential

Until now we have considered the discrete energy levels of simple, one-electron
Hamiltonians, corresponding to bound, localized states. Unbound, delocalized
states exist as well for any physical potential (with the exception of idealized
models like the harmonic potential) at sufficiently high energies. These states
are relevant in the description of scattering from a potential, i.e. processes
of diffusion of an incoming particle. Scattering is a really important subject
in physics: what many experiments measure is how a particle is deflected by
another. The comparison of measurements with calculated results makes it
possible to understand the form of the interaction potential between the par-
ticles. In the following a short reminder of scattering theory is provided; then
an application to a real problem (scattering of H atoms by rare gas atoms) is
presented. This chapter is inspired to Ch.2 of the book of Thijssen.

3.1 Short reminder of the theory of scattering

The problem of scattering of a particle by another is first mapped onto the
equivalent problem of scattering from a fixed center, with the usual coordinate
change to relative and center-of-mass coordinates. In the following we consider
elastic scattering. In the typical geometry, a free particle, described as a plane
wave with wave vector along the z axis, is incident on the center and is scattered
as a spherical wave at large values of r (distance from the center). An interesting
quantity characterizing the scattering is the differential cross section dσ(Ω)/dΩ,
i.e. the probability that in the unit of time a particle crosses the surface in the
surface element dS = r2dΩ (where Ω is the solid angle, dΩ = sin θdθdφ, where
θ is the polar angle and φ the azimuthal angle). Another useful quantity is
the total cross section σtot: the integral of the differential cross section over all
angles,

σtot =

∫ (
dσ(Ω)

dΩ

)
dΩ. (3.1)
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For a central potential, the system is symmetric
around the z axis and thus the differential cross
section does not depend upon φ. Both the dif-
ferential and the total cross section depend upon
the energy of the incident particle.

Let us consider a wave function having the form:

ψ(r) = eik·r +
f(θ)

r
eikr, k =

√
2mE

h̄2 (3.2)

with k = (0, 0, k), parallel to the z axis. This represents the incident particle
of energy E, described by a plane wave, plus a diffused spherical wave with
scattering amplitude f(θ). The cross section can be obtained from the quantum-
mechanical probability current j:

j =
ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ) . (3.3)

For our scattering wave function we find

j = ji + js +O(1/r3), ji =
h̄k

m
, js =

h̄k

m

r̂

r2
|f(θ)|2 (3.4)

where ji is the flux of the incident particle, js the flux of scattered particles,
rapidly oscillating terms (that average to zero) are neglected. We can write the
cross section as a function of f(θ) as:

dσ(Ω)

dΩ
dΩ =

js · r̂
ji

r2dΩ = |f(θ)|2 sin θdθdφ. (3.5)

Let us look for solutions of the form (3.2). The wave function is in general given
by the following expression:

ψ(r) =
∞∑
l=0

l∑
m=−l

Alm
χl(r)

r
Ylm(θ, φ), (3.6)

which in our case, given the symmetry of the problem, can be simplified as

ψ(r) =
∞∑
l=0

Al
χl(r)

r
Pl(cos θ). (3.7)

The functions χl(r) are solutions for (positive) energy E = h̄2k2/2m with an-
gular momentum l of the radial Schrödinger equation:

h̄2

2m

d2χl(r)

dr2
+

[
E − V (r)− h̄2l(l + 1)

2mr2

]
χl(r) = 0. (3.8)

The asymptotic behavior at large r of χl(r) can be written as

χl(r) ' kr [jl(kr) cos δl − nl(kr) sin δl] (3.9)
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where the jl and nl functions are the well-known spherical Bessel functions,
respectively regular and divergent at the origin. These are the Rl(r) = χl(r)/r
solutions of the radial equation for the free particle (V (r) = 0). The quantities
δl are known as phase shifts and depend upon the potential and the energy.

The cross section can then be expressed in terms of the phase shifts. One
looks for coefficients of Eq.(3.7) that yield the desired asymptotic behavior (3.2),
using the following series expansion of a plane wave:

eik·r =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ), (3.10)

where the Pl functions are Legendre polynomials and θ, angle between k and r,
is the same we have introduced earlier. One finds Al = il(2l+ 1)/k. With some
further algebra, and using the large-x behavior of spherical Bessel functions:

jl(x) ' 1

x
sin

(
x− πl

2

)
, nl(x) ' 1

x
cos

(
x− πl

2

)
, (3.11)

one finally demonstrates that the differential cross section can be written as

dσ

dΩ
=

1

k2

∣∣∣∣∣
∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ)

∣∣∣∣∣
2

, (3.12)

while the total cross section is given by

σtot =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl (3.13)

The energy- and angular momentum-dependent phase shifts thus contain all
the information on the scattering properties of a potential.

3.2 Scattering of H atoms from rare gases

The total cross section σtot(E) for the scattering
of H atoms by rare gas atoms was measured by
Toennies et al., J. Chem. Phys. 71, 614 (1979).
At the right, the cross section for the H-Kr sys-
tem as a function of the energy of the center of
mass. One can notice “spikes” in the cross sec-
tion, known as “resonances”. One can connect
the different resonances to specific values of the
angular momentum l.

The H-Kr interaction potential can be modelled quite accurately as a Lennard-
Jones (LJ) potential:

V (r) = ε

[(
σ

r

)12

− 2

(
σ

r

)6
]

(3.14)
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where ε = 5.9meV, σ = 3.57Å. The LJ potential is much used in molecular
and solid-state physics to model interatomic interaction forces. The attractive
−1/r6 term describes weak van der Waals (or “dispersive”, in chemical parlance)
forces due to (dipole-induced dipole) interactions (see also Appendix C). The
repulsive 1/r12 term models the repulsion between closed shells. While usually
dominated by direct electrostatic interactions, the ubiquitous van der Waals
forces are the dominant term for the interactions between closed-shell atoms and
molecules. These play an important role in molecular crystals and in macro-
molecules. The LJ potential is the first realistic interatomic potential for which
a molecular-dynamics simulation was performed (Rahman, 1965, liquid Ar).

It is straightforward to find that the LJ potential as written in Eq.(3.14) has
a minimum Vmin = −ε for r = σ, is zero for r = σ/21/6 = 0.89σ and becomes
strongly positive (i.e. repulsive) at small r.

3.3 Code: crossection

Code crossection.f901, or crossection.c2, calculates the total cross section
σtot(E) and its decomposition into contributions of the various values of the
angular momentum for a scattering problem like the one described before.

The code is composed of different parts. It is always a good habit to verify
separately the correct behavior of each piece before assembling them into the
final code (this is how professional software is tested, by the way). The various
parts are:

1. Solution of the radial Schrödinger equation, Eq.(3.8), with the Lennard-
Jones potential of Eq.(3.14) for scattering states (i.e. withpositive en-
ergy). One can use Numerov’s method with outwards integration only:
there is no danger of numerical instability, since the solution is oscillating.
The solution does not exhibit the wide variations in the spatial behavior of
the Coulomb potential case, so simple uniform grid can be used. One has
however to be careful with the ∼ r−12 divergence for r → 0 and in general
with the small-r region. The wave function decays very strongly towards
zero for r → 0, which means that it grows very quickly when integrated
outwards. This may easily lead to overflow errors (numbers exceeding the
maximum allowed size, typically 10308 for double precision). A simple way
to avoid trouble is to start the integration from rmin ∼ 0.5σ, where the
wave function is very small but not too close to zero. The first two points
can be calculated in the following way, 3 by assuming the asymptotic
(vanishing) form for r → 0:

χ′′(r) ' 2mε

h̄2

σ12

r12
χ(r) =⇒ χ(r) ' exp

−
√

2mεσ12

25h̄2 r−5

 . (3.15)

1http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/crossection.f90
2http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/crossection.c
3Ronald Cohen (Carnegie) noticed that this procedure introduces an error of lower order,

i.e. worse, than that of the Numerov’s algorithm. In fact by assuming such form for the first
two steps of the recursion, we use a solution that is neither analytically exact, nor consistent
with Numerov’s algorithm.
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The choice of the units in this code is (once again) different from that of
the previous codes. It is convenient to choose units in which h̄2/2m is a
number of the order of 1. Two possible choices are meV·Å2, or meV·σ2.
This code uses the former choice. Note that m here is not the electron
mass! it is the reduced mass of the H-Kr system. As a first approximation,
m is here the mass of H.

2. Calculation of the phase shifts δl(E). Phase shifts can be calculated by
comparing the computed wave functions with the expected asymptotic
solution at two different values r1 and r2, both larger than the distance
rmax beyond which the potential can be considered to be negligible. Let
us write

χl(r1) = Akr1 [jl(kr1) cos δl − nl(kr1) sin δl] (3.16)

χl(r2) = Akr2 [jl(kr2) cos δl − nl(kr2) sin δl] , (3.17)

from which, by dividing the two relations, we obtain an auxiliary quantity
K

K ≡ r2χl(r1)

r1χl(r2)
=
jl(kr1)− nl(kr1) tan δl
jl(kr2)− nl(kr2) tan δl

(3.18)

from which we can deduce the phase shift:

tan δl =
Kjl(kr2)− jl(kr1)

Knl(kr2)− nl(kr1)
. (3.19)

The choice of r1 and r2 is not very critical but requires some care. r1 can
be chosen at rmax, for which, given the fast decay of the LJ potential for
large r, a good choice is rmax = 5σ. r2 should not be too close to r1. A
good choice seems to be r2 = r1 + λ/4, that is, at 1/4 of the wave length
λ = 2π/k of the scattered wave function from r1. 4

3. Calculation of the spherical Bessel functions jl and nl. The analytical
forms of these functions are known, but they become quickly unwieldy for
high l. One can use recurrence relation. In the code the following simple
recurrence is used:

zl+1(x) =
2l + 1

x
zl(x)− zl−1(x), z = j, n (3.20)

with the initial conditions

j−1(x) =
cosx

x
, j0(x) =

sinx

x
; n−1(x) =

sinx

x
, n0(x) = −cosx

x
.

(3.21)
Note that this recurrence is unstable for large values of l: in addition to
the good solution, it has a ”bad” divergent solution. This is not a serious
problem in practice: the above recurrence should be sufficiently stable up
to at least l = 20 or so, but you may want to verify this.

4A previous choice, half the wavelength, was occasionally giving numerical problems: the
resulting δ was fitting very well in the end points, much less so in the middle.
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4. Sum the phase shifts as in Eq.(3.13) to obtain the total cross section and
a graph of it as a function of the incident energy. The relevant range of
energies is of the order of a few meV, something like 0.1 ≤ E ≤ 3 ÷ 4
meV. If you go too close to E = 0, you will run into numerical difficulties
(the wave length of the wave function diverges). The angular momentum
ranges from 0 to a value of lmax to be determined.

The code writes a file containing the total cross section and each angular mo-
mentum contribution as a function of the energy (beware: up to lmax = 13; for
larger l, lines will be wrapped).

3.3.1 Laboratory

• Verify the effect of all the parameters of the calculation: grid step for in-
tegration, rmin, r1 = rmax, r2, lmax. In particular the latter is important:
you should start to find good results when lmax ≥ 6.

• Print, for some selected values of the energy, the wave function and its
asymptotic behavior. You should verify that they match beyond rmax.

• Observe the contributions of the various l and the peaks for l = 4, 5, 6
(resonances). Make a plot of the effective potential as a function of l: can
you see why there are resonances only for a few values of l?

Possible code modifications and extensions:

• Modify the code to calculate the cross section from a different potential,
for instance, the following one:

V (r) = −A exp
[
−(r − r0)2

]
, r < rmax; V (r > rmax) = 0

What changes do you need to apply to the algorithm, in addition to
changing the form of the potential?

• In the limit of a weak potential (such as e.g. the potential introduced
above), the phase shifts δl are well approximated by the Born approxima-
tion:

δl ' −
2m

h̄2 k

∫ ∞
0

r2j2
l (kr)V (r)dr,

(k =
√

2mE/h̄). Write a simple routine to calculate this integral, compare
with numerical results.
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Chapter 4

The Variational Method

The exact analytical solution of the Schrödinger equation is possible only in
a few cases. Even the direct numerical solution by integration is often not
feasible in practice, especially in systems with more than one particle. There are
however extremely useful approximated methods that can in many cases reduce
the complete problem to a much simpler one. In the following we will consider
the variational principle and its consequences. This constitutes, together with
suitable approximations for the electron-electron interactions, the basis for most
practical approaches to the solution of the Schrödinger equation in condensed-
matter physics.

4.1 The variational principle

Let us consider a Hamiltonian H and a function ψ, that can be varied at
will with the sole condition that it stays normalized. In general, ψ is not an
eigenfunction of H, but we can calculate the expectation value of the energy
for such function

〈H〉 =

∫
ψ∗Hψ dv (4.1)

where v represents all the integration coordinates.
The variational principle states that functions ψ for which 〈H〉 is stationary—

i.e. does not vary to first order in small variations of ψ—are the eigenfunctions
of the energy. In other words, the Schrödinger equation is equivalent to a sta-
tionarity condition.

4.1.1 Demonstration of the variational principle

Let us consider the wave function ψ and an arbitrary variation of it, δψ. In
general, ψ + δψ is no longer normalized even is ψ is. It is thus convenient to
use a more general definition of expectation value, valid also for non-normalized
functions:

〈H〉 =

∫
ψ∗Hψ dv∫
ψ∗ψ dv

(4.2)
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The expectation value of H over wavefunction ψ + δψ becomes

〈H〉+ δ〈H〉 =

∫
(ψ∗ + δψ∗)H(ψ + δψ) dv∫
(ψ∗ + δψ∗)(ψ + δψ) dv

'
∫
ψ∗Hψ dv +

∫
δψ∗Hψ dv +

∫
ψ∗Hδψ dv∫

ψ∗ψ dv +
∫
δψ∗ψ dv +

∫
ψ∗δψ dv

=

(∫
ψ∗Hψ dv +

∫
δψ∗Hψ dv +

∫
ψ∗Hδψ dv

)
×

1∫
ψ∗ψ dv

(
1−

∫
δψ∗ψ dv∫
ψ∗ψ dv

−
∫
ψ∗δψ dv∫
ψ∗ψ dv

)
(4.3)

where second-order terms in δψ have been omitted and we have used the ap-
proximation 1/(1+x) ' 1−x, valid for x << 1. By omitting again higher-order
terms, one finds for the variation δ〈H〉:

δ〈H〉 =

∫
δψ∗Hψ dv∫
ψ∗ψ dv

+

∫
ψ∗Hδψ dv∫
ψ∗ψ dv

− 〈H〉
(∫

δψ∗ψ dv∫
ψ∗ψ dv

+

∫
ψ∗δψ dv∫
ψ∗ψ dv

)
. (4.4)

One of the two terms in parentheses is the complex conjugate of the other; the
same holds for the two remaining terms, because H is a hermitian operator,
satisfying ∫

a∗Hbdv =

(∫
b∗Hadv

)∗
(4.5)

for any pair of functions a and b. We can thus simplify the above expression as

δ〈H〉 =

(∫
δψ∗Hψ dv∫
ψ∗ψ dv

+ c.c.

)
− 〈H〉

(∫
δψ∗ψ dv∫
ψ∗ψ dv

+ c.c.

)
(4.6)

and finally to

δ〈H〉 =

∫
δψ∗ [H − 〈H〉]ψ dv + c.c.∫

ψ∗ψ dv
. (4.7)

This immediately shows that if ψ is a solution of the Schrödinger equation,
δ〈H〉 = 0 and 〈H〉 is stationary. Let us now consider the opposite implication:
if 〈H〉 is stationary with respect to any variation of ψ, then∫

δψ∗ [H − 〈H〉]ψ dv = 0 (4.8)

is true for any arbitrary δψ if and only if [H − 〈H〉]ψ = 0, that is, if ψ is a
solution of the Schrödinger equation: Hψ = Eψ.

4.1.2 Alternative demonstration of the variational principle

A different and more general way to demonstrate the variational principle,
which will be useful later, is based upon Lagrange multipliers method. This
method deals with the problem of finding stationarity conditions for an integral
I0 while keeping at the same time constant other integrals I1 . . . Ik. One can
solve the equivalent problem

δ

(
I0 +

∑
k

λkIk

)
= 0 (4.9)
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where λk are additional variables called Lagrange multipliers. In our case we
have

I0 =

∫
ψ∗Hψ dv (4.10)

I1 =

∫
ψ∗ψ dv (4.11)

and thus we assume
δ(I0 + λI1) = 0 (4.12)

where λ must be determined. By proceeding like in the previous section, we
find

δI0 =

∫
δψ∗Hψ dv + c.c. (4.13)

δI1 =

∫
δψ∗ψ dv + c.c. (4.14)

and thus the condition to be satisfied is

δ(I0 + λI1) =

∫
δψ∗[H + λ]ψ dv + c.c. = 0 (4.15)

that is
Hψ = −λψ (4.16)

i.e. the Lagrange multiplier is equal, apart from the sign, to the energy eigen-
value. Again we see that states whose expectation energy is stationary with
respect to any variation in the wave function are the solutions of the Schrödinger
equation.

4.1.3 Variational principle for the ground state energy

Let us consider the eigenfunctions ψn of a Hamiltonian H, with associated
eigenvalues (energies) En:

Hψn = Enψn. (4.17)

We label the ground state with n = 0 and the ground-state energy as E0. Let
us demonstrate that for any different function ψ, we necessarily have

〈H〉 =

∫
ψ∗Hψ dv∫
ψ∗ψ dv

≥ E0. (4.18)

In order to demonstrate it, let us expand ψ into energy eigenfunctions (this is
always possible because energy eigenfunctions are a complete orthonormal set):

ψ =
∑
n

cnψn. (4.19)

Then one finds

〈H〉 =

∑
n |cn|2En∑
n |cn|2

= E0 +

∑
n |cn|2(En − E0)∑

n |cn|2
(4.20)
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This demonstrates Eq.(4.18), since the second term is either positive or zero,
as En ≥ E0 by definition of ground state. Note that if the ground state is
non-degenerate, the inequality is strict: 〈H〉 = E0 only for ψ = ψ0.

This simple result is extremely important: it tells us that any function ψ
yields for the expectation energy an upper estimate of the energy of the ground
state. The best approximation to the ground state is can be found by varying
ψ inside a given set of functions and looking for the function that minimizes
〈H〉. This is the essence of the variational method.

A simple way to use such result is to introduce a set of normalized trial wave
functions ψ(v;α1, . . . , αr), where v are the variables of the problem (coordinates
etc), αi, i = 1, . . . , r are parameters. The ground-state energy will be a function
of the parameters:

E(α1, . . . , αr) =

∫
ψ∗(v;α1, . . . , αr)Hψ(v;α1, . . . , αr) dv (4.21)

We now look for the minimum of E with respect to a variation of the parameters,
that is, we impose

∂E

∂α1
= . . . =

∂E

∂αr
= 0. (4.22)

The function ψ satisfying these conditions with the lowest E is the function
that better approximates the ground state, among the considered set of trial
wave functions. It is clear that the quality of the results depends in a crucial
way upon a suitable choice of the set of trial wave functions.

4.2 The variational method in practice

The variational method leads to the solution of an algebraic problem if the
wave function is expanded into a finite basis set of functions. By applying the
variational principle, one finds the optimal coefficients of the expansion. Based
on Eq. (4.9), this means calculating the functional (i.e. a “function” of a
function):

G[ψ] = 〈ψ|H|ψ〉 − E〈ψ|ψ〉

=

∫
ψ∗Hψ dv − E

∫
ψ∗ψ dv (4.23)

and imposing the stationary condition on G[ψ]. Such procedure produces an
equation for the expansion coefficients that we are going to determine.

It is important to notice that our basis is formed by a finite number N of
functions, and thus cannot be a complete system: in general, it is not possible
to write any function ψ (including exact solutions of the Schrödinger equation)
as a linear combination of the functions in this basis set. What we are going
to do is to find the ψ function that better approaches the true ground state,
or in general, a true eigenstate, among all functions that can be expressed as
linear combinations of the N chosen basis functions. A smart choice of the basis
functions is crucial to obtain a computationally efficient algorithm.
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4.2.1 Expansion into a basis set of orthonormal functions

Let us assume to have a basis of N functions bi, between which orthonormality
relations hold:

〈bi|bj〉 ≡
∫
b∗i bj dv = δij (4.24)

Let us expand the generic ψ in such basis:

ψ =
N∑
i=1

cibi (4.25)

By replacing Eq.(4.25) into Eq.(4.23) one can immediately notice that the latter
takes the form

G(c1, . . . , cN ) =
∑
ij

c∗i cjHij − E
∑
ij

c∗i cjδij

=
∑
ij

c∗i cj(Hij − Eδij) (4.26)

where we have introduced the matrix elements Hij :

Hij = 〈bi|H|bj〉 =

∫
b∗iHbj dv (4.27)

Since both H and the basis functions are given, Hij is a known square matrix of
numbers. The hermiticity of the Hamiltonian operator implies that such matrix
is hermitian:

Hji = H∗ij (4.28)

(i.e. symmetric if all elements are real). According to the variational method,
let us minimize Eq. (4.26) with respect to the coefficients:

∂G

∂c∗i
= 0 (4.29)

This produces the condition∑
j

(Hij − Eδij)cj = 0 (4.30)

If the derivative with respect to complex quantities bothers you: write the
complex coefficients as sums of a real and an imaginary part ck = xk + iyk,
require that derivatives with respect to both xk and yk are zero. By exploiting
hermiticity you will find a system

Wk +W ∗k = 0

−iWk + iW ∗k = 0

where Wk =
∑
j(Hkj − Eδkj)cj , that allows as only solution Wk = 0.

We note that, if the basis were a complete (and thus infinite) system, this
would be the Schrödinger equation in the Heisenberg representation. We have
finally demonstrated that the same equations, for a finite basis set, yield the
best approximation to the true solution according to the variational principle.
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4.2.2 Secular equation

Eq.(4.30) is a system of N algebraic linear equations, homogeneous (there are
no constant term) in the N unknown cj . In general, this system has only the
trivial, and obviously nonphysical, solution cj = 0 for all coefficients. A non-
zero solution exists if and only if the following condition on the determinant is
fulfilled:

det |Hij − Eδij | = 0 (4.31)

Such condition implies that one of the equations is a linear combination of the
others and the system has in reality N − 1 equations and N unknowns, thus
admitting non-zero solutions.

Eq.(4.31) is known as secular equation. It is an algebraic equation of de-
gree N in E (as it is evident from the definition of the determinant, with the
main diagonal generating a term EN , all other diagonals generating lower-order
terms), that admits N roots, or eigenvalues. Eq.(4.30) can also be written in
matrix form

Hc = Ec (4.32)

where H is here the N×N matrix whose matrix elements are Hij , c is the vector
formed with ci components. The solutions c are also called eigenvectors. For
each eigenvalue there will be a corresponding eigenvector (known within a mul-
tiplicative constant, fixed by the normalization). We have thus N eigenvectors
and we can write that there are N solutions:

ψk =
∑
i

Cikbi, k = 1, . . . , N (4.33)

where Cik is a matrix formed by the N vectors c(k), written as columns and
disposed side by side:

C ≡

 c(1) c(1) . . . c(N)

 . (4.34)

Eq.(4.30) can be rewritten as:∑
j

HijCjk = EkCik. (4.35)

Eq.(4.32) is a common equation in linear algebra and there are standard meth-
ods to solve it. Given a matrix H, it is possible to obtain, using standard library
routines, the C matrix and the set Ek of eigenvalues.

The solution process is usually known as diagonalization. This name comes
from the following important property of C. Eq.(4.33) can be seen as a trans-
formation of the N starting functions into another set of N functions, via a
transformation matrix. It is possible to show that if the bi functions are or-
thonormal, the ψk functions are orthonormal as well. Then the transformation
is unitary, that is, ∑

i

C∗ijCik = δjk (4.36)
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holds. In matrix notations,

(C−1)ij = C∗ji ≡ C
†
ij (4.37)

that is, the inverse matrix is equal to the conjugate of the transpose matrix,
or hermitian conjugate matrix. A matrix C having such property is called a
unitary matrix and typically represents a rotation.

Let us consider now the matrix product C−1HC and let us calculate its
elements:

(C−1HC)kn =
∑
ij

(C−1)kiHijCjn =
∑
i

C∗ik
∑
j

HijCjn (4.38)

from Eq.(4.37). Using Eqs.(4.35) and (4.36), one finally finds

(C−1HC)kn =
∑
i

C∗ikEnCin = En
∑
i

C∗ikCin = Enδkn (4.39)

The transformation matrix C reduces H to a diagonal matrix, whose non-zero
N elements are the eigenvalues. We can thus see our eigenvalue problem as the
search for a transformation that brings from the original basis to a new basis
in which the H operator has a diagonal form, that is, it acts on the elements
of the basis by simply multiplying them by a constant (as in the Schrödinger
equation).

4.3 Plane-wave basis set

A good example of orthonormal basis set, and one commonly employed in
physics, is the plane-wave basis set. This basis set is closely related to Fourier
transforms and it can be easily understood if concepts from Fourier analysis are
known.

A function f(x) defined on the entire real axis can be always expanded into
Fourier components, f̃(k):

f(x) =
1√
2π

∫ ∞
−∞

f̃(k)eikxdk (4.40)

f̃(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdx. (4.41)

For a function defined on a finite interval [−a/2, a/2], we can instead write

f(x) =
1√
a

∑
n

f̃(kn)eiknx (4.42)

f̃(kn) =
1√
a

∫ a/2

−a/2
f(x)e−iknxdx (4.43)

where kn = 2πn/a, n = 0,±1,±2, .... Note that the f(x) function of Eq.(4.42)
is by construction a periodic function, with period equal to a: f(x + a) =
f(x), as can be immediately verified. This implies that f(−a/2) = f(+a/2)
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must hold (also known under the name of periodic boundary conditions). The
expressions reported here are easily generalized to three or more dimensions.
In the following only a simple one-dimensional case will be shown.

Let us define our plane-wave basis set bi(x) as:

bi(x) =
1√
a
eikix, ki =

2π

a
i, i = 0,±1,±2, ...,±N. (4.44)

The corresponding coefficients ci for the wave function ψ(x) are

ci =

∫ a/2

−a/2
b∗i (x)ψ(x)dx = 〈bi|ψ〉, ψ(x) =

∑
i

cibi(x). (4.45)

This base, composed of 2N + 1 functions, becomes a complete basis set in the
limit N →∞. This is a consequence of well-known properties of Fourier series.
It is also straightforward to verify that the basis is orthonormal: Sij = 〈bi|bj〉 =
δij . The solution of the problem of a particle under a potential requires thus
the diagonalization of the Hamiltonian matrix, whose matrix elements:

Hij = 〈bi|H|bj〉 = 〈bi|
p2

2m
+ V (x)|bj〉 (4.46)

can be trivially calculated. The kinetic term is diagonal (i.e. it can be repre-
sented by a diagonal matrix):

〈bi|
p2

2m
|bj〉 = − h̄2

2m

∫ a/2

−a/2
b∗i (x)

d2bj
dx2

(x)dx = δij
h̄2k2

i

2m
. (4.47)

The potential term is nothing but the Fourier transform of the potential (apart
from a multiplicative factor):

〈bi|V (x)|bj〉 =
1

a

∫ a/2

−a/2
V (x)e−i(ki−kj)xdx =

1√
a
Ṽ (ki − kj). (4.48)

A known property of Fourier transform ensures that the matrix elements of the
potential tend to zero for large values of ki − kj . The decay rate will depend
upon the spatial variation of the potential: faster for slowly varying potentials,
and vice versa. Potentials and wave functions varying on a typical length scale
λ have a significant Fourier transform up to kmax ∼ 2π/λ. In this way we can
estimate the number of plane waves needed to solve a problem.

4.4 Code: pwell

Let us consider the simple problem of a potential well with finite depth V0:

V (x) = 0 per x < − b
2
, x >

b

2
(4.49)

V (x) = −V0 per − b

2
≤ x ≤ b

2
(4.50)
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with V0 > 0, b < a. The matrix elements of the Hamiltonian are given by
Eq.(4.47) for the kinetic part. by Eq.(4.48) for the potential. The latter can be
explicitly calculated:

〈bi|V (x)|bj〉 = −1

a

∫ b/2

−b/2
V0e
−i(ki−kj)xdx (4.51)

= −V0

a

e−i(ki−kj)x

−i(ki − kj)

∣∣∣∣∣
b/2

−b/2
V0 (4.52)

= −V0

a

sin (b(ki − kj)/2)

(ki − kj)/2
, ki 6= kj . (4.53)

The case ki = kj must be separately treated, yielding

Ṽ (0) = −V0b

a
. (4.54)

Code pwell.f901 (or pwell.c2) generates the ki, fills the matrix Hij and di-
agonalizes it. The code uses units in which h̄2/2m = 1 (e.g. atomic Rydberg
units). Input data are: width (b) and depth (V0) of the potential well, width
of the box (a), number of plane waves (2N + 1). On output, the code prints
the three lowest energy levels; moreover it writes to file gs-wfc.out the wave
function of the ground state.

4.4.1 Diagonalization routines

The practical solution of the secular equation, Eq.(4.31), is not done by naively
calculating the determinant and finding its roots. Various well-established,
robust and fast diagonalization algorithms are known. Typically they are based
on the reduction of the original matrix to Hessenberg or tridiagonal form via
successive transformations. All such algorithms require the entire matrix (or at
least half, exploiting hermiticity) to be available in memory at the same time,
plus some work arrays. The time spent in the diagonalization is practically
independent on the content of the matrix and it is invariably of the order of
O(N3) floating-point operations for a N × N matrix, even if eigenvalues only
and not eigenvectors are desired. Matrix diagonalization used to be a major
bottleneck in computation, due to its memory and time requirements. With
modern computers, diagonalization of 1000 × 1000 matrix is done in less than
no time. Still, memory growing as N2 and time as N3 are a serious obstacle
towards larger N . At the end of these lecture notes alternative approaches will
be mentioned.

The computer implementation of diagonalization algorithms is also rather
well-established. In our code we use subroutine dsyev.f3 from the linear alge-
bra library LAPACK4. Several subroutines from the basic linear algebra library

1http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/pwell.f90
2http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/pwell.c
3http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/dsyev.f
4http://www.netlib.org/lapack/
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BLAS5 (collected here: dgemm.f6) are also required. dsyev implements re-
duction to tridiagonal form for a real symmetric matrix (d=double precision,
sy=symmetric matrix, ev=calculate eigenvalues and eigenvectors). The usage
of dsyev requires either linking to a pre-compiled LAPACK and BLAS libraries,
or compilation of the Fortran version and subsequent linking. Instructions on
the correct way to call dsyev are contained in the header of the subroutine.
Beware: most diagonalization routines overwrite the input matrix!

For the C version of the code, it may be necessary to add an underscore (as in
dsyev () ) in the calling program. Moreover, the tricks explained in Sec.0.1.4
are used to define matrices and to pass arguments to BLAS and LAPACK
routines.

4.4.2 Laboratory

• Observe how the results converge with respect to the number of plane
waves, verify the form of the wave function. Verify the energy you get for
a known case. You may use for instance the following case: for V0 = 1,
b = 2, the exact result is E = −0.4538. You may (and should) also verify
the limit V0 →∞ (what are the energy levels?).

• Observe how the results converge with respect to a. Note that for values
of a not so big with respect to b, the energy calculated with the variational
method is lower than the exact value. Why is it so?

• Plot the ground-state wave function. You can also modify the code to
write excited states. Do they look like what you expect?

Possible code modifications and extensions:

• Modify the code, adapting it to a potential well having a Gaussian form
(whose Fourier transform can be analytically calculated: what is the
Fourier transform of a Gaussian function?) For the same ”width”, which
problem converges more quickly: the square well or the Gaussian well?

• We know that for a symmetric potential, i.e. V (−x) = V (x), the solutions
have a well-defined parity, alternating even and odd parity (ground state
even, first excited state odd, and so on). Exploit this property to reduce
the problem into two sub-problems, one for even states and one for odd
states. Use sine and cosine functions, obtained by suitable combinations
of plane waves as above. Beware the correct normalization and the kn = 0
term! Why is this convenient? What is gained in computational terms?

5http://www.netlib.org/blas/
6http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/dgemm.f
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Chapter 5

Non-orthonormal basis sets

In the variational method as seen in action in the previous chapter the wave
function is expanded over a set of orthonormal basis functions. In many phys-
ically relevant cases, it is useful to adopt a non-orthonormal basis set instead.
A paradigmatic case is the calculation of the electronic structure of molecules
using atom-centered localized functions, in particular, Gaussian functions, as
frequently done in Quantum Chemistry methods. In this chapter we consider
the extension of the variational method to the case of non-orthonormal basis
sets.

5.1 Variational method for non-orthonormal basis
set

The variational method can be extended with no special difficulty to cover the
case in which the basis is formed by functions that are not orthonormal, i.e. for
which

Sij = 〈bi|bj〉 =

∫
b∗i bj dv (5.1)

is not simply equal to δij . The quantities Sij are known as overlap integrals.
In principle, one can always derive an orthogonal basis set from a non-

orthoginal one using an orthogonalization procedure such as the Gram-Schmid
algorithm. Given a non-orthogonal basis set bi, the corresponding orthogonal
basis set b̃i is obtained as follows:

b̃1 = b1 (5.2)

b̃2 = b2 − b̃1〈b̃1|b2〉/〈b̃1|b̃1〉 (5.3)

b̃3 = b3 − b̃2〈b̃2|b3〉/〈b̃2|b̃2〉 − b̃1〈b̃1|b3〉/〈b̃1|b̃1〉 (5.4)

and so on. The b̃i are then normalized. In practice, such procedure is compu-
tationally expensive and numerically not very stable so usually one prefers to
adapt the approach of Sec.4.2.1 to a non-orthonormal basis set.

For a non-orthonormal basis set, Eq.(4.26) becomes

G(c1, . . . , cN ) =
∑
ij

c∗i cj(Hij − εSij) (5.5)
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and the minimum condition, Eq.(4.30), becomes∑
j

(Hij − εSij)cj = 0 (5.6)

or, in matrix form,
Hc = εSc. (5.7)

This is called a generalized eigenvalue problem.
The solution of a generalized eigenvalue problem is in practice equivalent to

the solution of two simple eigenvalue problems. Let us first solve the auxiliary
problem:

Sd = σd (5.8)

completely analogous to the problem (4.32). We can thus find a unitary matrix
D (obtained by putting eigenvectors as columns side by side), such that D−1SD
is diagonal (D−1 = D†), and whose non-zero elements are the eigenvalues σ.
We find an equation similar to Eq.(4.39):∑

i

D∗ik
∑
j

SijDjn = σnδkn. (5.9)

Note that all σn > 0: an overlap matrix is positive definite. In fact,

σn = 〈b̃n|b̃n〉, |b̃n〉 =
∑
j

Djn|bj〉 (5.10)

and |b̃〉 is the rotated basis set in which S is diagonal. Note that a zero eigenvalue
σ means that the corresponding |b̃〉 has zero norm, i.e. one of the b functions is
a linear combination of the other functions. In that case, the matrix is called
singular and some matrix operations (e.g. inversion) are not well defined.

Let us define now a second transformation matrix

Aij ≡
Dij√
σj
. (5.11)

We can write ∑
i

A∗ik
∑
j

SijAjn = δkn (5.12)

(note that unlike D, the matrix A is not unitary) or, in matrix form, A†SA = I.
Let us now define

c = Av (5.13)

With this definition, Eq.(5.7) becomes

HAv = εSAv (5.14)

We multiply to the left by A†:

A†HAv = εA†SAv = εv (5.15)

Thus, by solving the secular problem for operator A†HA, we find the desired
eigenvalues for the energy. In order to obtain the eigenvectors in the starting
base, it is sufficient, following Eq.(5.13), to apply operatorA to each eigenvector.
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5.1.1 Gaussian basis set

Atom-centered Gaussian functions are frequently used as basis functions, es-
pecially for atomic and molecular calculations. They are known as GTO:
Gaussian-Type Orbitals. An important feature of Gaussian functions is that
the product of two Gaussian functions, even if centered at different centers,
can be written as a single Gaussian. With rather straightworward algebra, one
demonstrates that

e−α(r−r1)2e−β(r−r2)2 = e−(α+β)(r−r0)2e
− αβ
α+β

(r1−r2)2
, (5.16)

where the new center r0 lies on the line connecting the two centers r1 and r2:

r0 =
αr1 + βr2

α+ β
. (5.17)

Some useful integrals involving Gaussian functions:∫ ∞
0

e−αx
2
dx =

1

2

(
π

α

)1/2

, (5.18)∫ ∞
0

xe−αx
2
dx =

[
−e
−αx2

2α

]∞
0

=
1

2α
, (5.19)

from which one derives∫ ∞
0

e−αx
2
x2ndx = (−1)n

∂n

∂αn

∫ ∞
0

e−αx
2
dx =

(2n− 1)!!π1/2

2n+1αn+1/2
(5.20)∫ ∞

0
e−αx

2
x2n+1dx = (−1)n

∂n

∂αn

∫ ∞
0

xe−αx
2
dx =

n!

2αn+1
. (5.21)

All the needed matrix elements and overlaps can be computed starting from
these formulae.

5.1.2 Other kinds of localized basis functions

Basis functions composed of Hydrogen-like wave functions (i.e. exponentials)
are also used in Quantum Chemistry as alternatives to Gaussian functions.
They are known as STO: Slater-Type Orbitals. It is also possible to use linear
combinations of atomic orbitals (LCAO) in molecular and solid-state calcula-
tions. STO’s and LCAO’s do not have the nice analytical properties of Gaussian
functions but may have other advantages, such as a better description of the
behavior of the wave function close to the nucleus and at large distances.

Some useful integrals involving STOs (also used in Appendix D.1 and D.2)
are listed here:∫

e−2Zr

r
d3r = 4π

∫ ∞
0

re−2Zrdr = 4π

[
e−2Zr

(
− r

2Z
− 1

4Z2

)]∞
0

=
π

Z2
(5.22)

∫
e−2Z(r1+r2)

|r1 − r2|
d3r1d

3r2 =
5π2

8Z5
. (5.23)
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5.2 Code: hydrogen gauss

Code hydrogen gauss.f901 (or hydrogen gauss.c2) solves the secular prob-
lem for the hydrogen atom using two different non-orthonormal basis sets:

1. a Gaussian, “S-wave” basis set:

bi(r) = e−αir
2
; (5.24)

2. a Gaussian “P-wave” basis set, existing in three different choices, corre-
sponding to the different values m of the projection of the angular mo-
mentum Lz:

bi(r) = xe−αir
2
, bi(r) = ye−αir

2
, bi(r) = ze−αir

2
(5.25)

(actually only the third choice corresponds to a well-defined value m = 0).

The Hamiltonian operator for this problem is obviously

H = − h̄
2∇2

2me
− Zq2

e

r
(5.26)

For the hydrogen atom, Z = 1.
Calculations for S- and P-wave Gaussians are completely independent. In

fact, the two sets of basis functions are mutually orthogonal: Sij = 0 if i is a
S-wave, j is a P-wave Gaussian, as evident from the different parity of the two
sets of functions. Moreover the matrix elements Hij of the Hamiltonian are
also zero between states of different angular momentum, for obvious symmetry
reasons. The S and H matrices are thus block matrices and the eigenvalue
problem can be solved separately for each block. The P-wave basis is clearly
unfit to describe the ground state, being orthogonal to it by construction, and
it is included mainly as an example.

The code reads from file a list of exponents, αi, and proceeds to evaluate all
matrix elementsHij and Sij . The calculation is based upon analytical results for
integrals of Gaussian functions (Sec.5.1.1). In particular, for S-wave Gaussians
one has

Sij =

∫
e−(αi+αj)r

2
d3r =

(
π

αi + αj

)3/2

(5.27)

while the kinetic and Coulomb terms in Hij are respectively

HK
ij =

∫
e−αir

2

[
− h̄

2∇2

2me

]
e−αjr

2
d3r =

h̄2

2me

6αiαj
αi + αj

(
π

αi + αj

)3/2

(5.28)

HV
ij =

∫
e−αir

2

[
−Zq

2
e

r

]
e−αjr

2
d3r = − 2πZq2

e

αi + αj
(5.29)

1http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/hydrogen gauss.f90
2http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/hydrogen gauss.c

44

http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/hydrogen_gauss.f90
http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/hydrogen_gauss.c


For the P-wave basis the procedure is analogous, using the corresponding (and
more complex) analytical expressions for integrals.

The code then calls subroutine diag that solves the generalized secular
problem (i.e. it applies the variational principle). Subroutine diag returns a
vector e containing eigenvalues (in order of increasing energy) and a matrix v

containing the eigenvectors, i.e. the expansion coefficients of wave functions.
Internally, diag performs the calculation described in the preceding section

in two stages. The solution of the simple eigenvalue problem is performed by
the subroutine dsyev we have already seen in Sec.4.4.

In principle, one could use a single LAPACK routine, dsygv, that solves
the generalized secular problem, Hψ = εSψ, with a single call. In practice,
one has to be careful to avoid numerical instabilities related to the problem
of linear dependencies among basis functions (see Eq.(5.10) and the following
discussion). Inside routine diag, all eigenvectors of matrix S corresponding to
very small eigenvectors, i.e. smaller than a pre-fixed threshold, are discarded,
before proceeding with the second diagonalization. The number of linearly
independent eigenvectors is reprinted in the output.

The reason for such procedure is that it is not uncommon to discover that
some basis functions can almost exactly be written as sums of some other basis
functions. This does not happen if the basis set is well chosen, but it can happen
if the basis set functions are too numerous or not well chosen (e.g. with too
close exponents). A wise choice of the αj coefficients is needed in order to have
a reach accuracy without numerical instabilities.

The code then proceeds and writes to files s-coeff.out (or p-coeff.out)
the coefficients of the expansion of the wave function into Gaussians. The
ground state wave function is written into file s-wfc.out (or p-wfc.out).

Notice the usage of dgemm calls to perform matrix-matrix multiplication.
The header of dgemm.f contains a detailed documentation on how to call it.
Its usage may seem awkward at a first sight (and also at a second one). This
is a consequence in part of the Fortran way to store matrices, requiring the
knowledge of the first, or “leading”, dimension of matrices; in part, of the old-
style Fortran way to pass variables, including vectors and arrays, to subroutines
under the form of pointers. One may wonder why bother with dgemm and its
obscure syntax and why not use the Fortran-90 syntax and the MATMUL intrinsic
function instead: they are so much easier to use! The reason is efficiency: very
efficient implementations of dgemm exist for modern architectures. On the other
hand, modern language features that look great on paper, and sometimes are
great also in practice, may turn out to be inefficient.

For the C version of the code, and how matrices are introduced and passed
to Fortran routines, see Sec.0.1.4.

5.2.1 Laboratory

• Verify the accuracy of the energy eigenvalues, starting with one Gaussian,
then 2, then 3. Try to find the best values for the coefficients for the 1s
state (i.e. the values that yield the lowest energy).
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• Compare with the the solutions obtained using code hydrogen radial.
Plot the 1s numerical solution (calculated with high accuracy) and the
“best” 1s solution for 1, 2, 3, Gaussians (you will need to multiply the
latter by a factor

√
4π: why? where does it come from?). What do you

observe? where is the most significant error concentrated?

• Compare with the results for the following optimized basis sets (a.u.):

– three Gaussians: α1 = 0.109818, α2 = 0.405771, α3 = 2.22776
(known as “STO-3G” in Quantum-Chemistry jargon)

– four Gaussians: α1 = 0.121949, α2 = 0.444529, α3 = 1.962079,
α4 = 13.00773

• Observe and discuss the ground state obtained using the P-wave basis set

• Observe the effects related to the number of basis functions, and to the
choice of the parameters α. Try for instance to choose the characteristic
Gaussian widths, λ = 1/

√
α, as uniformly distributed between suitably

chosen λmin and λmax.

• For Z > 1, how would you re-scale the coefficients of the optimized Gaus-
sians above?
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Chapter 6

Self-consistent field

Let us move now to many-particle problems. A way to solve a system of many
electrons is to consider each electron under the effective field generated by all
other electrons. The many-body problem is thus reduced to the self-consistent
solution of many single-electron Schrödinger equations. This idea is formalized
in a rigorous way in the Hartree-Fock and density-functional theories. In the
following we consider the simple case of the ground state of the He atom, where
the Hartree-Fock method leads to an equation in which the self-consistent field
is a function of the charge density only.

6.1 The Hartree-Fock method

The idea of the Hartree-Fock method is to approximate the wave function for
a N−electron system with a suitably antisymmetrized product of N single-
electron functions (orbitals). The best set of orbitals is then found by applying
the variational principle, that is: by minimizing the expectation value of the
energy E = 〈ψ|H|ψ〉 for state |ψ〉.

Let us consider the case of a N−electron atom. The Hamiltonian is

H = −
∑
i

h̄2

2me
∇2
i −

∑
i

Zq2
e

ri
+
∑
〈ij〉

q2
e

rij
(6.1)

where Z is the charge of the nucleus and the sum is over pairs of electrons i
and j, i.e. each pair appears only once. Alternatively:

∑
〈ij〉

=
N−1∑
i=1

N∑
j=i+1

(6.2)

It is convenient to introduce one-electron fi and two-electrons gij operators:

fi ≡ −
h̄2

2me
∇2
i −

Zq2
e

ri
, gij ≡

q2
e

rij
(6.3)

With such notation, the Hamiltonian is written as

H =
∑
i

fi +
∑
〈ij〉

gij . (6.4)
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6.1.1 Slater determinants

A N−electron wave function can be built from a set of orbitals φi, i = 1, . . . , N
as a Slater determinant:

ψ(1, . . . , N) =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(1) . . . φ1(N)
. . .
. . .

φN (1) . . . φN (N)

∣∣∣∣∣∣∣∣∣ (6.5)

Here the notation (N) ≡ (rN , σN ) indicates position and spin variables for the
N−th electron. A Slater determinant has by construction the required antisym-
metry properties for a many-electron wave function: in fact, the exchange of
two particles is equivalent to the exchange of two columns, which produces, due
to a known property of determinants, a change of sign. Note that if two rows
are equal, the determinant is zero: all φi’s must be different. This demonstrates
Pauli’s exclusion principle: two (or more) identical fermions cannot occupy the
same state.

Note that the single-electron orbitals φi are assumed to be orthonormal:∫
φ∗i (1)φj(1)dv1 = δij (6.6)

where the “integration” on dv1 means “integration on coordinates, sum over
spin components”.

Since a determinant for N electrons has N ! terms, we need a way to write
matrix elements between determinants on a finite surface of paper. The follow-
ing property, valid for any (symmetric) operator F and determinantal functions
ψ and ψ′, is very useful:

〈ψ|F |ψ′〉 =
1

N !

∫ ∣∣∣∣∣∣∣
φ∗1(1) . φ∗1(N)
. . .

φ∗N (1) . φ∗N (N)

∣∣∣∣∣∣∣F
∣∣∣∣∣∣∣
φ′1(1) . φ′1(N)
. . .

φ′N (1) . φ′N (N)

∣∣∣∣∣∣∣ dv1 . . . dvN

=

∫
φ∗1(1) . . . φ∗N (N)F

∣∣∣∣∣∣∣
φ′1(1) . φ′1(N)
. . .

φ′N (1) . φ′N (N)

∣∣∣∣∣∣∣ dv1 . . . dvN . (6.7)

To demonstrate it, one may observe that by expanding the first determinant,
one obtains N ! terms that, once integrated, are identical.

6.1.2 Hartree-Fock equations

From the above property, and using the orthonormality of the orbitals, it is
simple to write the expectation value of the Hamiltonian E = 〈ψ|H|ψ〉 in terms
of matrix elements of one- and two-electron operators. The only non-zero terms
are in fact

〈ψ|
∑
i

fi|ψ〉 =
∑
i

∫
φ∗i (1)f1φi(1) dv1 (6.8)
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and

〈ψ|
∑
〈ij〉

gij |ψ〉 =
∑
〈ij〉

∫
φ∗i (1)φ∗j (2)g12 [φi(1)φj(2)− φj(1)φi(2)] dv1dv2. (6.9)

Notice the sign and the index permutation in the second term in square brackets:
both come from the antisymmetry. The integrals implicitly include summation
over spin components. If we assume that g12 depends only upon coordinates,
as in Coulomb interaction, and not upon spins, the second term is zero if i
and j states have different spins. For this reason, it is convenient to make spin
variables explicit. Eq.(6.9) can then be rewritten as

〈ψ|
∑
〈ij〉

gij |ψ〉 =
∑
〈ij〉

∫
φ∗i (1)φ∗j (2)g12 [φi(1)φj(2)− δ(σi, σj)φj(1)φi(2)] dv1dv2

(6.10)
where σi is the spin of electron i, and:

δ(σi, σj) = 0 if σi 6= σj

= 1 if σi = σj

In summary:

〈ψ|H|ψ〉 =
∑
i

∫
φ∗i (1)f1φi(1) dv1 (6.11)

+
∑
〈ij〉

∫
φ∗i (1)φ∗j (2)g12 [φi(1)φj(2)− δ(σi, σj)φj(1)φi(2)] dv1dv2

Let us now apply the variational principle to Eq.(6.11). In principle we
must impose normalization constraints such that all pairs φi, φj with same spin
stay orthogonal, i.e., a (triangular) matrix εij of Lagrange multipliers would
be needed. It can be shown however (details e.g. on Slater’s book, Quantum
theory of matter) that it is always possible to find a transformation to a solution
in which the matrix of Lagrange multipliers is diagonal. We assume that we
are dealing with such a case and write the stationarity conditions as

δ

(
〈ψ|H|ψ〉 −

∑
i

εiIi

)
= 0 (6.12)

where

Ii =

∫
φ∗i (1)φi(1) dv1 (6.13)

are the constraints, εi are the Lagrange multipliers that enforce such constraints.
Let us vary only the orbital function φk. We find

δIk =

∫
δφ∗k(1)φk(1) dv1 + c.c. (6.14)

(the variations of all other normalization integrals will be zero) and, using the
hermiticity of H as in Sec.4.1.1,

δ〈ψ|H|ψ〉 =

∫
δφ∗k(1)f1φk(1) dv1 + c.c. (6.15)

+
∑
j

∫
δφ∗k(1)φ∗j (2)g12 [φk(1)φj(2)− φk(2)φj(1)δ(σk, σj)] dv1dv2 + c.c.
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Thus the variational principle takes the form∫
δφ∗k(1) {f1φk(1) +

∫
φ∗j (2)g12

∑
j

[φk(1)φj(2) (6.16)

− φk(2)φj(1)δ(σk, σj)] dv2 − εkφk(1)} dv1 + c.c. = 0

i.e. the term between curly brackets (and its complex conjugate) must vanish
so that the above equation is satisfied for any variation. This leads to the set
of integro-differential Hartree-Fock equations:

f1φk(1) +
∑
j

∫
φ∗j (2)g12 [φk(1)φj(2)− δ(σk, σj)φj(1)φk(2)] dv2 = εkφk(1)

(6.17)
or, in more explicit form,

− h̄2

2me
∇2

1φk(1)− Zq2
e

r1
φk(1) +

∑
j

∫
φ∗j (2)

q2
e

r12
[φj(2)φk(1) (6.18)

− δ(σk, σj)φk(2)φj(1)] dv2 = εkφk(1)

Eq.(6.18) has normally an infinite number of solutions, of which only the lowest-
energy N will be occupied by electrons, the rest playing the role of excited
states. The sum over index j runs only on occupied states.

6.1.3 Hartree and exchange potentials

Let us analyze the form of the Hartree-Fock equations. We re-write them as

− h̄2

2me
∇2

1φk(1)− Zq2
e

r1
φk(1) + VH(1)φk(1) + (V̂xφk)(1) = εkφk(1), (6.19)

where we have introduced the Hartree potential VH and the exchange poten-
tial V̂x. The Hartree potential is the average electrostatic potential felt by an
electron in the field generated by all other electrons:

VH(1) =
∑
j

∫
φ∗j (2)

q2
e

r12
φj(2)dv2 ≡

∫
ρ(2)

q2
e

r12
dv2, (6.20)

where ρ is the charge density:

ρ(2) =
∑
j

φ∗j (2)φj(2). (6.21)

It is straightforward to verify that ρ(1) is equal to the probability to find an
electron in (1):

ρ(1) = N

∫
|ψ(1, . . . , N)|2dv2 . . . dvN . (6.22)

Note that both the Hartree potential and the charge density do not actually
depend upon the spin.
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The exchange potential reflects the effect of antisymmetry between electrons
with the same spin:

(V̂xφk)(1) = −
∑
j

δ(σk, σj)

∫
φj(1)φ∗j (2)

q2
e

r12
φk(2) dv2. (6.23)

While the Hartree potential is local (just multiplies the orbitals), the exchange
potential is non local, acting on orbitals as

(V̂xφk)(1) ≡
∫
Vx(1, 2)φk(2)dv2. (6.24)

The careful observer will notice an alarming feature: the Hartree potential
contains a “self-interaction” of an electron with itself. Such interaction is ob-
viously spurious and unphysical. The same term with opposit sign is however
present in the exchange potential, so it cancels out in the equations.

6.1.4 Hartree-Fock and correlation energy

The energy of the system, Eq. 6.11, can be expressed via the Hartree and
exchange potential as

E =
∑
i

∫
φ∗i (1)f1φi(1) dv1 +

1

2

∫
ρ(1)VH(1)dv1

+
1

2

∑
k

∫
φk(1)V̂x(1, 2)φk(2)dv1dv2. (6.25)

The factors 1/2 reflect the fact that the sums run over pairs of orbitals. The first
term in the energy has a one-electron character and containg the kinetic and
potential energy. The second term is called Hartree energy and is of electrostatic
character; the last term is called exchange energy.

Alternatively, one may use the sum of eigenvalues of Eq.(6.18): by multi-
plying the two sides of Eq.(6.18) by φ∗k(1) and integrating over dv1, one finds

E =
∑
k

εk −
∑
<jk>

∫
φ∗k(1)φ∗j (2)g12 [φk(1)φj(2)− δ(σj , σk)φj(1)φk(2)] dv1dv2,

(6.26)
or, in terms of the Hartree and exchange potential:

E =
∑
k

εk −
1

2

∫
ρ(1)VH(1)dv1 −

1

2

∑
k

∫
φk(1)V̂x(1, 2)φk(2)dv1dv2. (6.27)

Notice the sign of the Hartree and exchange energy terms: they compensate for
the double counting of those terms that is present in the eigenvalue sum.

The Hartree-Fock energy is not the exact energy: it would be in a world
where the exact wave function has the form of a Slater determinant. This
is in general not true. The energy difference between the exact and Hartree-
Fock solution is known as correlation energy.1 This name reflects the fact

1Feynman called it stupidity energy, because the only physical quantity that it measures is
our inability to find the exact solution!
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that the Hartree-Fock approximation misses part of the ”electron correlation”:
the effects of an electron on all others. This is present in Hartree-Fock via
the exchange and electrostatic interactions, but more subtle effects are not
accounted for, because they require a more general form of the wave function.
For instance, the probability P (r1, r2) to find an electron at distance r1 and
one at distance r2 from the origin is not simply equal to p(r1)p(r2), because
electrons try to ”avoid” each other. The correlation energy in the case of He
atom is about 0.084 Ry: a small quantity relative to the energy (∼ 1.5%), but
not negligible.

6.1.5 Helium atom

Let us consider the simplest case of many-electron atom: He (Z=2). The ground
state of He can be build with two orbitals, φ1 and φ2, having the same coor-
dinate part φ(r), and opposite spins: φ1 = φ(r)v+(σ), φ2 = φ(r)v−(σ). In
the exchange potential term, the contribution from different orbitals φ1 and
φ2 vanishes, while the contribution from the same orbital cancels out with the
same term in the Hartree potential. The Hartree-Fock equations, Eqs.(6.18),
simplify to a single equation for φ(r1):

− h̄2

2me
∇2

1φ(r1)− Zq2
e

r1
φ(r1) +

∫
φ∗(r2)

q2
e

r12
φ(r2)dr2φ(r1) = ε1φ(r1). (6.28)

The equation for the second orbital is obviously the same, and ε2 = ε1. One
can recast such equation in a more transparent form:(

− h̄2

2me
∇2

1 + Vscf (r1)

)
φ(r1) = ε1φ(r1) (6.29)

where Vscf is the effective, self-consistent, potential felt by an electron:

Vscf (r1) = −Zq
2
e

r1
+

∫
ρ̃(r2)

q2
e

r12
dr2 , ρ̃(r2) = |φ(r2)|2. (6.30)

Note that ρ̃ is half of the charge density.
For closed-shell atoms, a further big simplification can be achieved: Vscf is a

central field, i.e. it depends only on the distance r1 between the electron and the
nucleus. Even in open-shell atoms, this can be imposed as an approximation,
by spherically averaging ρ. The simplification is considerable, since we know a
priori that the orbitals will be factorized as in Eq.(2.9). The angular part is
given by spherical harmonics, labelled with quantum numbers ` and m, while
the radial part is characterized by quantum numbers n and `. Of course the
accidental degeneracy for different ` is no longer present. It turns out that even
in open-shell atoms, this is an excellent approximation.
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6.2 Code: helium hf radial

Code helium hf radial.f902 (or helium hf radial.c3) solves Hartree-Fock
equations for the ground state of He atom. helium hf radial is based on code
hydrogen radial and uses the same integration algorithm based on Numerov’s
method. The new part is the implementation of the method of self-consistent
field for finding the orbitals.

The calculation consists in solving the radial part of the Hartree-Fock equa-
tion (6.29) for the effective potential of Eq.(6.30), assumed to be radial:

Vscf (r) = −Zq
2
e

r
+ ṼH(r) , ṼH(r)

∫
ρ̃(r′)

q2
e

|r− r′|
dr′. (6.31)

Note that ṼH is half of the Hartree potential. Vscf (r) depends in turn upon the
solution via ρ̃(r). We start from an initial estimate for ṼH(r) (simply, ṼH(r) =
0), calculated in routine init pot. With the ground state R(r) obtained from
such potential, we calculate in routine rho of r the charge density (of the other
electron) ρ̃(r) = |R(r)|2/4π (do not forget the angular part!). Routine v of rho

re-calculates the new potential Ṽ out
H (r) by integration, using the Gauss theorem:

Ṽ out
H (r) = V0 + q2

e

∫ r

rmax

Q(s)

s2
ds, Q(s) =

∫
r<s

ρ(r)4πr2dr (6.32)

where Q(s) is the charge contained in the sphere of radius s; rmax is the out-
ermost grid point, such that the potential has already assumed the asymptotic
value V0 = q2

e/rmax, valid at large r.
The new potential is then re-introduced in the calculation not directly but as

a linear combination of the old and the new potential. This is the simplest tech-
nique to ensure that the self-consistent procedure converges. It is not needed
in this case, but in most cases it is: there is no guarantee that re-inserting the
new potential in input will lead to convergence. We can write

Ṽ in,new
H (r) = βṼ out

H (r) + (1− β)Ṽ in
H (r), (6.33)

where 0 < β ≤ 1. The procedure is iterated (repeated) until convergence is
achieved. The latter is verified on the “variational correction” descrived below,
but other choices are possible (e.g. the norm – the square root of the integral
of the square – of Ṽ out

H (r)− Ṽ in
H (r)).

In output the code prints the eigenvalue ε1 of Eq.6.29, plus various terms of
the energy, with rather obvious meaning except the term Variational correction:

δE =

∫
(Ṽ in
H (r)− Ṽ out

H (r))ρ(r)d3r. (6.34)

This term accounst for the fact that eigenvalues are calculated using the input
potential, while other energy terms are calculated using the output potential.
By adding this correction, the energy obtained from the eigenvalue sum as in

2http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/helium hf radial.f90
3http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/helium hf radial.c
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Eq.(6.27) is the same as the one obtained using Eq.(6.25), also far from self-
consistency. The two values of the energy are printed side by side.

Also noticeable is the ”virial check”: for a Coulomb potential, the virial
theorem states that 〈T 〉 = −〈V 〉/2, where the two terms are respectively the
average values of the kinetic and the potential energy. It can be demonstrated
that the Hartree-Fock solution obeys the virial theorem.

6.2.1 Laboratory

• Observe the behavior of self-consistency, verify that the energy (but not
any single term of the energy!) decreases monotonically. Also note that
the self-consistency error (the “variational correction” term) decreases
exponentially with the number of iterations.

• Compare the energy obtained with this and with other methods: per-
turbation theory with hydrogen-like wave functions (E = −5.5 Ry, Sect.
D.1), variational theory with effective Z (E = −5.695 Ry, Sect. D.2),
best numerical Hartree(-Fock) result (E = −5.72336 Ry, as found in the
literature), experimental result (E = −5.8074 Ry).

• Make a plot of orbitals (file wfc.out) for different n and `. Note that
the orbitals and the corresponding eigenvalues become more and more
hydrogen-like for higher n. Can you explain why?

• If you do not know how to answer the previous question: make a plot
of Vscf (file pot.out) and compare its behavior with that of the −Zq2

e/r
term. What do you notice?

• Plot the 1s orbital together with those calculated by hydrogen radial

for Hydrogen (Z = 1), He+ (Z = 2), and for a Z = 1.6875. See Sect. D.2
if you cannot make sense of the results.
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Chapter 7

Molecules

In this chapter we consider the simplest case of a molecular system. From a
formal point of view, a molecule is a system of interacting electrons and nu-
clei. We first introduce the adiabatic, or Born-Oppenheimer, approximation,
enabling to split the starting problem into the solution of the problem of elec-
trons under the field of nuclei, and the solution of the problem of nuclei under
an effective potential - the Potential Energy Surface, or PES, depending upon
the electronic state and energy.

The electronic problem can be solved, as a function of nuclear positions,
using the methods introduced in the previous sections. Here the solution for
the simplest molecule, H2, is obtained using the Hartree-Fock method and a
Gaussian basis set. The relation with the Molecular Orbital theory, as well as
the limitation of the Hartree-Fock approximation, will become clear.

7.1 Born-Oppenheimer approximation

Let us consider a system of interacting nuclei and electrons. In general, the
Hamiltonian of the system will depend upon all nuclear coordinates, Rµ, and
all electronic coordinates, ri. For a system of n electrons under the field of N
nuclei with charge Zµ, in principle one has to solve the following Schrödinger
equation:

(TI + VII + VeI + Te + Vee) Ψ(Rµ, ri) = EΨ(Rµ, ri) (7.1)

where TI is the kinetic energy of nuclei, VII is the Coulomb repulsion between
nuclei, VeI is the Coulomb attraction between nuclei and electrons, Te is the
kinetic energy of electrons, Vee is the Coulomb repulsion between electrons:

TI = −
∑

µ=1,N

h̄2

2Mµ
∇2
µ, Te = −

∑
i=1,n

h̄2

2m
∇2
i , VII =

q2
e

2

∑
µ6=ν

ZµZν
|Rµ −Rν |

,

Vee =
q2
e

2

∑
i 6=j

1

|ri − rj |
, VeI = −q2

e

∑
µ=1,N

∑
i=1,n

Zµ
|Rµ − ri|

. (7.2)

This looks like an impressive problem. It is however possible to exploit the mass
difference between electrons and nuclei to separate the global problem into an
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electronic problem for fixed nuclei and a nuclear problem under an effective
potential generated by electrons. Such separation is known as adiabatic or Born-
Oppenheimer approximation. The crucial point is that the electronic motion
is much faster than the nuclear motion: while forces on nuclei and electrons
have the same order of magnitude, an electron is at least ∼ 2000 times lighter
than any nucleus. We can thus assume that at any time the electrons ”follow”
the nuclear motion, while the nuclei at any time ”feel” an effective potential
generated by electrons. Formally, we assume a wave function of the form

Ψ(Rµ, ri) = Φ(Rµ)ψ
(l)
R (ri) (7.3)

where the electronic wave function ψ
(l)
R (ri) solves the following Schrödinger

equation:

(Te + Vee + VeI)ψ
(l)
R (ri) = E

(l)
R ψ

(l)
R (ri). (7.4)

The index R is a reminder that both the wave function and the energy depend
upon the nuclear coordinates, via VeI ; the index l classifies electronic states.
We now insert the wave function, Eq.(7.3), into Eq.(7.1) and notice that Te
does not act on nuclear variables. We will get the following equation:(

TI + VII + E
(l)
R

)
Φ(Rµ)ψ

(l)
R (ri) = EΦ(Rµ)ψ

(l)
R (ri). (7.5)

If we now neglect the dependency upon R of the electronic wave functions in
the kinetic term:

TI
(
Φ(Rµ)ψ

(l)
R (ri)

)
' ψ(l)

R (ri) (TIΦ(Rµ)) . (7.6)

we obtain a Schrödinger equation for nuclear coordinates only:(
TI + VII + E

(l)
R

)
Φ(Rµ) = EΦ(Rµ), (7.7)

where electrons have ”disappeared” into the eigenvalue E
(l)
R . The term VII+E

(l)
R

plays the role of effective interaction potential between nuclei. Of course such
potential, as well as eigenfunctions and eigenvalues of the nuclear problem,
depends upon the particular electronic state.

The Born-Oppenheimer approximation is very well verified, except the spe-
cial cases of non-adiabatic phenomena (that are very important, though). The
main neglected term in Eq.7.6 has the form

∑
µ

h̄2

Mµ
(∇µΦ(Rµ))

(
∇µψ(l)

R (ri)
)

(7.8)

and may if needed be added as a perturbation.

7.2 Potential Energy Surface

The Born-Oppenheimer approximation allows us to separately solve a Schrö-
dinger equation for electrons, Eq.(7.4), as a function of atomic positions, and
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a problem for nuclei only, Eq.(7.7). The latter is in fact a Schrödinger equa-
tion in which the nuclei interact via an effective interatomic potential, V (Rµ) ≡
VII+E(l), a function of the atomic positions Rµ and of the electronic state. The
interatomic potential V (Rµ) is also known as potential energy surface (“poten-
tial” and “potential energy” are in this context synonyms), or PES. It is clear
that the nuclear motion is completely determined by the PES (assuming that
the electron states does not change with time) since forces acting on nuclei are
nothing but the gradient of the PES:

Fµ = −∇µV (Rµ), (7.9)

while equilibrium positions for nuclei, labelled with R
(0)
µ , are characterized by

zero gradient of the PES (and thus of any force on nuclei):

Fµ = −∇µV (R(0)
µ ) = 0. (7.10)

In general, there can be many equilibrium points, either stable (a minimum:
any displacement from the equilibrium point produces forces opposed to the
displacement, i.e. the second derivative is positive everywhere) or unstable (a
maximum or a saddle point: for at least some directions of displacement from
equilibrium, there are forces in the direction of the displacement, i.e. there
are negative second derivatives). Among the various minima, there will be a
global minimum, the lowest-energy one, corresponding to the ground state of
the nuclear system, for a given electronic state. If the electronic state is also
the ground state, this will be the ground state of the atomic system. All other
minima are local minima, that is, metastable states that the nuclear system can
leave by overcoming a potential barrier.

7.3 Diatomic molecules

Let us consider now the simple case of diatomic molecules, and in particular,
the molecule of H2. There are 6 nuclear coordinates, 3 for the center of mass
and 3 relative to it, but just one, the distance R between the nuclei, determines
the effective interatomic potential V (R) (the PES is in fact invariant, both
translationally and rotationally). Given a distance R, we may solve Eq.(7.4)
for electrons, find the l-th electronic energy level E(l)(R) and the corresponding
interatomic potential V (R) = EII(R)+E(l)(R). Note that the nuclear repulsion
energy EII(R) is simply given by

EII(R) =
q2
eZ1Z2

R
(7.11)

where Z1 and Z2 are nuclear charges for the two nuclei.
Let us consider the electronic ground state only for H2 molecule. At small

R, repulsion between nuclei is dominant, V (R) becomes positive, diverging like
q2
e/R for R → 0. At large R, the ground state becomes that of two neutral

H atoms, thus V (R) ' 2Ry. At intermediate R, the curve has a minimum at
about R0 = 0.74Å, with V (R0) ' V (∞) − 4.5eV. Such value – the difference
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between the potential energy of atoms at large distances and at the minimum,
is known as cohesive or binding energy. The form of the interatomic potential is
reminiscent of that of model potentials like Morse (in fact such potentials were
proposed to model binding).

What is the electronic ground state for R ∼ R0? We can get an idea by
using the method of molecular orbitals: an approximate solution in which single-
electron states are formed as linear combinations of atomic states centered
about the two nuclei. Combinations with the same phase are called ligand, as
they tend to accumulate charge in the region of space between the two nuclei.
Combinations with opposite phase are called antiligand, since they tend to
deplete charge between the nuclei. Starting from molecular orbitals, one can
build the wave function as a Slater determinant. Two ligand states of opposite
spin, built as superpositions of 1s states centered on the two nuclei (σ orbitals),
yield a good approximation to the ground state. By construction, the total spin
of the ground state is zero.

Molecular orbitals theory can explain qualitatively the characteristics of the
ground (and also excited) states, for the homonuclear dimer series (i.e. formed
by two equal nuclei). It is however no more than semi-quantitative; for better
results, one has to resort to the variational method, typically in the framework
of Hartree-Fock or similar approximations. Orbitals are expanded on a basis
set of functions, often atom-centered Gaussians or atomic orbitals, and the
Hartree-Fock or similar equations are solved on this basis set.

7.4 Rothaan-Hartree-Fock equations

In general, one speaks of Restricted Hartree-Fock (RHF) for the frequent case in
which all orbitals are present in pairs, formed by a same function of r, multiplied
by spin functions of opposite spin. In the following, this will always be the case.

The RHF equations can be recast into the following form:

Fφk = εkφk, k = 1, . . . , N/2 (7.12)

The index k labels the coordinate parts of the orbitals; for each k there is
a spin-up and a spin-down orbital. F is called the Fock operator. This is of
course a non-local operator which depends upon all orbitals φk. Explicitly, from
Eqs.(6.18):

Fφk(r1) ≡ h̄2

2me
∇2

1φk(r1)− Zq2
e

r1
φk(r1) + 2

∑
j

∫
φ∗j (r2)

q2
e

r12
φj(r2)dr2φk(r1)

−
∑
j

∫
φj(r1)

q2
e

r12
φ∗j (r2)dr2φk(r2). (7.13)

Let us look now for a solution under the form of an expansion on a basis of

functions: φk(r) =
∑M

1 c
(k)
i bi(r). We find the Rothaan-Hartree-Fock equations:

Fc(k) = εkSc(k) (7.14)

58



where c(k) = (c
(k)
1 , c

(k)
2 , . . . , c

(k)
M ) is the vector of the expansion coefficients, S is

the superposition matrix, F is the matrix of the Fock operator on the basis set
functions:

Fij = 〈bi|F|bj〉, Sij = 〈bi|bj〉. (7.15)

that after some algebra can be written as

Fij = fij +
∑
l

∑
m

2

N/2∑
k=1

c
(k)∗
l c(k)

m

(giljm − 1

2
gijlm

)
, (7.16)

where, with the notations introduced in this chapter:

fij =

∫
b∗i (r1)f1bj(r1)d3r1, (7.17)

giljm =

∫
b∗i (r1)bj(r1)g12b

∗
l (r2)bm(r2)d3r1d

3r2. (7.18)

The sum over states between parentheses in Eq.(7.16) is called density matrix.
The two terms in the second parentheses come respectively from the Hartree
and the exchange potentials.

The problem of Eq.(7.14) is more complex than a normal secular problem
solvable by diagonalization, since the Fock matrix, Eq.(7.16), depends upon its
own eigenvectors. It is however possible to reconduct the solution to a self-
consistent procedure, in which at each step a fixed matrix is diagonalized (or,
for a non-orthonormal basis, a generalized diagonalization is performed at each
step).

For matrix elements between Gaussians centered around the same centers,
one can easily find analytical results, using the basic ingredients already used
for code hydrogen gauss. We need an expression for the giljm matrix ele-
ments introduced in Eq.(7.18). Using the properties of products of Gaussians,
Eq.(5.16), these can be written in terms of the integral

I =

∫
e−αr

2
1e−βr

2
2

1

r12
d3r1d

3r2. (7.19)

Let us look for a variable change that makes (r1−r2)2 to appear in the exponent
of the Gaussians:

αr2
1 + βr2

2 = γ
[
(r1 − r2)2 + (ar1 + br2)2

]
(7.20)

=
αβ

α+ β

(r1 − r2)2 +

√α

β
r1 +

√
β

α
r2

2
 . (7.21)

Let us now introduce a further variable change from (r1, r2) to (r, s), where

r = r1 − r2, s =

√
α

β
r1 +

√
β

α
r2; (7.22)

The integral becomes

I =

∫
e
− αβ
α+β

r2 1

r
e
− αβ
α+β

s2
∣∣∣∣∂(r1, r2)

∂(r, s)

∣∣∣∣ d3rd3s, (7.23)
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where the Jacobian is easily calculated as the determinant of the transformation
matrix, Eq.(7.22): ∣∣∣∣∂(r1, r2)

∂(r, s)

∣∣∣∣ =

( √
αβ

α+ β

)3

. (7.24)

The calculation of the integral is trivial and provides the required result:

giljm =
2π5/2q2

e

αβ(α+ β)1/2
(7.25)

where α = αi + αj , β = αl + αm.

7.4.1 Multi-center Gaussian integrals

Matrix elements involving Gaussians centered around different centers are less
straightforward to compute. A complete derivation can be found at pages 77-81
of the book of Thijssen. The following is a quick summary.

We use a basis set of gaussian functions, in which the index now labels not
only the coefficient of the Gaussian but also the center (one of the two nuclei
in practice):

bi(r) = exp
(
−αi(r−Ri)

2
)
. (7.26)

The following theorem for the product of two Gaussians:

exp
(
−αi(r−Ri)

2
)
× exp

(
−αj(r−Rj)

2
)

= Kij exp
[
−(αi + αj)(r−Rij)

2
]
,

(7.27)
where

Kij = exp

[
− αiαj
αi + αj

|Ri −Rj |2
]
, Rij =

αiRi + αjRj

αi + αj
(7.28)

allows to calculate the superposition integrals as follows:

Sij =

∫
bi(r)bj(r)d3r =

(
π

αi + αj

)3/2

Kij . (7.29)

The kinetic contribution can be calculated using the Green’s theorem:

Tij = −
∫
bi(r)∇2bj(r)d3r =

∫
∇bi(r)∇bj(r)d3r (7.30)

and finally

Tij =
αiαj
αi + αj

[
6− 4

αiαj
αi + αj

|Ri −Rj |2
]
Sij . (7.31)

The calculation of the Coulomb interaction term with a nucleus in R is more
complex and requires to go through Laplace transforms. At the end one gets
the following expression:

Vij = −
∫
bi(r)

1

|r−R|
bj(r)d3r = −Sij

1

|Rij −R|
erf
(√

αi + αj |Rij −R|
)
.

(7.32)
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In the case Rij −R = 0 we use the limit erf(x)→ 2x/
√
π to obtain

Vij = − 2π

αi + αj
Kij , Rij −R = 0 (7.33)

which reduces for Ri = Rj = R to Eq.(5.29). The bi-electronic integrals
introduced in the previous chapter, Eq.(7.18), can be calculated using a similar
technique:

giljm =

∫
bi(r)bj(r)

1

|r− r′|
bl(r

′)bm(r′)d3rd3r′ (7.34)

= SijSlm
1

|Rij −Rlm|
erf

(√
(αi + αj)(αl + αm)

αi + αj + αl + αm
|Rij −Rlm|

)

(beware indices!).
Although symmetry is not used in the code, it can be used to reduce by a

sizable amount the number of bi-electronic integrals giljm. They are obviously
invariant under exchange of i, j and l,m indices. This means that if we have
N basis set functions, the number of independent matrix elements is not N4

but M2, where M = N(N + 1)/2 is the number of pairs of (i, j) and (l,m)
indices. The symmetry of the integral under exchange of r and r′ leads to
another symmetry: giljm is invariant under exchange of the (i, j) and (l,m)
pairs. This further reduces the independent number of matrix elements by a
factor 2, to M(M + 1)/2 ∼ N4/8.

7.5 Code: h2 hf gauss

Code h2 hf gauss.f901 (or h2 hf gauss.c2) solves the Hartree-Fock equations
for the ground state of the H2 molecule, using a basis set of S Gaussians. The
basis set is composed of two sets of Gaussians, one centered around nucleus 1
and one centered around nucleus 2. As a consequence, the overlap matrix and
the matrix element of the Fock matrix contain terms (multi-centered integrals)
in which the nuclear potential and the two basis functions are not centered on
the same atom.

The code requires in input a set of Gaussians coefficients (with the same
format as in hydrogen gauss); then it solves the SCF equations at interatomic
distances dmin, dmin + δd, dmin + 2δd, . . ., dmax (the parameters dmin, dmax,
δd have to be provided in input). It prints on output and on file h2.out the
electronic energy (not to be confused with the Hartree-Fock eigenvalue), nuclear
repulsive energy, the sum of the two (usually referred to as “total energy”), all
in Ry; finally, the difference between the total energy and the energy of the
isolated atoms at infinite distance, in eV.

Note that h2 hf gauss.f90 also solves the H+
2 case if the variable do scf

is set to .false.. In this case the Schrödinger equation is solved, without any
SCF procedure.

1http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/h2 hf gauss.f90
2http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/h2 hf gauss.c
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The self-consistent procedure is even simpler than in code helium hf radial:
at each step, the Fock matrix is re-calculated using the density matrix at the
preceding step, with no special tricks or algorithms, until energy converges
within a given numerical threshold.

7.5.1 Laboratory

• Chosen a basis set that yields a good description of isolated atoms, find the
equilibrium distance by minimizing the (electronic plus nuclear) energy.
Verify how sensitive the result is with respect to the dimension of the
basis set. Note that the “binding energy” printed on output is calculated
assuming that the isolated H atom has an energy of -1 Ry, but you should
verify what the actual energy of the isolated H atom is for your basis set.

• Make a plot of the ground state molecular orbital at the equilibrium
distance along the axis of the molecule. For a better view of the binding,
you may also try to make a two-dimensional contour plot on a plane
containing the axis of the molecule. You need to write a matrix on a
uniform two-dimensional N x M grid in the following format:

x_0 y_0 \psi(x_0,y_0)

...

x_N y_0 \psi(x_N,y_0)

(blank line)

x_0 y_1 \psi(x_0,y_1)

...

x_N y_1 \psi(x_N,y_1)

(blank line)

...

and gnuplot commands set contour; unset surface; set view 0, 90

followed by splot ”file name” u 1:2:3 w l

• Plot the ground state molecular orbital, together with a ligand combi-
nation of 1s states centered on the two H nuclei (obtained from codes
for hydrogen). You should find that slightly contracted Slater orbitals,
corresponding to Z = 1.24, yield a better fit than the 1s of H. Try the
same for the first excited state of H2 and the antiligand combination of
1s states.

• Study the limit of superposed atoms (R→ 0) and compare with the results
of code hydrogen gauss and helium hf radial. The limit of isolated
atoms (R→∞) will instead yield strange results. Can you explain why?
What do you expect to be wrong in the Slater determinant in this limit?

• Can you estimate the vibrational frequency of H2?
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Chapter 8

Electrons in periodic potential

The computation of electronic states in a solid is a nontrivial problem. A great
simplification can be achieved if the solid is a crystal, i.e. if it can be described
by a regular, periodic, infinite arrangement of atoms: a crystal lattice. In this
case, under suitable assumptions, it is possible to re-conduct the solution of the
many-electron problem (really many: O(1023)!) to the much simpler problem
of an electron under a periodic potential. Periodicity can be mathematically
formalized in a simple and general way in any number of dimensions, but in the
following we will consider a one-dimensional model case, that still contains the
main effects of periodicity on electrons.

8.1 Crystalline solids

Let us consider an infinite periodic system of “atoms”, that will be represented
by a potential, centered on the atomic position. This potential will in some
way – why and how being explained in solid-state physics books – the effec-
tive potential (or crystal potential) felt by an electron in the crystal. We will
consider only valence electrons, i.e. those coming from outer atomic shells.
Core electrons, i.e. those coming from inner atomic shells, are tightly bound
to the atomic nucleus: their state is basically atomic-like and only marginally
influenced by the presence of other atoms. We assume that the effects of core
electrons can be safely included into the crystal potential. The pseudopotential
approach formalizes the neglect of core electrons.

The assumption that core electrons do not significantly contribute to the
chemical binding and that their state does not significantly change with respect
to the case of isolated atoms is known as frozen-core approximation. This is
widely used for calculations in molecules as well and usually very well verified
in practice.

We also consider independent electrons, assuming implicitly that the crystal
potential takes into account the Coulomb repulsion between electrons. The aim
of such simplification is to obtain an easily solvable problem that still captures
the essence of the physical problem. With a judicious choice of the crystal
potential, we can hope to obtain a set of electronic levels that can describe the
main features of the crystal. A rigorous basis for such approach can be provided
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by Hartree-Fock or Density-Functional theory. In the end, the basic step is to
solve to the problem of calculating the energy levels in a periodic potential.

We haven’t yet said anything about the composition and the periodicity of
our system. Let us simplify further the problem and assume a one-dimensional
array of atoms of the same kind, regularly spaced by a distance a. The atomic
position of atom n will thus be given as an = na, with n running on all integer
numbers, positive and negative. In the jargon of solid-state physics, a is the
lattice parameter, while the an are the vectors of the crystal lattice. The system
has a discrete translational invariance, that is: it is equal to itself if trans-
lated by a or multiples of a. Called V (x) the crystal potential, formed by the
superposition of atomic-like potentials: V (x) =

∑
n Vn(x − an), the following

symmetry holds: V (x+a) = V (x). Such symmetry plays a very important role
in determining the properties of crystalline solids. Our one-dimensional space
(the infinite line) can be decomposed into finite regions (segments) of space, of
length a, periodically repeated. A region having such property is called unit
cell, and the smallest possible unit cell is called primitive cell. Its definition
contains some degree of arbitrariness: for instance, both intervals [0, a[ and
]− a/2,+a/2] define a valid primitive cell in our case.

8.1.1 Periodic Boundary Conditions

Before starting to look for a solution, we must ask ourselves how sensible it is
to apply such idealized modelling to a real crystal. The latter is formed by a
macroscopically large (in the order of the Avogadro number or fractions of it)
but finite number of atoms. We might consider instead a finite system con-
taining N atoms with N →∞, but this is not a convenient way: translational
symmetry is lost, due to the presence of surfaces (in our specific 1D case, the
two ends). A much more convenient and formally correct approach is to intro-
duce periodic boundary conditions (PBC). Let us consider the system in a box
with dimensions L = Na and let us consider solutions obeying to the condition
ψ(x) = ψ(x+ L), i.e. periodic solutions with period L >> a. We can imagine
our wave function that arrives at one end “re-enters” from the other side. In the
one-dimensional case there is a simple representation of the system: our atoms
are distributed not on a straight line but on a ring, with atom N between atom
N − 1 and atom 1.

The advantage of PBC is that we can treat the system as finite (a segment
of length L in the one-dimensional case) but macroscopically large (having N
atoms, with N macroscopically large if a is a typical interatomic distance and
L the typical size of a piece of crystal), still retaining the discrete translational
invariance. Case N →∞ describes the so-called thermodynamical limit. It is to
be noticed that a crystal with PBC has no surface. As a consequence there is no
“inside” and “outside” the crystal: the latter is not contemplated. This is the
price to pay for the big advantage of being able to use translational symmetry.

In spite of PBC and of translational symmetry, the solution of the Schrö-
dinger equation for a periodic potential does not yet look like a simple problem.
We will need to find a number of single-particle states equal to at least half the
number of electrons in the system, assuming that the many-body wave function
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is build as an anti-symmetrized product of single-electron states taken as spin-
up and spin-down pairs (as in the case of He and H2). Of course the resulting
state will have zero magnetization (S = 0). The exact number of electrons in a
crystal depends upon its atomic composition. Even if we assume the minimal
case of one electron per atom, we still have N electrons and we need to calculate
N/2 states, with N → ∞. How can we deal with such a macroscopic number
of states?

8.1.2 Bloch Theorem

At this point symmetry theory comes to the rescue under the form of the Bloch
theorem. Let us indicate with T the discrete translation operator: T ψ(x) =
ψ(x+ a). What is the form of the eigenvalues and eigenvectors of T ? It can be
easily verified (and rigorously proven) that T ψ(x) = λψ(x) admits as solution
ψk(x) = exp(ikx)uk(x), where k is a real number, uk(x) is a periodic function
of period a: uk(x + a) = uk(x). This result is easily generalized to three
dimensions, where k is a vector: the Bloch vector. States ψk are called Bloch
states. It is easy to verify that for Bloch states the following relation hold:

ψk(x+ a) = ψk(x)eika. (8.1)

Let us classify our solution using the Bloch vector k (in our case, a one-
dimensional vector, i.e. a number). The Bloch vector is related to the eigenvalue
of the translation operator (we remind that H and T are commuting opera-
tors). Eq.(8.1) suggests that all k differing by a multiple of 2π/a are equivalent
(i.e. they correspond to the same eigenvalue of T ). It is thus convenient to
restrict to the following interval of values for k: k: −π/a < k ≤ π/a. Values
of k outside such interval are brought back into the interval by a translation
Gn = 2πn/a.

We must moreover verify that our Bloch states are compatible with PBC.
It is immediate to verify that only values of k such that exp(ikL) = 1 are
compatible with PBC, that is, k must be an integer multiple of 2π/L. As
a consequence, for a finite number N of atoms (i.e. for a finite dimension
L = Na of the box), there are N admissible values of k: kn = 2πn/L, con
n = −N/2, ..., N/2 (note that k−N/2 = −π/a is equivalent to kN/2 = π/a). In
the thermodynamical limit, N → ∞, these N Bloch vectors will form a dense
set between −π/a and π/a, in practice a continuum.

8.1.3 The empty potential

Before moving towards the solution, let us consider the case of the simplest
potential one can think of: the non-existent potential, V (x) = 0. Our system
will have plane waves as solutions: ψk(x) = (1/

√
L)exp(ikx), where the factor

ensure the normalization. k may take any value, as long as it is compatible
with PBC, that is, k = 2πn/L, with n any integer. The energy of the solution
with wave vector k will be purely kinetic, and thus:

ψk(x) =
1√
L
eikx, ε(k) =

h̄2k2

2m
. (8.2)
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In order to obtain the same description as for a periodic potential, we simply
“refold” the wave vectors k into the interval −π/a < k ≤ π/a, by applying
the translations Gn = 2πn/a. Let us observe the energies as a function of the
“refolded” k, Eq.(8.2): for each value of k in the interval −π/a < k ≤ π/a there
are many (actually infinite) states with energy given by εn(k) = h̄2(k+Gn)2/2m.
The corresponding Bloch states have the form

ψk,n(x) =
1√
L
eikxuk,n(x), uk,n(x) = eiGnx. (8.3)

The function uk,n(x) is by construction periodic. Notice that we have moved
from an “extended” description, in which the vector k covers the entire space, to
a “reduced” description in which k is limited between −π/a and π/a. Also for
the space of vectors k, we can introduce a “unit cell”, ]−π/a, π/a], periodically
repeated with period 2π/a. Such cell is also called Brillouin Zone (BZ). It is
immediately verified that the periodicity in k-space is given by the so-called
reciprocal lattice: a lattice of vectors Gn such that Gn · am = 2πp, where p is
an integer.

8.1.4 Solution for the crystal potential

Let us now consider the case of a “true”, non-zero periodic potential: we can
think at it as a sum of terms centered on our “atoms”‘:

V (x) =
∑
n

v(x− na), (8.4)

but this is not strictly necessary. We observe first of all that the Bloch theorem
allows the separation of the problem into independent sub-problems for each k.
If we insert the Bloch form, Eq.(8.1), into the Schrödinger equation:

(T + V (x))eikxuk(x) = Eeikxuk(x), (8.5)

we get an equation for the periodic part uk(x):[
h̄2

2m

(
k2 − 2ik

d

dx
− d2

dx2

)
+ V (x)− E

]
uk(x) = 0 (8.6)

that has in general an infinite discrete series of solutions, orthogonal between
them: ∫ L/2

−L/2
u∗k,n(x)uk,m(x)dx = δnmN

∫ a/2

−a/2
|uk,n(x)|2dx, (8.7)

where we have made usage of the periodicity of functions u(x) to re-conduct the
integral on the entire crystal (from −L/2 to L/2) to an integration on the unit
cell only (from −a/2 to a/2). In the following, however, we are not going to use
such equations. Notice that the solutions having different k are by construction
orthogonal. Let us write the superposition integral between Bloch states for
different k:∫ L/2

−L/2
ψ∗k,n(x)ψk′,m(x)dx =

∫ L/2

−L/2
ei(k

′−k)xu∗k,n(x)uk′,m(x)dx (8.8)

=

(∑
p

eip(k
′−k)a

)∫ a/2

−a/2
ei(k

′−k)xu∗k,n(x)uk′,m(x)dx,
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where the sum over p runs over all the N vectors of the lattice. The purely
geometric factor multiplying the integral differs from zero only if k and k′

coincide: ∑
p

eip(k
′−k)a = Nδk,k′ . (8.9)

We have used Kronecker’s delta, not Dirac’s delta, because the k form a dense
but still finite set (there are N of them). We note that the latter orthogonality
relation holds irrespective of the periodic part u(x) of Bloch states. There is no
reason to assume that the periodic parts of the Bloch states at different k are
orthogonal: only those for different Bloch states at the same k are orthogonal
(see Eq.(8.7)).

8.1.5 Plane-wave basis set

Let us come back to the numerical solution. We look for the solution using
a plane-wave basis set. This is especially appropriate for problems in which
the potential is periodic. We cannot choose “any” plane-wave set, though:
the correct choice is restricted by the Bloch vector and by the periodicity of
the system. Given the Bloch vector k, the “right” plane-wave basis set is the
following:

bn,k(x) =
1√
L
ei(k+Gn)x, Gn =

2π

a
n. (8.10)

The “right” basis must in fact have a exp(ikx) behavior, like the Bloch states
with Bloch vector k; moreover the potential must have nonzero matrix elements
between plane waves. For a periodic potential like the one in Eq.(8.4), matrix
elements:

〈bi,k|V |bj,k〉 =
1

L

∫ L/2

−L/2
V (x)e−iGxdx (8.11)

=
1

L

(∑
p

e−ipGa
)∫ a/2

−a/2
V (x)e−iGxdx, (8.12)

where G = Gi −Gj , are non-zero only for a discrete set of values of G. In fact,
the factor

∑
p e
−ipGa is zero except when Ga is a multiple of 2π, i.e. only on

the reciprocal lattice vectors Gn defined above. One finally finds

〈bi,k|V |bj,k) =
1

a

∫ a/2

−a/2
V (x)e−i(Gi−Gj)xdx. (8.13)

The integral is calculated in a single unit cell and, if expressed as a sum of
atomic terms localized in each cell, for a single term in the potential. Note that
the factor N cancels and thus the N →∞ thermodynamic limit is well defined.

In the simple case that will be presented, the matrix elements of the Hamilto-
nian, Eq.(8.13), can be analytically computed by straight integration. Another
case in which an analytic solution is known is a crystal potential written as a
sum of Gaussian functions:

V (x) =
N−1∑
p=0

v(x− pa), v(x) = Ae−αx
2
. (8.14)
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This yields

〈bi,k|V |bj,k〉 =
1

a

∫ L/2

−L/2
Ae−αx

2
e−iGxdx (8.15)

The integral is known (it can be calculated using the tricks and formulae given
in previous sections, extended to complex plane):∫ ∞

−∞
e−αx

2
e−iGxdx =

√
π

α
e−G

2/4α (8.16)

(remember that in the thermodynamical limit, L→∞).

Fast Fourier Transform

For a generic potential, one has to resort to numerical methods to calculate the
integral. One advantage of the plane-wave basis set is the possibility to exploit
the properties of Fourier Transforms (FT).

Let us discretize our problem in real space, by introducing a grid of n points
xi = ia/n, i = 0, n−1 in the unit cell. Note that due to periodicity, grid points
with index i ≥ n or i < 0 are “refolded” into grid points in the unit cell (that
is, V (xi+n) = V (xi), and in particular, xn is equivalent to x0. Let us introduce
the function fj defined as follows:

fj =
1

L

∫
V (x)e−iGjxdx, Gj = j

2π

a
, j = 0, n− 1. (8.17)

We can exploit periodicity to show that

fj =
1

a

∫ a

0
V (x)e−iGjxdx. (8.18)

This is nothing but the FT f̃(Gj), with a slightly different factor (1/a instead
of 1/

√
a) with respect to the definition of Eq.(4.43). Note that the integration

limits can be translated at will, again due to periodicity. Let us write now such
integrals as a finite sum over grid points (with ∆x = a/n as finite integration
step):

fj =
1

a

n−1∑
m=0

V (xm)e−iGjxm∆x

=
1

n

n−1∑
m=0

V (xm)e−iGjxm

=
1

n

n−1∑
m=0

Vm exp[−2π
jm

n
i], Vm ≡ V (xm). (8.19)

Notice that the FT is now a periodic function in the variable G, with period
Gn = 2πn/a! This shouldn’t come as a surprise though: the FT of a periodic
function is a discrete function, the FT of a discrete function is periodic.
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It is easy to verify that the potential in real space can be obtained back
from its FT as follows:

V (x) =
n−1∑
j=0

fje
iGjx, (8.20)

yielding the inverse FT in discretized form:

Vj =
n−1∑
m=0

fm exp[2π
jm

n
i], j = 0, n− 1. (8.21)

The two operations of Eq.(8.19) and (8.21) are called Discrete Fourier Trans-
form. One may wonder where have all the G vectors with negative values gone:
after all, we would like to calculate fj for all j such that |Gj |2 < Ec (for some
suitably chosen value of Ec), not for Gj with j ranging from 0 to n − 1. The
periodicity of the discrete FT in both real and reciprocal space however allows
to refold the Gj on the “right-hand side of the box”, so to speak, to negative
Gj values, by making a translation of 2πn/a.

The discrete FT of a function defined on a grid of n points requires O(n2)
operations: a sum over n terms for each of the n points. There is however
a recursive version of the algorithm, the Fast FT or FFT, which can do the
transform in O(n log n) operations. The difference may not seem so important
but it is: the FFT is at the heart of many algorithms used in different fields.

An example of usage of FFTs is provided in codes testfft.f901 and
testfft.c2. Their compilation and linking requires the FFTW3 v.3 library.
If properly installed on your system, it is sufficient to specify -lfftw3. In some
cases you may need to specify -I followed by the directory where files to be
included: fftw3.f034 for Fortran, fftw3.h5 for C, can be found. Note that
Intel MKL libraries contain, in addition to all BLAS and LAPACK, FFTW3
routines as well.

8.2 Code: periodicwell

Let us now move to the practical solution of a “true”, even if model, potential:
the periodic potential well, known in solid-state physics since the thirties under
the name of Kronig-Penney model:

V (x) =
∑
n

v(x− na), v(x) = −V0 |x| ≤ b

2
, v(x) = 0 |x| > b

2
(8.22)

and of course a ≥ b. Such model is exactly soluble in the limit b→ 0, V0 →∞,
V0b→constant.

The needed ingredients for the solution in a plane-wave basis set are almost
all already found in Sec.(4.3) and (4.4), where we have shown the numerical

1http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/testfft.f90
2http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/testfft.c
3http://www.fftw.org
4http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/fftw3.f03
5http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/fftw3.h
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solution on a plane-wave basis set of the problem of a single potential well.
Code periodicwell.f906 (or periodicwell.c7) is in fact a trivial extension
of code pwell. Such code in fact uses a plane-wave basis set like the one
in Eq.(8.10), which means that it actually solves the periodic Kronig-Penney
model for k = 0. If we increase the size of the cell until this becomes large with
respect to the dimension of the single well, then we solve the case of the isolate
potential well.

The generalization to the periodic model only requires the introduction of
the Bloch vector k. Our base is given by Eq.(8.10). In order to choose when to
truncate it, it is convenient to consider plane waves up to a maximum (cutoff)
kinetic energy:

h̄2(k +Gn)2

2m
≤ Ecut. (8.23)

Bloch wave functions are expanded into plane waves:

ψk(x) =
∑
n

cnbn,k(x) (8.24)

and are automatically normalized if
∑
n |cn|2 = 1. The matrix elements of the

Hamiltonian are very simple:

Hij = 〈bi,k|H|bj,k〉 = δij
h̄2(k +Gi)

2

2m
+ Ṽ (Gi −Gj), (8.25)

where Ṽ (G) is the Fourier transform of the crystal potential, defined as in
Eq.(8.18). Code pwell may be entirely recycled and generalized to the solution
for Bloch vector k. It is convenient to introduce a cutoff parameter Ecut for the
truncation of the basis set. This is preferable to setting a maximum number of
plane waves, because the convergence depends only upon the modulus of k+G.
The number of plane waves, instead, also depends upon the dimension a of the
unit cell.

Code periodicwell requires in input the well depth, V0, the well width,
b, the unit cell length, a. Internally, a loop over k points covers the entire BZ
(that is, the interval [−π/a, π/a] in this specific case), calculates E(k), writes
the lowest E(k) values to files bands.out in an easily plottable format.

8.2.1 Laboratory

• Plot E(k), that goes under the name of band structure, or also dispersion.
Note that if the potential is weak (the so-called quasi-free electrons case),
its main effect is to induce the appearance of intervals of forbidden energy
(i.e.: of energy values to which no state corresponds) at the boundaries
of the BZ. In the jargon of solid-state physics, the potential opens a gap.
This effect can be predicted on the basis of perturbation theory.

• Observe how E(k) varies as a function of the periodicity and of the well
depth and width. As a rule, a band becomes wider (more dispersed, in

6http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/periodicwell.f90
7http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/periodicwell.c
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the jargon of solid-state physics) for increasing superposition of the atomic
states.

• Plot for a few low-lying bands the Bloch states in real space (borrow and
adapt the code from pwell). Remember that Bloch states are complex
for a general value of k. Look in particular at the behavior of states for
k = 0 and k = ±π/a (the “zone boundary”). Can you understand their
form?
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Chapter 9

Pseudopotentials

In general, the band structure of a solid will be composed both of more or less
extended states, coming from outer atomic orbitals, and of strongly localized
(core) states, coming from deep atomic levels. Extended states are the interest-
ing part, since they determine the (structural, transport, etc.) properties of the
solid. The idea arises naturally to get rid of core states by replacing the true
Coulomb potential and core electrons with a pseudopotential (or effective core
potential in Quantum Chemistry parlance): an effective potential that “mim-
ics” the effects of the nucleus and the core electrons on valence electrons. A big
advantage of the pseudopotential approach is to allow the usage of a plane-wave
basis set in realistic calculations.

9.1 Three-dimensional crystals

Let us consider now a more realistic (or slightly less unrealistic) model of a
crystal. The description of periodicity in three dimensions is a straightforward
generalization of the one-dimensional case, although the resulting geometries
may look awkward to an untrained eye. The lattice vectors, Rn, can be written
as a sum with integer coefficients, ni:

Rn = n1a1 + n2a2 + n3a3 (9.1)

of three primitive vectors, ai. There are 14 different types of lattices, known
as Bravais lattices. The nuclei can be found at all sites dµ + Rn, where dµ
runs on all atoms in the unit cell (that may contain from 1 to thousands of
atoms!). It can be demonstrated that the volume Ω of the unit cell is given by
Ω = a1 · (a2 × a3), i.e. the volume contained in the parallelepiped formed by
the three primitive vectors. We remark that the primitive vectors are in general
linearly independent (i.e. they do not lye on a plane) but not orthogonal.

The crystal is assumed to be contained into a box containing a macroscopic
number N of unit cells, with PBC imposed as follows:

ψ(r +N1a1 +N2a2 +N3a3) = ψ(r). (9.2)

Of course, N = N1 ·N2 ·N3 and the volume of the crystal is V = NΩ.
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A reciprocal lattice of vectors Gm such that Gm ·Rn = 2πp, with p integer,
is introduced. It can be shown that

Gm = m1b1 +m2b2 +m3b3 (9.3)

with mi integers and the three vectors bj given by

b1 =
2π

Ω
a2 × a3, b2 =

2π

Ω
a3 × a2, b3 =

2π

Ω
a1 × a2 (9.4)

(note that ai · bj = 2πδij). The Bloch theorem generalizes to

ψ(r + R) = eik·Rψ(r) (9.5)

where the Bloch vector k is any vector obeying the PBC. Bloch vectors are
usually taken into the three-dimensional Brillouin Zone (BZ), that is, the unit
cell of the reciprocal lattice. It is a straightforward exercise in vector algebra
to show that the volume ΩBZ of the Brillouin Zone is related to the volume of
the unit cell by ΩBZ = 8π3/Ω.

It can be shown that there are N Bloch vectors compatible with the box
defined in Eq.(9.2); in the thermodynamical limit N → ∞, the Bloch vector
becomes a continuous variable as in the one-dimensional case. We remark that
this means that at each k-point we have to “accommodate” ν electrons, where ν
is the number of electrons in the unit cell. For a nonmagnetic, spin-unpolarized
insulator, this means ν/2 filled states. In semiconductor physics, occupied states
are called “valence bands”, while empty states are called “conduction bands”.
We write the electronic states as ψk,i where k is the Bloch vector and i is the
band index.

9.2 Plane waves, core states, pseudopotentials

For a given lattice, the plane wave basis set for Bloch states of vector k is

bn,k(r) =
1√
V
ei(k+Gn)·r (9.6)

where Gn are reciprocal lattice vector. A finite basis set can be obtained, as
seen in the previous section, by truncating the basis set up to some cutoff on
the kinetic energy:

h̄2(k + Gn)2

2m
≤ Ecut. (9.7)

In realistic crystals, however, Ecut must be very large in order to get a good
description of the electronic states. The reason is the very localized character
of the core, atomic-like orbitals, and the extended character of plane waves.
Let us consider core states in a crystal: their orbitals will be very close to the
corresponding states in the atoms and will exhibit the same strong oscillations.
Moreover, these strong oscillations will be present in valence (i.e. outer) states
as well, because of orthogonality (for this reason these strong oscillations are
referred to as “orthogonality wiggles”). Reproducing highly localized functions
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that vary strongly in a small region of space requires a large number of delo-
calized functions such as plane waves.

Let us estimate how large is this large number using Fourier analysis. In
order to describe features which vary on a length scale δ, one needs Fourier
components up to qmax ∼ 2π/δ. In a crystal, our wave vectors q = k + G have
discrete values. There will be a number NPW of plane waves approximately
equal to the volume of the sphere of radius qmax, divided by the volume ΩBZ

of the unit cell of the reciprocal lattice, i.e. of the BZ:

NPW '
4πq3

max

3ΩBZ
. (9.8)

A simple estimate for diamond is instructive. The 1s orbital of the carbon atom
has its maximum around 0.3 a.u., so δ ' 0.1 a.u. is a reasonable value. Diamond
has a ”face-centered cubic” (fcc) lattice with lattice parameter a0 = 6.74 a.u.
and primitive vectors:

a1 = a0

(
0,

1

2
,
1

2

)
, a2 = a0

(
1

2
, 0,

1

2

)
, a3 = a0

(
1

2
,
1

2
, 0

)
. (9.9)

The unit cell has a volume Ω = a3
0/4, the BZ has a volume ΩBZ = (2π)3/(a3

0/4).
Inserting the data, one finds NPW ∼ 250, 000 plane wave, clearly too much for
practical use.

It is however possible to use a plane wave basis set in conjunction with
pseudopotentials: an effective potential that “mimics” the effects of the nucleus
and the core electrons on valence electrons. The true electronic valence orbitals
are replaced by “pseudo-orbitals” that do not have the orthogonality wiggles
typical of true orbitals. As a consequence, they are well described by a much
smaller number of plane waves.

Pseudopotentials have a long history, going back to the 30’s. Born as a
rough and approximate way to get decent band structures, they have evolved
into a sophisticated and exceedingly useful tool for accurate and predictive
calculations in condensed-matter physics.

9.3 Code: cohenbergstresser

Code cohenbergstresser.f901 (or cohenbergstresser.c2) implements the
calculation of the band structure in Si using the pseudopotentials published by
M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789 (1966). These are
“empirical” pseudopotentials, i.e. devised to reproduce available experimental
data, and not derived from first principles.

1http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/cohenbergstresser.f90
2http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/cohenbergstresser.c
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Si has the same crystal structure as Diamond:
a face-centered cubic lattice with two atoms in
the unit cell. In the figure, the black and red
dots identify the two sublattices. The side of
the cube is the lattice parameter a0. In the Di-
amond structure, the two sublattices have the
same composition; in the zincblende structure
(e.g. GaAs), they have different composition.

The origin of the coordinate system is arbitrary; typical choices are one of
the atoms, or the middle point between two neighboring atoms. We use the
latter choice because it yields inversion symmetry. The Si crystal can thus be
described 3 by three primitive vectors as in Eq.(9.9) with lattice parameter
a0 = 10.26 a.u., and two atoms in the unit cell at positions d1 = −d, d2 = +d,
where

d = a0

(
1

8
,
1

8
,
1

8

)
. (9.12)

The reciprocal lattice of the fcc lattice is a ”body-centered cubic” (bcc) lattice,
whose primitive vectors are

b1 =
2π

a0
(1, 1,−1) , b2 =

2π

a0
(1,−1, 1) , b3 =

2π

a0
(−1, 1, 1) (9.13)

(again, the choice is not unique).
Let us re-examine the matrix elements between plane waves of a potential V ,

given by a sum of spherically symmetric potentials Vµ centered around atomic
positions:

V (r) =
∑
n

∑
µ

Vµ(|r− dµ −Rn|) (9.14)

With some algebra, one finds:

〈bi,k|V |bj,k〉 =
1

Ω

∫
Ω
V (r)e−iG·rdr = VSi(G) cos(G · d), (9.15)

where G = Gi −Gj . The cosine term is a special case of a geometrical factor
known as structure factor, while VSi(G) is known as the atomic form factor:

VSi(G) =
1

Ω

∫
Ω
VSi(r)e

−iG·rdr. (9.16)

Cohen-Bergstresser pseudopotentials are given as atomic form factors for a few
values of |G|, corresponding to the smallest allowed modules: G2 = 0, 3, 4, 8, 11, ...,
in units of (2π/a0)2.

3 We remark that the face-centered cubic lattice can also be described as a simple-cubic
lattice:

a1 = a0 (1, 0, 0) , a2 = a0 (0, 1, 0) , a3 = a0 (0, 0, 1) (9.10)

with four atoms in the unit cell, at positions:

d1 = a0

(
0,

1

2
,

1

2

)
, d2 = a0

(
1

2
, 0,

1

2

)
, d3 = a0

(
1

2
,

1

2
, 0
)
, d4 = (0, 0, 0) . (9.11)
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The code requires on input the cutoff (in Ry) for the kinetic energy of plane
waves, and a list of vectors k in the Brillouin Zone. Traditionally these points
are chosen along high-symmetry lines, joining high-symmetry points shown in
figure and listed below:

Γ = (0, 0, 0),

X =
2π

a0
(1, 0, 0),

W =
2π

a0
(1,

1

2
, 0),

K =
2π

a0
(
3

4
,
3

4
, 0),

L =
2π

a0
(
1

2
,
1

2
,
1

2
),

On output the code prints for each k-point the eight lowest eigenvalues,
corresponding to the four4 valence (occupied) bands and the four conduction
(empty) bands.

9.3.1 Laboratory

• Verify which cutoff is needed to achieve converged results for E(k).

• Understand and reproduce the results in the original paper for Si, Ge,
Sn. 5 You may either try to plot the band structure along a few high-
symmetry lines, or compare some selected energy differences.

• Try to figure out what the charge density would be by plotting the sum
of the four lowest wave functions squared at the Γ point. It is convenient
to plot along the (110) plane (that is: one axis along (1,1,0), the other
along (0,0,1) ).

• In the zincblende lattice, the two atoms are not identical. Cohen and
Bergstresser introduce a “symmetric” and an “antisymmetric” contribu-
tion, corresponding respectively to a cosine and a sine times the imaginary
unit in the structure factor:

〈bi,k|V |bj,k〉 = Vs(G) cos(G · d) + iVa(G) sin(G · d). (9.17)

What do you think is needed in order to extend the code to cover the case
of Zincblende lattices?

4The Si atom, whose electronic configuration is 1s22s22p63s23p2, has 10 core and 4 valence
electrons, thus crystal Si has 8 valence electrons per unit cell and 4 valence bands.

5Remember that absolute values of E(k) have no physical meaning: the zero of the energy is
not defined for a crystal with PBC, since there is no reference level, no ”inside” and ”outside”.
In the paper, E = 0 is set at the top of the valence band.
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Chapter 10

Exact diagonalization of
quantum spin models

Systems of interacting spins are used since many years to model magnetic phe-
nomena. Their usefulness extends well beyond the field of magnetism, since
many different physical phenomena can be mapped, exactly or approximately,
onto spin systems. Many models exists and many techniques can be used to
determine their properties under various conditions. In this chapter we will
deal with the exact solution (i.e. finding eigenvalues and eigenvectors) for the
Heisenberg model, i.e. a quantum spin model in which spins centered at lattice
sites interact via the exchange interaction. The hyper-simplified model we are
going to study is sufficient to give an idea of the kind of problems one encoun-
ters when trying to solve many-body systems without resorting to mean-field
approximations (i.e. reducing the many-body problem to that of a single spin
under an effective field generated by the other spins). Moreover it allows to
introduce two very important concepts in numerical analysis: iterative diago-
nalization and sparseness of a matrix.

10.1 The Heisenberg model

Let us consider a set of atoms in a crystal, each atom having a magnetic mo-
ment, typically due to localized, partially populated states such as 3d states in
transition metals and 4f states in rare earths. The energy of the crystal may in
general depend upon the orientation of the magnetic moments. In many cases 1

these magnetic moments tend to spontaneously orient (at sufficiently low tem-
peratures) along a given axis, in the same direction. This phenomenon is known
as ferromagnetism. Other kinds of ordered structures are also known, and in
particular antiferromagnetism: two or more sublattices of atoms are formed,
having opposite magnetization. Well before the advent of quantum mechanics,
it was realized that these phenomena could be quite well modeled by a system
of interacting magnetic moments. The origin of the interaction was however
mysterious, since direct dipole-dipole interaction is way too small to justify the

1 but not for our model: it can be demonstrated that the magnetization vanishes at T 6= 0,
for all 1-d models with short-range interactions only
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observed behavior. The microscopic origin of the interaction was later found
in the antisymmetry of the wave functions and in the constraints it imposes on
the electronic structure (this is why it is known as exchange interaction).

One of the phenomenological models used to study magnetism is the Heisen-
berg model. This consists in a system of quantum spins Si, localized at lattice
sites i, described by a spin Hamiltonian:

H = −
∑
<ij>

(Jx(ij)Sx(i)Sx(j) + Jy(ij)Sy(i)Sy(j) + Jz(ij)Sz(i)Sz(j)) (10.1)

The sum runs over all pairs of spins.
In the following, we will restrict to the simpler case of a single isotropic

interaction energy J between nearest neighbors only:

H = −J
∑
<ij>

S(i) · S(j). (10.2)

The restriction to nearest-neighbor interactions only makes physical sense, since
in most physically relevant cases the exchange interaction is short-ranged. We
will also restrict ourselves to the case S = 1/2.

10.2 Hilbert space in spin systems

The ground state of a spin system can be exactly found in principle, since the
Hilbert space is finite: it is sufficient to diagonalize the Hamiltonian over a
suitable basis set of finite dimension. The Hilbert space of spin systems is in
fact formed by all possible linear combinations of products:

|µ〉 = |σµ(1)〉 ⊗ |σµ(2)〉 ⊗ . . .⊗ |σµ(N)〉 (10.3)

where N is the number of spins and the σµ(i) labels the two possible spin states
(σ = −1/2 or σ = +1/2) for the i−th spin. The Hilbert space has dimension
Nh = 2N (or Nh = (2S+ 1)N for spin S), thus becoming quickly intractable for
N as small as a few tens (e.g. for N = 30, Nh ∼ 1 billion). It is however possible
to reduce the dimension of the Hilbert space by exploiting some symmetries of
the system, or by restricting to states of given total magnetization. For a
system of N spins, n up and N − n down, it can be easily demonstrated that
Nh = N !/n!/(N − n)!. For 30 spins, this reduces the dimension of the Hilbert
space to ”only” 155 millions at most. The solution “reduces” (so to speak) to
the diagonalization of the Nh×Nh Hamiltonian matrix Hµ,ν = 〈µ|H|ν〉, where
µ and ν run on all possible Nh states.

For a small number of spins, up to 12-13, the size of the problem may still
tractable with today’s computers. For a larger number of spin, one has to resort
to techniques exploiting the sparseness of the Hamiltonian matrix. The number
of nonzero matrix elements is in fact much smaller than the total number of
matrix elements. Let us re-write the spin Hamiltonian under the following form:

H = −J
2

∑
<ij>

(S+(i)S−(j) + S−(i)S+(j) + 2Sz(i)Sz(j)) . (10.4)

78



The only nonzero matrix elements for the two first terms are between states |µ〉
and |ν〉 states such that σµ(k) = σν(k) for all k 6= i, j, while for k = i, j:

〈α(i)| ⊗ 〈β(j)|S+(i)S−(j)|β(i)〉 ⊗ |α(j)〉 (10.5)

〈β(i)| ⊗ 〈α(j)|S−(i)S+(j)|α(i)〉 ⊗ |β(j)〉 (10.6)

where α(i), β(i) mean i−th spin up and down, respectively. The term Sz(i)Sz(j)
is diagonal, i.e. nonzero only for µ = ν.

Sparseness, in conjunction with symmetry, can be used to reduce the Hamil-
tonian matrix into blocks of much smaller dimensions that can be diagonalized
with a much reduced computational effort.

10.3 Iterative diagonalization

In addition to sparseness, there is another aspect that can be exploited to make
the calculation more tractable. Typically one is interested in the ground state
and in a few low-lying excited states, not in the entire spectrum. Calculating
just a few eigenstates, however, is just marginally cheaper than calculating all
of them, with conventional (LAPACK) diagonalization algorithms: an expen-
sive tridiagonal (or equivalent) step, costing O(N3

h) floating-point operations,
has to be performed anyway. It is possible to take advantage of the small-
ness of the number of desired eigenvalues, by using iterative diagonalization
algorithms. Unlike conventional algorithms, they are based on successive re-
finement steps of a trial solution, until the required accuracy is reached. If an
approximate solution is known, the convergence may be very quick. Iterative
diagonalization algorithms typically use as basic ingredients Hψ, where ψ is
the trial solution. Such operations, in practice matrix-vector products, require
O(N2

h) floating-point operations. Sparseness can however be exploited to speed
up the calculation of Hψ products. In some cases, the special structure of the
matrix can also be exploited (this is the case for one-electron Hamiltonians in
a plane-wave basis set). It is not just a problem of speed but of storage: even
if we manage to store into memory vectors of length Nh, storage of a Nh ×Nh

matrix is impossible.
Among the many algorithms and variants, described in many thick books,

a time-honored one that stands out for its simplicity is the Lanczos algorithm.
Starting from |v0〉 = 0 and from some initial guess |v1〉, normalized, we generate
the following chain of vectors:

|wj+1〉 = H|vj〉 − αj |vj〉 − βj |vj−1〉, |vj+1〉 =
1

βj+1
|wj+1〉, (10.7)

where
αj = 〈vj |H|vj〉, βj+1 = (〈wj+1|wj+1〉)1/2 . (10.8)

The first condition in Eq.(10.8) enforces orthogonality of |wj+1〉 to |vj〉; the
second, to vector |vj−1〉. In fact, 〈vj−1|wj+1〉 = 0 implies

βj = 〈vj−1|H|vj〉, (10.9)
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but from Eq.(10.7) we have that 〈vj−1|H = 〈wj | + αj−1〈vj−1| + βj−1〈vj−2|,
demonstrating the equivalence of Eq.(10.9) with the definition of βj in Eq.(10.8).

A remarkable property of Lanczos chains is that each new vector of the chain
is automatically orthogonal to all previous vectors, not just to the previous
two. This can be demonstrated by induction. Let us consider 〈wj+1|vi〉 =
(〈vj |H − αj〈vj | − βj〈vj−1|)|vi〉 for i < j − 1. If we assume that 〈vj |vi〉 = 0 for
all i < j, we have 〈wj+1|vi〉 = 〈vj |H|vi〉. Since however H|vi〉 has components
only on |vi+1〉, |vi〉 and |vi−1〉 (see Eq.(10.7)), 〈vj |H|vi〉 = 0 for all i < j − 1.

In summary, vectors |vj〉 form an orthonormal set: 〈vi|vj〉 = δij . In the
basis of the |vj〉 vectors, the Hamiltonian has a tridiagonal form (see Eqs.(10.8)
and (10.9)), with αj elements on the diagonal, βj on the subdiagonal. After n
steps:

Ht =



α1 β2 0 . . . 0

β2 α2 β3 0
...

0 β3 α3
. . . 0

... 0
. . .

. . . βn
0 . . . 0 βn αn


. (10.10)

If n = Nh, this transformation becomes exact: Ht = H, and constitutes an al-
ternative tridiagonalization algorithm. In practice, the Lanczos recursion tends
to be unstable and may lead to loss of orthogonality between states. If however
we limit to a few steps, we observe that the lowest eigenvalues, and especially
the lowest one, of matrix Ht converge very quickly to the corresponding ones
of H. Since the diagonalization of a tridiagonal matrix is a very quick and
easy operation, this procedure gives us a convenient numerical framework for
finding a few low-lying states of large matrices. If moreover it is possible to
exploit sparseness (or other properties of the matrix) to quickly calculate H|v〉
products without storing the entire matrix, the advantage over conventional
diagonalization becomes immense.

10.4 Code: heisenberg exact

Code heisenberg exact.f902 (or heisenberg exact.c3) finds the ground state
energy of the 1-dimensional Heisenberg model, using Periodic Boundary Con-
ditions:

H = −J
N∑
i=1

S(i) · S(i+ 1), S(N + 1) = S(1). (10.11)

In the code, energies are in units of |J |, spins are adimensional. If J > 0 a
ferromagnetic ground state, with all spins oriented along the same direction,
will be favored, while the J < 0 case will favor an antiferromagnetic ordering.
The sign of J is set in the code (to change it, edit the code and recompile).

For the totally magnetized (ferromagnetic) case, the solution is trivial: there
is just one state with all spins up (let us call it |F 〉), yielding E0 = 〈F |H|F 〉 =

2http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/heisenberg exact.f90
3http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/heisenberg exact.c
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−NJ/4. Also the case with N − 1 spins up can be exactly solved. We have
N states with N − 1 spins up, that we label as |n〉 = S−(n)|F 〉. Exploiting
translational symmetry, one introduces Bloch-like states

|k〉 =
1√
N

N∑
n=1

eikn|n〉, k = 2πm/N, m = 0, ..., N − 1. (10.12)

It can then be shown that these are the eigenvectors of H with eigenvalues
E(k) = E0 + J(1 − cos k). Careful readers will recognize spin waves in this
solution.

In the antiferromagnetic case, the ground state has Sz = 0 for even Sz = 1/2
for odd number of spins. In the limit of infinite chains, the ground-state energy
is known: E0 = −NJ(log 2− 1

4), and the gap between E0 and the first excited
state E1 decreases as 1/N . A general exact solution (for other similar spin
problems as well) can be found by means of the Bethe Ansatz, a highly nontrivial
technique.

The code requires the number N of spins and the number nup of up spins,
computes the dimension nhil of the Hilbert space. It then proceeds to the
labelling of the states, using a trick often employed for spin-1/2 systems: an
integer index k, running from 1 to 2N−1, contains in its i−th bit the information
(0=down, 1=up) for the i−th spin. Of course this works only up to 32 spins,
for default integers (or 64 spins for INTEGER(8)). The integer k is stored into
array states for the states in the required Hilbert space.

The Hamiltonian matrix is then filled (the code does not takes advantage of
sparseness) and the number of nonzero matrix elements counted. For the S+S−
and S−S+ terms in the Hamiltonian, only matrix elements as in 10.5 and 10.6,
respectively, are calculated. We remark that the line

k = states(ii)+2**(j-1)-2**(i-1)

is a quick-and-dirty way to calculate the index for the state obtained by flipping
down spin i and flipping up spin j in state states(ii).4

We then proceed to the generation of the Lanczos chain. The number nl of
chain steps (should not exceed nhil) is prompted for and read from terminal.
The starting vector is filled with random numbers. Note the new BLAS routines
dnrm2 and dgemv: the former calculates the module of a vector, the latter a
matrix-vector product and is used to calculate H|v〉.

The Hamiltonian in tridiagonal form (contained in the two arrays d and e)
is then diagonalized by the LAPACK routine dsterf, that actually finds only
the eigenvalues. The lowest eigenvalues is then printed for increasing values of
the dimension of the tridiagonal matrix, up to nl, so that the convergence of
the Lanczos chain can be estimated. You can modify the code to print more
eigenvalues.

As a final check, the matrix is diagonalized using the conventional algorithm
(routine dspev). Note how much slower this final step is than the rest of the

4A more elegant but hardly more transparent way would be to directly manipulate the
corresponding bits.
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calculation! Once you are confident that the Lanczos chain works, you can
speed up the calculations by commenting out the exact diagonalization step.
The limiting factor will become the size of the Hamiltonian matrix.

10.4.1 Computer Laboratory

• Examine the convergence of the Lanczos procedure to the ground-state
energy. Examine excited states as well: notice that they will invariably
“fall down” towards lower-energy states after a sufficiently large number
of Lanczos steps is performed, due to loss of orthogonality.

• For the antiferromagnetic case, verify that the ground state has zero mag-
netization (for even N) or magnetization 1/2 (for odd N). Plot the
ground-state energy E0 and the first excited state E1 (where can you
find it? why?) as a function of N , try to verify if the gap E1 − E0 has
a 1/N dependence. Note that all energies are at least doubly degener-
ate for odd N , as a consequence of time-reversal symmetry and Kramer’s
theorem.

• For the ferromagnetic case, verify that the ground state has all spins
aligned. Note that the ground state will have the same energy no mat-
ter which total magnetization you choose! This is a consequence of the
rotational invariance of the Heisenberg Hamiltonian. Verify that the case
with N − 1 spins up corresponds to the spin-wave solution, Eq.(10.12).
You will need to print all eigenvalues.

Possible code extensions:

• Modify the code in such a way that open boundary conditions (that is: the
system is a finite chain) are used instead of periodic boundary conditions.
You may find the following data useful to verify your results: E/N =
−0.375 for N = 2, E/N = −1/3 for N = 3, E/N = −0.404 per N = 4,
E/N → −0.44325 per N →∞

• Modify the code in such a way that the entire Hamiltonian matrix is no
longer stored. There are two possible ways to do this:

– Calculate the Hψ product “on the fly”, without ever storing the
matrix;

– Store only nonzero matrix elements, plus an index keeping track of
their position.

Of course, you cannot any longer use dspev to diagonalize the Hamil-
tonian. Note that diagonalization packages for sparse matrices, such as
ARPACK, exist.
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Chapter 11

Density-Functional Theory

Density-Functional Theory (DFT) provides an effective alternative to the paradigm
of ”Hartree-Fock plus corrections”. Unlike the latter, or more sophisticated
MBPT (Many-Body Perturbation Theory) methods, DFT is not based on the
wave function: it focuses instead on the charge density as the fundamental quan-
tity. Atfer a slow start DFT has become widespread in electronic-structure cal-
culations for materials, especially in the implementation based on plane waves
and pseudopotentials.

We will see here in action a basic DFT self-consistent code, using a simple
form (Applebaum-Hamann) of atomic pseudopotentials for Si.

11.1 Hohenberg-Kohn theorem

Density-Functional Theory (DFT) is based on the Hohenberg-Kohn theorem
(1964). This states that the ground-state charge density, ρ(r), defined as

ρ(r) = N

∫
|Ψ(r, r2, ..., rN )|2d3r2...d

3rN (11.1)

for a system of N electrons1 with ground-state many-electron wave-function Ψ,
uniquely determines the external (e.g. nuclear) potential V acting on electrons,
and as a consequence the many-body Hamiltonian: H = T + V + U , where T
is the kinetic energy, U is the electron-electron repulsion.

While it is quite obvious that V determines ρ, the opposite is much less
obvious. The Hohenberg-Kohn theorem demonstrates just this, by showing
that no two potentials V and V ′ can have the same ρ as ground-state charge
density (unless they differ by a constant).

A straightforward consequence of the Hohenberg-Kohn theorem is that the
energy of the ground state is a functional of the charge density:

E = 〈Ψ|H|Ψ〉 = 〈Ψ|T + V + U |Ψ〉 = F [ρ] +

∫
ρ(r)v(r)d3r (11.2)

where F [ρ] = 〈Ψ|T + U |Ψ〉 is a universal functional, i.e. independent upon the
external potential V , and we have assumed that the potential V acts locally on
the electrons: V ≡

∑
i v(ri).

1Note that the original DFT applies to spinless fermions
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A further consequence is that the energy functional E[ρ] is minimized by
the ground-state charge density. This suggests a very interesting algorithm
to find the ground state: finding a three-dimensional function that minimizes
the energy functional is a much easier task than finding the 3N−dimensional
wave function that minimizes the same quantity. Unfortunately it is not easy
to minimize an unknown functional, since all we know at this stage is that it
exists.2

11.2 Kohn-Sham equations

The transformation of the Hohenberg-Kohn theorem from a curiosity into a
useful tool takes place via the Kohn-Sham (KS) approach and via a simple
approximation known as Local-Density Approximation, LDA (1965). Since the
Hohenberg-Kohn theorem holds irrespective of the electron-electron repulsion
U , we may introduce an auxiliary system of non-interacting electrons having
the same density as the true system:

ρ(r) =
∑
i

|ψi(r)|2, (11.3)

where the ψi (Kohn-Sham orbitals) are single-electron wavefunctions, to be
determined by the condition that E[ρ] is minimized, under orthonormality con-
straints 〈ψi|ψj〉 = δij . We still do not know the functional to be minimized,
but let us write it as a sum of known terms, large and easy to compute, and
the rest:

E = Ts[ρ] + EH [ρ] +

∫
ρ(r)v(r)d3r + Exc[ρ], (11.4)

where Ts is the kinetic energy of the non-interacting electrons:

Ts = − h̄2

2m

∑
i

∫
ψ∗i (r)∇2ψi(r)d3r, (11.5)

(note that in general Ts 6= 〈Ψ|T |Ψ〉), EH is the electrostatic (Hartree) energy:

EH [ρ] =
q2
e

2

∫
ρ(r)ρ(r′)

|r− r′|
d3rd3r′, (11.6)

the third term is the interaction energy with the external potential, and all the
rest is hidden into the Exc term. The latter is known as exchange-correlation
energy, for historical reasons coming from Hartree-Fock terminology: in prin-
ciple, Exc contains both the exchange energy of the Hartree-Fock method, and
the correlation energy that is missing in it.

By imposing the condition that the KS orbitals ψi minimize the energy, we
find the Kohn-Sham equations to which KS orbitals obey:(

− h̄
2∇2

2m
+ VKS(r)

)
ψi(r) = εiψi(r), (11.7)

2We actually know a lot more than this about the properties of the exact functional F [ρ],
but there is no way to write it down explicitly and in a simple form
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where the effective, or Kohn-Sham potential, VKS = v(r) +VH(r) +Vxc(r), is a
functional of the charge density:

VH(r) = q2
e

∫
ρ(r′)

|r− r′|
d3r′, Vxc(r) =

δExc[ρ]

δρ(r)
. (11.8)

KS equations are reminiscent of Hartree-Fock equations, Eq.(6.19), with the ex-
change potential replaced by the exchange-correlation potential. Note that the
latter is a local potential, while the exchange potential is non-local. The energy
can be rewritten using the sum over KS eigenvalues εi. It is straightforward to
prove that the energy functional can be written as

E =
∑
i

εi − EH [ρ] + Exc −
∫
ρ(r)Vxc(r)d3r. (11.9)

11.3 Approximated functionals

Not much progress seems to be done yet: Exc is still an unknown functional, and
so is Vxc. There is however a long tradition, pre-dating DFT, of using homoge-
neous electron gas results to approximate similar functions. The most famous
historical method is Slater’s local approximation to the exchange potential:

Vx(r) ' −3q2
e

2π
(3π2ρ(r))(1/3). (11.10)

Kohn and Sham extend and improve upon such ideas by introducing the local
density approximation (LDA): they re-write the the energy functional as

Exc =

∫
ρ(r)exc(r)d3r, (11.11)

using for the exchange-correlation energy density exc(r) the result for the ho-
mogeneous electron gas of density n, εxc(n), computed in each point at the local
charge density: exc(r) ≡ εxc(ρ(r)). The function εxc(n) can be computed with
high accuracy and fitted a some simple analytical form, as e.g. in the following
parameterization (Perdew-Zunger) of the Monte-Carlo results by Ceperley and
Alder. In Ry atomic units:

εxc(n) = −0.9164
rs
− 0.2846

(1+1.0529
√
rs+0.3334rs)

, rs ≥ 1

= −0.9164
rs
− 0.0960 + 0.0622 ln rs − 0.0232rs + 0.0040rs ln rs, rs ≤ 1.

(11.12)
Here rs = (3/4πn)1/3, a parameter traditionally used in the theory of metals.
One recognizes in the first term Hartree-Fock exchange energy, so the remaining
terms are refereed to as “correlation”. The exchange-correlation potential can
be computed as functional derivative of the energy, Eq.(11.8), that in this case
reduces to simple derivation:

Vxc(r) =

(
εxc(n) + ρ

dεxc(n)

dn

)
n=ρ(r)

. (11.13)
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In spite of its simplicity, and of its derivation from an electron gas model that
wouldn’t look suitable to describe real, highly inhomogeneous materials, LDA
gives surprising good results for several properties (e.g. bond lengths, crystal
structures, vibrational frequencies) of a large class of materials (e.g. sp bonded
semiconductors). It also gives (unsurprisingly) bad results for other properties
(e.g. band gap) and for other cases (e.g. transition metals). A number of
functionals have been proposed with various degrees of sophistication, extending
DFT to a much larger class of properties and of materials. The search for better
functionals is currently a very active field of research.

11.4 Structure of a DFT code

The basic3 algorithm for the solution of the DFT problem, as implemented in
code ah.f904 or ah.c5, consists of a self-consistent loop in which, at iteration
n:

1. the KS potential V
(n)
KS is computed from ρ(n).

2. KS equations are solved, yielding KS orbitals ψ
(n)
i ;

3. the output charge density ρ
(n)
out is calculated by summing the square of all

occupied KS orbitals: ρ
(n)
out =

∑
i |ψ

(n)
i |2;

4. the new charge density ρ(n+1) is computed from a linear combination of

previous input ρ(n) and output ρ
(n)
out charge densities.

The loop is started with some suitable initial choice of the charge density, is

iterated until self-consistency is achieved, i.e. ρ
(n)
out = ρ(n) according to some

pre-defined criterion (see Ch.6 for an introduction to self-consistency). At the
end of the loop, the DFT energy can be computed, using either Eq.(11.4) or
Eq.(11.9). The total energy will be given by the sum of the DFT energy and of
the nuclear repulsion energy.

Let us focus on a periodic system with a plane-wave basis set. We consider
a simple but nontrivial case: Si crystal using Appelbaum-Hamann (Phys. Rev.
B 8, 1777 (1973)) pseudopotentials. We use the definitions of lattice, recipro-
cal lattice, Bloch vector, plane-wave basis set as in code cohenbergstresser,
introduced in Ch. 9, as well as conventional (LAPACK) diagonalization and
the “simple mixing” algorithm of Sec.6.2:

ρ(n+1) = βρ
(n)
out + (1− β)ρ(n), 0 < β ≤ 1. (11.14)

for achieving self-consistency.6

New algorithms in code ah deal with the calculation of

3But not the only one: it is also possible to directly minimize the energy functional
4http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/ah.f90
5http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/ah.c
6Serious codes use iterative diagonalization, similar to the Lanczos method of Ch. 10, and

more sophisticated algorithms for self-consistency.
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1. matrix elements of the pseudopotential;

2. charge density from KS orbitals;

3. self-consistent potential from the charge density.

In the following we examine in some detail these cases.

11.4.1 Matrix elements of the potential

In order to compute matrix elements of the Hamiltonian, we need the pseu-
dopotential form factors, Eq.(9.16). This is done in function form factor. The
Appelbaum-Hamann pseudopotential for Si is given as the sum of two terms,
one long-ranged, one short-ranged. The former is the electrostatic potential vlr
generated by a charge density distribution ρat:

vlr(r) = −q2
e

∫
ρat(r

′)

|r− r′|
d3r′, ρat(r) = Zv

(
α

π

)3/2

e−αr
2
. (11.15)

Note that both ρat and vlr are spherically symmetric, and so are their Fourier
transforms. You may want to verify that ρat integrates to Zv = 4 electrons.
Appelbaum-Hamann pseudopotentials describe in fact a Si4+ (pseudo-)ion, in-
teracting with the four valence electrons of Si.

The short-ranged potential has the form

vsr(r) = e−αr
2
(v1 + v2r

2). (11.16)

α, v1, v2 are adjustable parameters provided in the paper. The form factor of
the electrostatic term:

ṽlr(G) =
1

Ω

∫
vlr(r)e

−iG·rd3r = −q
2
e

Ω

∫ (∫
ρat(r

′)

|r− r′|
d3r′

)
e−iG·rd3r (11.17)

can be computed by rearranging the integral:

ṽlr(G) = −q
2
e

Ω

∫ (∫
1

|r− r′|
e−iG·(r−r

′)d3r

)
ρat(r

′)e−iG·r
′
d3r′. (11.18)

The integral between brakets can be brought by a change of variable to the
following known result: ∫

1

r
e−iq·rd3r =

4π

q2
. (11.19)

Finally:

ṽlr(G) = −4πq2
e

ρ̃at(G)

G2
, ρ̃at(G) =

1

Ω

∫
ρat(r)e

−iG·rd3r. (11.20)

The equation on the left has a general validity: it is the solution of the Poisson
equation in Fourier space and is used also to compute the Hartree potential
from the charge. The Fourier transform of a Gaussian is known (see Eq.(8.16)).
One finally finds

ṽlr(G) = −4πZvq
2
e

e−G
2/4α

G2
, (11.21)
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and for the short-range term:

ṽsr(G) = q2
e

(
π

α

)3/2
(
v1 +

v2

α

(
3

2
− G2

4α

))
e−G

2/4α. (11.22)

The careful reader will notice that the G = 0 term diverges as −4πZvq
2
e/G

2.
This is due to the presence of the long-range Coulomb term. The divergence,
however, cancels out, at least in neutral systems, with the divergence of opposite
sign coming from the Hartree potential of electrons. The G = 0 term can be
evaluated in practice 7 by taking the G → 0 limit and throwing away the
divergent term −4πZvq

2
e/G

2.

11.4.2 FFT and FFT grids

The three-dimension generalization of the Discrete Fourier-Transform algorithm
introduced in Sec. 8.1.5 is needed. We define a real-space grid of points rjmn,
spanning the unit cell, as

rjmn =
j

n1
a1 +

m

n2
a2 +

n

n3
a3, (11.23)

where the integer indices j,m, n run from 0 to n1−1, n2−1, n3−1, respectively;
and a corresponding reciprocal-space grid of vectors Ghkl, as

Ghkl = hb1 + kb2 + lb3, (11.24)

where the integer indices h, k, l run from 0 to n1 − 1, n2 − 1, n3 − 1 and are
known as Miller’s indices. These are stored into array mill, while array indg

returns the index of the G vector as a function of Miller indices. The factors
n1, n2, n3 are chosen big enough to include all Fourier components (see next
section). These grids are referred to as “FFT grids”.

It can be easily verified that the discretized version of the three-dimensional
Fourier Transform:

F̃ (G) =
1

Ω

∫
F (r)e−iG·rd3r, (11.25)

where Ω is the volume of the unit cell, can be written as follows:

F̃hkl =
1

n1n2n3

n1−1∑
j=0

e−2πihj/n1

n2−1∑
m=0

e−2πikm/n2

n3−1∑
n=0

e−2πiln/n3Fjmn. (11.26)

while the corresponding inverse transform:

F (r) =
∑
G

F̃ (G)eiG·r (11.27)

(valid for periodic functions) can be written as

Fjmn =
n1−1∑
h=0

e2πihj/n1

n2−1∑
k=0

e2πikm/n2

n3−1∑
l=0

e2πiln/n3F̃hkl. (11.28)

7Handle with care! there are many subtleties about divergent terms in periodic system,
but they are beyond the scope of these lecture notes
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Routine fft3d implements Eq.(11.28) or Eq.(11.26) (with the factor 1/n1n2n3)
if the first argument (the sign of the exponential) has value +1 or -1, respec-
tively. Note that Eq.(11.26) is also called “forward” FT, Eq.(11.28) “backward”
FT. Note that as in Sec.8.1.5, both the real- and the reciprocal-space grids are
periodic, so G−vectors with negative indices hkl appear “at the other end of
the box”. Also note that the “inverse” transform is really the inverse: if you
apply a FT to a function and then the inverse FT, or vice versa, you get exactly
the starting function.

Why is FFT important? because it allows to quickly jump between real to
reciprocal space, performing the required operations in the space where it is
more convenient. Such “dual-space” technique is fundamental in modern DFT
codes based on plane waves to achieve high performances in terms of speed.

11.4.3 Computing the charge density

The calculation of the charge density requires a sum (actually, an integral)
over an infinitely dense set of Bloch vectors (or ”k-points”) covering the en-
tire Brillouin Zone. This apparently hopeless task can in fact be accomplished
by approximating the integral with a discrete sum over a finite grid of Bloch
vectors. For insulators and semiconductors, quite accurate results can be ob-
tained with relatively coarse grids of points. This method is often referred to
as ”special points technique”. In our sample code, we use a really ”special”
k-point:

k0 =
2π

a0
(0.6223, 0.2953, 0) (11.29)

fully exploiting the fcc lattice symmetry, also known as mean-value point8. The
calculation of the charge density reduces to

ρ(r) =
4∑

ν=1

|ψk0,ν(r)|2. (11.30)

In spite of its simplicity, this approximation is remarkably good. Since the
expensive part of the calculation is typically the diagonalization of the KS
Hamiltonian, that must be done for each k-point, this choice reduces the com-
putational burden to the strict minimum.

The actual calculation of the charge density is performed in real space using
FFT’s (see subroutine sum charge), but it is instructive to look at how the same
calculation would appear if performed in reciprocal space. With straightforward
algebra:

ρ(G) =
∑
ν,k

∑
G′

ψk0,ν(G−G′)ψk0,ν(G′). (11.31)

As a consequence is that the largest G-vector appearing in ρ(G) has modulus
twice as large as the largest G-vector appearing in ψ(G). This gives a prescrip-
tion to choose the n1, n2, n3 factors defining the FFT grid: they must be large
enough to accommodate G-vectors up to a maximum cutoff Eρ = 4Ecut, where
Ecut is the cutoff for the plane waves basis set, Eq.(9.7). This choice guarantees
that no Fourier components are “lost” when computing the charge density.

8A. Baldereschi, Phys. Rev. B 7, 5212 (1973)
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11.4.4 Computing the potential

The self-consistent potential appearing in the Kohn-Sham equations, Eq.(11.8),
consists of two terms, the Hartree and the exchange-correlation term. Pseu-
dopotentials are build to work in conjunction with a specific kind of exchange-
correlation functional. Appelbaum-Hamann pseudopotentials work together
with ”Slater exchange”, Eq.(11.10), one of the simplest and less accurate func-
tionals.

The self-consistent potential is computed in subroutine v of rho.

Calculation of XC potential The exchange-correlation potential (exchange
only in our case) can be convenienty and directly computed on the real-space
grid. In the following few lines, rho is the charge density, vr the potential
Vxc(r):

do n3=1,nr3

do n2=1,nr2

do n1=1,nr1

vr(n1,n2,n3) = - alphax * 3.0_dp / 2.0_dp * e2 * &

( 3.0_dp*rho(n1,n2,n3)/pi )**(1.0_dp/3.0_dp)

end do

end do

end do

where alphax = 2/3 is the adjustable parameter of the so-called Xα method.
Since we need V (G) to fill the Hamiltonian matrix, we Fourier-transform the
potential, storing it in vector vg.

Hartree potential The Hartree potential can be conveniently computed in
reciprocal space. Straightforward algebra shows that VH(G) can be written as

VH(G) = 4πq2
e

ρ(G)

G2
. (11.32)

This is nothing but the solution of the Poisson equation in Fourier space. The
diverging G = 0 term is compensated (in neutral systems) by the same term
coming from pseudopotentials. The lines

do ng =1, ngm

if ( g2(ng) > eps ) vg(ng) = vg(ng) + fpi*e2*rhog(ng)/g2(ng)

end do

add, for G 6= 0, to vg the Hartree potential directly computed from rhog (charge
in reciprocal space) and g2, square modulus of G.

11.4.5 Laboratory

In order to compile the ah code, you will need routines from the BLAS, LA-
PACK and FFTW3 libraries. You may follow the same procedure as for com-
pilation of code testfft code, Ch.8.
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• Verify which cutoff is needed to achieve converged results for E(k).

• Compute the band structure. To this end you will need compute and store
the final self-consistent potential, then to perform a non-self-consistent
calculation with the previously computed self-consistent potential, on a
suitably chosen set of k-points.

• Examine how the band structure, and especially the band gap, changes
by changing alphax from 2/3 to 1.

• Plot the charge density along the (111) direction, along the bond between
two atoms, and on the (110) plane.

• Examine how the charge density changes if a denser grid of k-points is
used instead of the “mean-value point” in the self-consistent calculation.
A suitable grid can be generated as follows:

kn =
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3, (11.33)

where n1 = 0, 1, ..., N1 − 1 and so forth. You may start from N1 = N2 =
N3 = 2. Notice that k and −k are equivalent: you may use one of the
two with double weight.
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Appendix A

Real-space two- and
three-dimensional grids

Let us consider the one-dimensional time-independent Schrödinger equation,
with the simplest discretization of the Laplacian operator for a uniform grid of
N points xi, as in Eq.(1.27):

d2ψ

dx2
≡ ψi−1 + ψi+1 − 2ψi

(∆x)2
, ψi ≡ ψ(xi, t). (A.1)

where ψ is the vector formed by the N values ψi. The resulting discretized
Schrödinger equation:

− h̄2

2m

ψi−1 + ψi+1 − 2ψi
(∆x)2

+ Viψi = Eψi, Vi ≡ V (xi) (A.2)

can be recast under the form of a matrix equation:

N∑
j=1

Hijψj = Eψi, i = 1, N (A.3)

where the N ×N matrix H is tridiagonal:

H =



H1,1 H1,2 0 . . . 0

H2,1 H2,2 H2,3 0
...

0 H3,2 H3,3
. . . 0

... 0
. . .

. . . HN−1,N

0 . . . 0 HN,N−1 HN,N


(A.4)

and the nonzero terms are given by

Hi,i =
h̄2

m(∆x)2
+ Vi, Hi,i+1 = Hi+1,i = − h̄2

2m(∆x)2
. (A.5)

The resemblance with the secular equation as obtained from the variational
principle, Ch.4, is quite obvious, and can be made more explicit by introducing
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a set of “basis functions” bi(x) so defined:

bi(x) =
1√
∆x

xi −
∆x

2
< x < xi +

∆x

2
(A.6)

bi(x) = 0 x < xi −
∆x

2
, x > xi +

∆x

2
. (A.7)

It is straightforward to verify that these functions are orthonormal. The Hij

elements are the “matrix elements” of the Hamiltonian. The potential is rep-
resented by its value in the grid point: Vii = 〈bi|V |bi〉 ' V (xi) and is thus
diagonal in this basis. The kinetic energy is less obvious: our basis functions
are not differentiable, but the matrix elements for the kinetic energy:

Tij = 〈bi|T |bj〉 = − h̄2

2m

∫
bi(x)

d2

dx2
bj(x)dx (A.8)

can be specified via the discretized form of the second derivative, as in Eq.(A.1).
The solution of the Schrödinger equation via the secular equation has no real

advantage with respect to the numerical integration procedure of Ch.1–3 in one
dimension, but it can be generalized to more dimensions in a straightforward
way: for instance, we can introduce a uniform grid in the following way:

~ri,j,k = (xi, yj , zk), xi = i∆x, yj = j∆y, zk = k∆z. (A.9)

Assuming to solve our problem in a parallelepiped spanned by N1, N2, N3 points
along x, y, z respectively, the total number of grid points, N = N1 · N2 · N3,
defines the “computational complexity” of our problem. Obviously, this may
quickly become intractable, but we should not forget that the Hamiltonian
matrix is sparse: the potential is present only in the diagonal terms, while the
kinetic energy has nonzero matrix elements only for a few points close to the
one considered. The discretization of Eq.(A.1) generalizes in three dimensions
to

∇2ψ ≡ ψi−1,j,k + ψi+1,j,k − 2ψi,j,k
(∆x)2

+
ψi,j−1,k + ψi,j+1,k − 2ψi,j,k

(∆y)2

+
ψi,j,k−1 + ψi,j,k+1 − 2ψi,j,k

(∆z)2
, (A.10)

where ψi,j,k = ψ(~ri,j,k) with ~ri,j,k as in Eq.(A.9). More accurate, higher-order
finite-difference formulae for the Laplacian can be in principle, and are in prac-
tice, used, but they all share the same characteristics: they involve only a few
points around the one in which we want to calculate the Laplacian. Sparseness
is the key to fast solution.
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Appendix B

Solution of time-dependent
Schrödinger equations

When the potential does not contain any explicit dependence upon time, the
solution of time-dependent Schrödinger equation:

ih̄
∂ψ(x, t)

∂t
= Hψ(x, t), H = − h̄2

2m

∂2

∂x2
+ V (x) (B.1)

for the one-dimensional case can be obtained via variable separation and written
down in terms of eigenvectors and eigenvalues of the time-independent Schrö-
dinger equation, Hψn(x) = Enψn(x), as

ψ(x, t) =
∑
n

cne
−iEnt/h̄ψn(x), cn =

∫
ψ(x, 0)ψ∗n(x)dx. (B.2)

The coefficients cn guarantee that the system at t = 0 is in the desired state.
One can formally write time evolution via an operator U(t):

ψ(x, t) = U(t)ψn(x, 0), U(t) = e−iHt/h̄, (B.3)

where the “exponential of an operator” is defined via the series expansion

eA =
∞∑
n=0

An

n!
. (B.4)

The time-evolution operator is unitary: U †(t) = U−1(t), and U(−t) = U †(t)
hold. These properties reflect important features of time evolution in quantum
mechanics: it is invariant under time reversal and conserves the norm.

If the potential has an explicit dependence upon the time, variable separa-
tion is no longer possible. Analytical solutions of course exist only for a small
number of cases. Let us consider the numerical solution of the time-dependent
Schrödinger equation. This can be useful also for time-independent potentials,
actually, since it may be more convenient to compute the time evolution for a
given initial state than to project it over all eigenfunctions.
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B.1 Discretization in time: Crank-Nicolson algorithm

Let us consider for simplicity the one-dimensional case. We use the same dis-
cretization on a uniform grid as in Appendix A. The right-hand side of the
Schrödinger equation:

ih̄
∂ψi
∂t

= − h̄2

2m

ψi−1 + ψi+1 − 2ψi
(∆x)2

+ Viψi, Vi ≡ V (xi) (B.5)

can be recast into a matrix-vector product:

ih̄
∂ψ

∂t
= Hψ (B.6)

where ψ is the vector formed by the N values ψi and the tridiagonal N × N
matrix H is given in Eq.(A.4).

Let us now proceed to discretize in time, with ”time step” ∆t. The simplest
algorithm one can think of is Euler discretization. One writes for the first
derivative:

∂ψi
∂t
' ψi(t+ ∆t)− ψi(t)

∆t
(B.7)

and derives the following equation (”forward” Euler) for the wave function at
time t+ ∆t, given the wave function at time t:

ψ(t+ ∆t) = ψ(t)− i∆t

h̄
Hψ(t). (B.8)

From wave functions at each time step, one directly obtains wave functions
at the following time step: the algorithm is thus explicit. Unfortunately it
turns out that such algorithm is also numerically unstable: it has solutions
that grow exponentially with time, even when there aren’t any such solutions
in the original equation.

A numerically stable algorithm is instead provided by the ”backward” Euler
discretization (notice the different time at the right-hand side):

ψ(t+ ∆t) = ψ(t)− i∆t

h̄
Hψ(t+ ∆t). (B.9)

This algorithm is called implicit because the wave function at the next time
step cannot be simply obtained from the wave function at the previous one
(note that the former appear in both sides of the equation). The discretized
equations can however be recast into the form of a linear system:

Aψ(t+ ∆t) ≡
(

1 +
i∆t

h̄
H

)
ψ(t+ ∆t) = ψ(t). (B.10)

Since the matrix A is tridiagonal, its solution can be found very quickly, in
order O(N) operations. The implicit Euler algorithm can be demonstrated to
be numerically stable, but it still suffers from a major drawback: it breaks, with
an error proportional to the time step, the unitariety of the time evolution.
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The better Crank-Nicolson algorithm is obtained by combining explicit and
implicit Euler discretization:(

1 +
i∆t

2h̄
H

)
ψ(t+ ∆t) =

(
1− i∆t

2h̄
H

)
ψ(t). (B.11)

Notice the factor 2 dividing the time step: you can obtain the above formula
by performing an explicit step, followed by an implicit one, both with time step
∆t/2. This often used algorithm conserves unitariety of the time evolution up
to order O((∆t)2)) and is numerically stable.

B.2 Direct discretization of the time evolution oper-
ator

As mentioned above, even for time-independent problems there are cases in
which the solution via eigenvalues and eigenvectors is not practical, either be-
cause too many states are needed, or because their calculation is expensive.
In these cases, the direct discretization of the time evolution operator U(t),
Eq.(B.3) may provide a convenient alternative.

Let us first decompose the Hamiltonian into kinetic and a potential energy,
H = T + V . In general, one cannot decompose the exponential of the sum
of two noncommuting operators into the product of two exponentials for each
operator:

e(A+B)t 6= eAteBt, [A,B] 6= 0. (B.12)

One can however use the Trotter formula, stating that

lim
n→∞

(
e(A+B)t/n

)n
=
(
eAt/neBt/n

)n
. (B.13)

For finite n, the error is O
(
(∆t)2

)
, where ∆t = t/n. The discretization of the

time evolution operator follows naturally:

e−iHt/h̄ ' (UT (∆t)UV (∆t))n , (B.14)

where the right-hand side is a sequence of applications of the time evolution
operator, each consisting of the application of a purely potential term, followed
by a purely kinetic one,

UT (∆t) = e−iT∆t/h̄, UV (∆t) = e−iV∆t/h̄. (B.15)

The Trotter approximation would be of limited use without a simple way to
calculate the two operators UT and UV . The former is hardly a problem, since
the potential is a diagonal operator in real space (at least for a potential having
the usual V (r) form, i.e. a local potential). The application of UV to a wave
function on a real-space grid amounts to a simple multiplication:

UV (∆t)ψi(t) = e−iVi∆t/h̄ψi(t). (B.16)

In real space and in one dimension, the kinetic term is represented by a tridi-
agonal matrix like the one in Eq.(A.4) (without the potential contribution in
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the diagonal). The exponential of such an operator is far from simple. One
can however take advantage of the Fast Fourier-Transform (FFT) algorithm
to switch back and forth between real and Fourier (or “reciprocal”) space. In
reciprocal space, the kinetic energy is diagonal and the calculation of U(t) is as
simple as for the potential term in real space:

UT (∆t)ψ̃j(t) = e−ih̄q
2
j∆t/2mψ̃j(t) (B.17)

where ψ̃j(t) is the Fourier transform of ψi(t) of wave-vector qj .
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Appendix C

Derivation of Van der Waals
interaction

The Van der Waals attractive interaction can be described in semiclassical terms
as a dipole-induced dipole interaction, where the dipole is produced by a charge
fluctuation. A more quantitative and satisfying description requires a quantum-
mechanical approach. Let us consider the simplest case: two nuclei, located
in RA and RB, and two electrons described by coordinates r1 and r2. The
Hamiltonian for the system can be written as

H = − h̄2

2m
∇2

1 −
q2
e

|r1 −RA|
− h̄2

2m
∇2

2 −
q2
e

|r2 −RB|
(C.1)

− q2
e

|r1 −RB|
− q2

e

|r2 −RA|
+

q2
e

|r1 − r2|
+

q2
e

|RA −RB|
,

where ∇i indicates derivation with respect to variable ri, i = 1, 2. Even this
“simple” Hamiltonian is a really complex object, whose general solution will be
the subject of several chapters of these notes. We shall however concentrate on
the limit case of two Hydrogen atoms at a large distance R, with R = RA−RB.
Let us introduce the variables x1 = r1−RA, x2 = r2−RB. In terms of these new
variables, we have H = HA+HB +∆H(R), where HA (HB) is the Hamiltonian
for a Hydrogen atom located in RA (RB), and ∆H has the role of “perturbing
potential”:

∆H = − q2
e

|x1 + R|
− q2

e

|x2 −R|
+

q2
e

|x1 − x2 + R|
+
q2
e

R
. (C.2)

Let us expand the perturbation in powers of 1/R. The following expansion,
valid for R→∞, is useful:

1

|x + R|
' 1

R
− R · x

R3
+

3(R · x)2 − x2R2

R5
. (C.3)

Using such expansion, it can be shown that the lowest nonzero term is

∆H ' 2q2
e

R3

(
x1 · x2 − 3

(R · x1)(R · x2)

R2

)
. (C.4)
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The problem can now be solved using perturbation theory. The unperturbed
ground-state wave function can be written as a product of 1s states centered
around each nucleus: Φ0(x1,x2) = ψ1s(x1)ψ1s(x2) (it should actually be anti-
symmetrized but in the limit of large separation it makes no difference). It is
straightforward to show that the first-order correction, ∆(1)E = 〈Φ0|∆H|Φ0〉,
to the energy, vanishes because the ground state is even with respect to both x1

and x2. The first nonzero contribution to the energy comes thus from second-
order perturbation theory:

∆(2)E = −
∑
i>0

|〈Φi|∆H|Φ0〉|2

Ei − E0
(C.5)

where Φi are excited states and Ei the corresponding energies for the unper-
turbed system. Since ∆H ∝ R−3, it follows that ∆(2)E = −C6/R

6, the well-
known behavior of the Van der Waals interaction.1 The value of the so-called
C6 coefficient can be shown, by inspection of Eq.(C.5), to be related to the
product of the polarizabilities of the two atoms.

1Note however that at very large distances a correct electrodynamical treatment yields a
different behavior: ∆E ∝ −1/R7. In practice such asymptotic behavior becomes dominant
when in is too small to be of any relevance.
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Appendix D

The Helium atom

D.1 Perturbative treatment for Helium atom

The Helium atom is characterized by a Hamiltonian operator

H = − h̄
2∇2

1

2me
− Zq2

e

r1
− h̄2∇2

2

2me
− Zq2

e

r2
+
q2
e

r12
(D.1)

where r12 = |r2 − r1| is the distance between the two electrons. The last term
corresponds to the Coulomb repulsion between the two electrons and makes the
problem non separable.

As a first approximation, let us consider the interaction between electrons:

V =
q2
e

r12
(D.2)

as a perturbation to the problem described by

H0 = − h̄
2∇2

1

2me
− Zq2

e

r1
− h̄2∇2

2

2me
− Zq2

e

r2
(D.3)

which is easy to solve since it is separable into two independent problems of
a single electron under a central Coulomb field, i.e. a Hydrogen-like problem
with nucleus charge Z = 2. The ground state for this system is given by the
wave function described in Eq.(2.29) (1s orbital):

φ0(ri) =
Z3/2

√
π

e−Zri (D.4)

in a.u.. We note that we can assign to both electrons the same wave function, as
long as their spin is opposite. The total unperturbed wave function (coordinate
part) is simply the product

ψ0(r1, r2) =
Z3

π
e−Z(r1+r2) (D.5)

which is a symmetric function (antisymmetry being provided by the spin part).
The energy of the corresponding ground state is the sum of the energies of the
two Hydrogen-like atoms:

E0 = −2Z2Ry = −8Ry (D.6)

100



since Z = 2. The electron repulsion will necessarily raise this energy, i.e. make
it less negative. In first-order perturbation theory,

E − E0 = 〈ψ0|V |ψ0〉 (D.7)

=
Z6

π2

∫
2

r12
e−2Z(r1+r2)d3r1d

3r2 (D.8)

=
5

4
ZRy. (D.9)

For Z = 2 the correction is equal to 2.5 Ry and yields E = −8+2.5 = −5.5 Ry.
The experimental value is −5.8074 Ry. The perturbative approximation is not
accurate but provides a reasonable estimate of the correction, even if the “per-
turbation”, i.e. the Coulomb repulsion between electrons, is of the same order
of magnitude of all other interactions. Moreover, he ground state assumed in
perturbation theory is usually qualitatively correct: the exact wave function for
He will be close to a product of two 1s functions.

D.2 Variational treatment for Helium atom

The Helium atom provides a simple example of application of the variational
method. The independent-electron solution, Eq.(D.5), is missing the phe-
nomenon of screening: each electron will ”feel” a nucleus with partially screened
charge, due to the presence of the other electron. In order to account for this
phenomenon, we may take as our trial wave function an expression like the one
of Eq.(D.5), with the true charge of the nucleus Z replaced by an “effective
charge” Ze, presumably smaller than Z. Let us find the optimal Ze variation-
ally, i.e. by minimizing the energy. We assume

ψ(r1, r2;Ze) =
Z3
e

π
e−Ze(r1+r2) (D.10)

and we re-write the Hamiltonian as:

H =

[
− h̄

2∇2
1

2me
− Zq2

e

r1
− h̄2∇2

2

2me
− Zq2

e

r2

]
+

[
−(Z − Ze)q2

e

r1
− (Z − Ze)q2

e

r2
+
q2
e

r12

]
(D.11)

We now calculate

E(Ze) =

∫
ψ∗(r1, r2;Ze)Hψ(r1, r2;Ze) d

3r1d
3r2 (D.12)

The contribution to the energy due to the first square bracket in Eq.(D.11) is
−2Z2

e a.u.: this is in fact a Hydrogen-like problem for a nucleus with charge Ze,
for two non-interacting electrons. By expanding the remaining integrals and
using symmetry we find

E(Ze) = −2Z2
e −

∫
|ψ|2 4(Z − Ze)

r1
d3r1d

3r2 +

∫
|ψ|2 2

r12
d3r1d

3r2 (D.13)

(in a.u.) with

|ψ|2 =
Z6
e

π2
e−2Ze(r1+r2) (D.14)
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Integrals can be easily calculated and the result is

E(Ze) = −2Z2
e − 4(Z − Ze)Ze + 2

5

8
Ze = 2Z2

e −
27

4
Ze (D.15)

where we explicitly set Z = 2. Minimization of E(Ze) with respect to Ze
immediately leads to

Ze =
27

16
= 1.6875 (D.16)

and the corresponding energy is

E = −729

128
= −5.695 Ry (D.17)

This result is definitely better that the perturbative result E = −5.50 Ry,
even if there is still a non-negligible distance with the experimental result
E = −5.8074 Ry.

It is possible to improve the variational result by extending the set of trial
wave functions. Sec.(6.1) shows how to produce the best single-electron func-
tions using the Hartree-Fock method. Even better results can be obtained
using trial wave functions that are more complex than a simple product of
single-electron functions. For instance, let us consider trial wave functions like

ψ(r1, r2) = [f(r1)g(r2) + g(r1)f(r2)] , (D.18)

where the two single-electron functions, f and g, are Hydrogen-like wave func-
tion as in Eq.(D.4) with different values of Z, that we label Zf and Zg. By
minimizing with respect to the two parameters Zf and Zg, one finds Zf = 2.183,
Zg = 1.188, and an energy E = −5.751 Ry, much closer to the experimental
result than for a single effective Z. Note that the two functions are far from
being similar!

D.3 Beyond-HF treatment for Helium atom

Let us make no explicit assumption on the form of the ground-state wave func-
tion of He. We assume however that the total spin is zero and thus the coordi-
nate part of the wave function is symmetric. The wave function is expanded over
a suitable basis set, in this case a symmetrized product of two single-electron
gaussians. The lower-energy wave function is found by diagonalization. Such
approach is of course possible only for a very small number of electrons.

Code helium gauss.f901 (or helium gauss.c2) looks for the ground state
of the He atom, using an expansion into Gaussian functions, already introduced
in the code hydrogen gauss. We assume that the solution is the product of a
symmetric coordinate part and of an antisymmetric spin part, with total spin
S = 0. The coordinate part is expanded into a basis of symmetrized products
of gaussians, Bk:

ψ(r1, r2) =
∑
k

ckBk(r1, r2). (D.19)

1http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/F90/helium gauss.f90
2http://www.fisica.uniud.it/%7Egiannozz/Didattica/MQ/Software/C/helium gauss.c
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If the bi functions are S-like gaussians as in Eq.(5.24), we have:

Bk(r1, r2) =
1√
2

(
bi(k)(r1)bj(k)(r2) + bi(k)(r2)bj(k)(r1)

)
(D.20)

where k is an index running over n(n+1)/2 pairs i(k), j(k) of gaussian functions.
The overlap matrix S̃kk′ may be written in terms of the Sij overlap matrices,
Eq.(5.27), of the hydrogen-like case:

S̃kk′ = 〈Bk|Bk′〉 =
(
Sii′Sjj′ + Sij′Sji′

)
. (D.21)

The matrix elements, H̃kk′ , of the Hamiltonian:

H̃kk′ = 〈Bk|H|Bk′〉, H = − h̄
2∇2

1

2me
− Zq2

e

r1
− h̄2∇2

2

2me
− Zq2

e

r2
+
q2
e

r12
(D.22)

can be written using matrix elements Hij = HK
ij + HV

ij , obtained for the
hydrogen-like case with Z = 2, Eq.(5.28) and (5.29):

H̃kk′ =
(
Hii′Sjj′ +Hij′Sji′ + Sii′Hjj′ +Hij′Sji′

)
+ 〈Bk|Vee|Bk′〉, (D.23)

and the matrix element of the Coulomb electron-electron interaction Vee:

〈Bk|Vee|Bk′〉 =

∫
bi(k)(r1)bj(k)(r2)

q2
e

r12
bi(k′)(r1)bj(k′)(r2)d3r1d

3r2 (D.24)

+

∫
bi(k)(r1)bj(k)(r2)

q2
e

r12
bj(k′)(r1)bi(k′)(r2)d3r1d

3r2.

These matrix elements can be written, using Eq.(7.25), as

〈Bk|Vee|Bk′〉 =
q2
eπ

5/2

αβ(α+ β)1/2
+

q2
eπ

5/2

α′β′(α′ + β′)1/2
, (D.25)

where

α = αi(k) + αi(k′), β = αj(k) + αj(k′), α
′ = αi(k) + αj(k′), β

′ = αj(k) + αi(k′).
(D.26)

In an analogous way one can calculate the matrix elements between sym-
metrized products of gaussians formed with P-type gaussian functions (those
defined in Eq.5.25). The combination of P-type gaussians with L = 0 has the
form:

Bk(r1, r2) =
1√
2

(r1 · r2)
(
bi(k)(r1)bj(k)(r2) + bi(k)(r2)bj(k)(r1)

)
(D.27)

It is immediately verified that the product of a S-type and a P-type gaussian
yields an odd function that does not contribute to the ground state.

In the case with S-type gaussians only, the code writes to file ”gs-wfc.out”
the function:

P (r1, r2) = (4πr1r2)2|ψ(r1, r2)|2, (D.28)
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where P (r1, r2)dr1dr2 is the joint probability to find an electron between r1 and
r1 + dr1, and an electron between r2 and r2 + dr2. The probability to find an
electron between r and r + dr is given by p(r)dr, with

p(r) = 4πr2
∫
|ψ(r, r2)|24πr2

2dr2 =

∫
P (r, r2)dr2. (D.29)

It is easy to verify that for a wave function composed by a product of two
identical functions, like the one in (D.5), the joint probability is the product of
single-electron probabilities: P (r1, r2) = p(r1)p(r2). This is not true in general
for the exact wave function.

D.4 Laboratory

• observe the effect of the number of basis functions, to the choice of coef-
ficients λ of the gaussians, to the inclusion of P-type gaussians

• compare the obtained energy with the one obtained by other methods:
perturbation theory with hydrogen-like wave functions, (Sec.D.1), varia-
tional theory with effective Z (Sec.D.2), exact result (-5.8074 Ry).

• Make a plot of the probability P (r1, r2) and of the difference P (r1, r2)−
p(r1)p(r2), using for instance gnuplot and the following commands:

set view 0, 90

unset surface

set contour

set cntrparam levels auto 10

splot [0:4][0:4] "gs-wfc.out" u 1:2:3 w l

Note that the probability P (r1, r2) (column 3 in ”splot”) is not exactly
equal to the product p(r1)p(r2) (column 4; column 5 is the difference
between the two).
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Appendix E

More about pseudopotentials

E.1 An early idea

In one of the early methods to compute the band structure in crystals, a basis
set of orthogonalized plane waves, or OPW, was introduced:

b̃i,k(r) = bi,k(r)−
∑
c

φc(r)〈φc|bi,k〉, (E.1)

where the bn,k are plane waves and the φc are atomic core states1. By construc-
tion, 〈φc|b̃i,k〉 = 0. The solution of the Schrödinger equation for the crystal
potential can be obtained by expanding the valence wavefunctions into OPWs:

ψ =
∑
j

cj b̃j,k(r) (E.2)

One obtains a generalized secular equation (OPWs are not orthonormal) whose
solution yields the valence wavefunctions, while core states retain their atomic-
like character. Alternatively, one writes the Schrödinger equation (H−ε)ψ = 0,
projects it over plane waves:

〈bi,k|(H − ε)|ψ〉 = 0 (E.3)

obtaining

∑
j

cj〈bi,k|(H − ε)
(
|bj,k(r)〉 −

∑
c

|φc〉〈φc|bj,k〉
)

= 0. (E.4)

Under the assumption that the crystal potential is well approximated by a sum
of atomic-like potentials, and that atomic core states φc retain their atomic-like
character, we may write Hφc ' εcφc, where εc is the eigenvalue corresponding
to φc in the atom. We may thus rewrite Eq.(E.4) as

∑
j

cj〈bi,k|
(
H − ε+

∑
c

|φc〉(ε− εc)〈φc|
)
|bj,k〉 = 0. (E.5)

1more exactly: Bloch sums of atomic core states
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Eq.(E.5) is a secular equation for the plane-wave part only, for the effective
potential

Ṽ = V +
∑
c

|φc〉(ε− εc)〈φc|. (E.6)

By averaging or neglecting the dependence upon the energy, we obtain a smooth
potential Ṽ that has smooth solutions: the prototype of a pseudo-potential.

The big problem of such approach is the so-called orthogonality hole: it is
apparent that the pseudo-wavefunctions ψ̃ obtained from the plane-wave part
only:

ψ̃ =
∑
j

cjbj,k(r), (E.7)

do not have the correct normalization, due to the lack of orthogonalization with
the core states.

E.2 A modern view

The ideal pseudo-potential has smooth valence “pseudo-wavefunctions”, that
can be expanded into PWs and do not exhibit the “wiggles” due to orthogonal-
ization to core states. However, they must be equal to the true wavefunctions
far from the core region.

In the Projector Augmented Wave (PAW) method, a mapping is introduced
between the complete wavefunction and the pseudo-wavefunction via a suitable
linear operator:

|φ̃l〉 = (1 + T )|φl〉 (E.8)

where the functions φ̃l are solutions, regular at the origin but not necessar-
ily bound, for the atom; the functions φl are corresponding pseudo-functions.
These are constructed as smooth functions in the core region that join smoothly
to the φ̃l beyond the core region, where we may set T = 0.

In the core region, we write a pseudo-wavefunction ψ for our molecular or
solid-state system as a sum over the atomic pseudo-waves φl:

|ψ〉 =
∑
l

cl|φl〉 (E.9)

By applying the operator (1 + T ) to both sides of the above expansion we find

|ψ̃〉 =
∑
l

cl|φ̃l〉 (E.10)

where ψ̃ is the all-electron wavefunction. The above result can be recast into
the form

|ψ̃〉 = |ψ〉+
∑

cl
(
|φ̃l〉 − |φl〉

)
. (E.11)

It remains to define the cl coefficients. Let us introduce the projectors βl
with the following properties:

〈βl|φm〉 = δlm,
∑
l

|φl〉〈βl| = I. (E.12)
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It is easy to verify that cl = 〈βl|ψ〉 and that we can write

|ψ̃〉 = |ψ〉+
∑
l

〈βl|ψ〉
(
|φ̃l〉 − |φl〉

)
(E.13)

=

[
I +

∑
l

(
|φ̃l〉 − |φl〉

)
〈βl|

]
|ψ〉. (E.14)

The quantity between square brackets is our 1 + T operator. This replaces the
pseudo-states φ from the pseudo-wavefunctions around the atoms and replaces
them with the all-electron states φ̃. The 1 + T operator is a purely atomic
quantity that is obtained from a judicious choice of the φ̃l all-electron atomic
states, the corresponding pseudo-states φl, and the projectors βl.

The equations to solve in the PAW method are then obtained by inserting
the above form for ψ̃ in the energy functional and by finding its minimum
with respect to the variation of the smooth part only, ψ. Rather cumbersome
expressions results. An important feature of the resulting equations is that the
charge density is no longer given simply by the square of the orbitals, but it
contains in general an additional (augmentation) term:

n(r) =
∑
i

|ψi(r)|2 +
∑
i

∑
lm

〈ψi|βl〉qlm(r)〈βm|ψi〉 (E.15)

where
qlm(r) = φ̃l(r)φ̃m(r)− φl(r)φm(r) (E.16)

(using the completeness relation, Eq.(E.12)). Conversely the pseudo-wavefunctions
are no longer orthonormal, but obey instead a generalized orthonormality rela-
tion:

〈ψi|S|ψj〉 = δij , S = I +
∑
lm

|βl〉Qlm〈βm| Qlm =

∫
qlm(r)dr, (E.17)

where the integral is performed over the core regione.
The careful reader will notice some similarity between the PAW approach

and the approach of Sec.E.1 based on the OPW method. In the PAW approach
the orthogonality hole is “plugged” by defining the charge density in the correct
way.

The PAW method can be used for the solution of the electronic structure
problem in molecules or crystals. In addition, it gives a formal and clear founda-
tion to the theory of pseudopotentials: all modern pseudopotentials (“ultrasoft”
or “norm-conserving”) can be shown to be special cases of PAW.
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