NIVERSITA . Dipartimento di
EGLI STUDI Ingegneria
ITRIESTE I a e Architettura

The C Language

A. Carini — Digital System Architectures

C language

* One of the most popular programming languages ever developed.
* |t was created by a group including Dennis Ritchie and Brian Kernighan at Bell Laboratories between
1969 and 1973 to rewrite the UNIX operating system from its original assembly language.
* C, with C++, C#, Objective C, is one of the most widely used languages in existence.
* |ts popularity stems from
* Availability on a tremendous variety of platforms.
* Relative ease of use
* Moderate level of abstraction providing higher productivity than assembly language
* Suitability for generating high performance programs
* Ability to interact directly with the hardware
* Callowsthe programmer to directly access addresses in memory
* Formally introduced in 1978 by Kernighan and Ritchie’s classic book, The C Programming Language.
* In 1989, the American National Standards Institute (ANSI) expanded and standardized the language,
which became known as ANSI C, Standard C, or C89.
* International Organization for Standardization (ISO) and the International Electrotechnical Commission
(IEC) updated the standard in 1999, 2011, 2017 to what is called C99, C11, C17 (C18), respectively.

e Architettura

=% UNIVERSITA - Dpertmerto
@ EF%IIESS%DI Ia X A. Carini — Digital System Architectures

Welcome to C

* A Cprogramis a text file that describes operations for the computer to perform.

* The text file is compiled, converted into a machine-readable format, and run or executed on a
computer.

* Cprograms are generally contained in one or more text files that end in “.c”.

// Write "Hello world!" to the console
#include <stdio.h>

int main(void){
printf("Hello world!\n");

Console Output

Hello world!

() BT | [b
\ Fil Ingegneria Al P .
Y= DITRIESTE a e A. Carini — Digital System Architectures

e Architettura

C Program Dissection

* A Cprogram is organized into one or more functions.
* Every program must include the main function, which is where the program starts executing.
* Most programs use other functions defined elsewhere in the C code and/or in a library.
* The overall sections of the hello.c program are the header, the main function, and the body.
* Header: #include <stdio.h>
* The header includes the library functions needed by the program.
* The program uses the printf function, which is part of the standard I/O library, stdio.h.
* Main function: int main (void)
* All C programs must include exactly one main function.
* Execution of the program occurs by running the code inside main, called the body of main.
The body of a function contains a sequence of statements.
Each statement ends with a semicolon.
Int denotes that the main function returns an integer that indicates whether the program ran
successfully.
Body: printf ("Hello world!\n");
* The body contains one statement, a call to the printf function. \n is a newline character

S UNIVERSITA 5 Diperinento o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

Running a C Program

* Cprograms can be run on many different machines.

* The program is first compiled on the desired machine using the C compiler.

* We show how to compile and run a C program using gcc, which is freely available for download.

* It runs directly on Linux machines and is accessible under the Cygwin (https://www.cygwin.com/)

environment or on WSL— Windows for Linux (https://learn.microsoft.com/it-it/windows/wsl/install)
on Windows.

=

Create the text file, for example hello.c.
In a terminal window, change to the directory that contains the file hello.c and type
gcc hello.c
at the command prompt.
3. The compiler creates an executable file. By default, the executable is a.exe on Windows and a.out on
Linux.
4. At acommand prompt, type ./a.exe (or ./a.out on Linux) and press return.
5. “Hello world!” will appear on the screen.

N

W BER [e ini - Dig i
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

https://learn.microsoft.com/it-it/windows/wsl/install

Compilation

* A compileris a piece of software that reads a program in a high-level language and converts it into a
file of machine code called an executable.

* The overall operation of the compiler is to
(1) preprocess the file by including referenced libraries and expanding macro definitions,
(2) ignore all unnecessary information such as comments,
(3) translate the high-level code into machine language, and
(4) compile all the instructions into a single binary executable that can be read and executed by

the computer.
* Each machine language is specific to a given processor, so a program must be compiled specifically for

the system on which it will run.

S UNIVERSITA 5 Diperinento o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

Comments

e Cprograms use two types of comments:
* Single-line comments begin with // and terminate at the end of the line;

* multiple-line comments begin with /* and end with */.

// This is an example of a one-1line comment.

/* This is an example
of amulti-line comment. */

// hello.c
// 1 Jan 2015 Sarah_Harris@hmc.edu, David_Harris@hmc.edu

/7
// This programprints "Hello world!" to the screen

prsr, M
yoa UNIVERSITA n. Dipartnorto di
[:“ﬁ\}- BEGLI o Ia X A. Carini — Digital System Architectures

ITRIESTE e Architettura

L&A

H#define

* Constants are named using the #define directive and then used by name throughout the program.
These globally defined constants are also called macros.

ffdefine MAXGUESSES 5

* The #indicates that this line in the program will be handled by the pre-processor.

* Before compilation, the preprocessor replaces each MAXGUESSES in the program with 5.

* By convention, #define lines are located at the top of the file and identifiers are written in all capital
letters.

* Number constants in C by default are decimal but can also be hexadecimal (prefix "0x") or octal (prefix
"0"). Binary constants are not defined in C99 but are supported by some compilers (prefix "0b")

char x =37;
char x =0x25;
char x =045;
@ E?ﬂfgj@f’" II a’ E':g%z':;%m A. Carini — Digital System Architectures

H#define

// Convert inches to centimeters
#include <stdio.h>

fidefine INCH2CM 2.54

int main(void) {
float inch=5.5; // 5.51inches
float cm;

cm=1inch * INCH2CM;
printf("%f inches =%f cm\n", inch, cm);

Console Output

5.500000 inches =13.970000 cm

R o e
Ingegneria A '
PITRIESTE Fah Jeteee A. Carini — Digital System Architectures

H#include

* Modularity encourages us to split programs across separate files and functions.

* Variable declarations, defined values, and function definitions located in a header file can be used by
another file by adding the #include preprocessor directive.

* Standard libraries that provide commonly used functions are accessed in this way. E.g.,

#include <stdio.h>

* The “.h"” postfix of the include file indicates it is a header file.

* While #include directives can be placed anywhere in the file, they are conventionally located at the
top of a Cfile.

* Programmer-created header files can also be included by using quotation marks (" ") around the file
name instead of brackets (< >).

##include "myfunctions.h"

* At compile time, files specified in brackets are searched for in system directories.
* Files specified in quotes are searched for in the same local directory where the C file is found (or in the
specified path relative to the current directory).

S UNIVERSITA 5 Diperinento o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

4 Address Data N

Variables (Byte #) 14— 1 byte —— |
* Variables in C programs have a type, name, value, and memory location. g
* Avariable declaration states the type and name of the variable. 2
* For example, a variable of type char, which is a 1-byte type, (1)
char x; N "
Memory

* Variable names are case sensitive, may not be any of C’s reserved words, start with a number, and
include special characters such as\, *, ?, or -. Underscores (_) are allowed.

* Cviews memory as a group of consecutive bytes, where each byte of memory is assigned a unique
number indicating its address.

* Avariable occupies one or more bytes of memory, and the address of multiple-byte variables is
indicated by the lowest numbered byte.

* The type of a variable indicates whether to interpret the byte(s) as an integer, floating point number,
or other type.

% UNIVERSITA P o
@EF%IESS%M £:) et A. Carini — Digital System Architectures

Primitive Data Types

But in Linux
64 bits

NIVERSITA
) DEGLI STUDI
7 DITRIESTE

Size (bits)

char 8 -277=-128 27 —1=127

unsigned char 8 0 28 1 =255

short 16 213 = 32,768 215 1 =32,767
unsigned short 16 0 216 _ 1 =65,535

Tong 32 231 = _2.147,483,648 231 1 =2,147,483,647
unsigned long 32 0 232 — 1 =4,294,967,295
long long 64 —263 203 1

unsigned long long 64 0 264 1

int machine-dependent

unsigned int machine-dependent

float 32 +27126 +2127

double 64 o O o)

5 Dipartimento d
Ingegneria
I a e Architettura

A. Carini — Digital System Architectures

Primitive Data Types

* Char should always be 1 byte (but in some non-conforming machine it has also 16 bit, e.g. TI C54).
* ltisaninteger type, that can be used for operations.
* Characters are associated with integers.
* Sizes of data types are machine dependent, but it is always guaranteed that
sizeof(char) < sizeof(short) < sizeof(int) < sizeof(long) < sizeof(long long)

UNIVERSITA P Dipertmento i
@ EEGLI e Ia R A. Carini — Digital System Architectures

‘&= DITRIESTE e Architettura

Example data types

// Examples of several data types and their binary representations

unsigned char x =42; // x=00101010
short y = -10; //y=11111111 11110110
unsigned long z=10; // z=00000000 00000000 00000000 00000000

* Shows the declaration of variables of different types.

* Xxrequires one byte of data, y requires two, and z requires four.

* The program decides where these bytes are stored in memory, but each type always requires the
same amount of data.

4 Address Data Variable Name\

(Byte #) <——— 1 byte ——»

00000000
00000000
00000000
00000000 zZ =
11111111
11110110
00101010

[l
(=]

-10
42

[—
W

oO-_NwWwhraoO~N -

Memory

gﬁ‘—\"\ UNIVERSITA 5 Dperimonto .)
g%j pectistubl i) geerere A. Carini — Digital System Architectures

e Architettura

Global and Local Variables

* Global and local variables differ in where they are declared and where they are visible.
* Aglobal variable is declared outside of all functions, typically at the top of a program, and can be
accessed by all functions.
* Global variables should be used sparingly because they violate the principle of modularity.
* Alocal variable is declared inside a function and can only be used by that function.
* Two functions can have local variables with the same names without interfering with each
other.
* Local variables are declared at the beginning of a function.
* They cease to exist when the function ends and are recreated when the function is called again.
* They do not retain their value from one invocation of a function to the next.

W BER [e ini - Dig i
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Global Variables

// Use a global variable to find and print the maximum of 3 numbers

int max; // global variable holding the maximum value

void findMax(int a, int b, int ¢) {

max =a;

if (b > max) |
if (c>Db)max=rc;
else max = b;

} else if (¢ >max) max=c;
|
void printMax(void) {
printf("The maximum number is: %d\n", max);
)
int main(void) {
findMax(4, 3, 7);
printMax();

% UNIVERSITA = Dipartimento
la R A. Carini — Digital System Architectures

e Architettura

Local Variables

// Use local variables to find and print the maximum of 3 numbers

int getMax(int a, int b, int c) {
int result=a; // local variable holding the maximum value

if (b>result) {
if (c>b)result=c;
else result =b;
} else if (¢ > result) result=c;

return result;
}

void printMax(int m) {
printf("The maximum number is: %d\n", m);

!

int main(void) {

int max;

max = getMax(4, 3, 7);
printMax(max);

7% UNIVERSITA - Dpartmento &
DEGLI STUDI Ingegneria
DITRIESTE I a e Architettura

A. Carini — Digital System Architectures

Initializing Variables

* Avariable needs to be initialized — assigned a value — before it is read.

* When a variable is declared, the correct number of bytes is reserved for that variable in memory.

* However, the memory at those locations retains whatever value it had last time it was used,
essentially a random value.

* Global and local variables can be initialized either when they are declared or within the body of the
program.

unsigned char x =42;
short y =-10;
unsigned Tong z=20;

) BB 13 s o .
g,/y; i Ia e A. Carini — Digital System Architectures

Operators

* The most common type of statement in a C program is an expression, such as

y=a-+3;

* An expression involves operators (such as + or *) acting on one or more operands, such as variables or
constants.

* Csupports the operators shown in next slides, listed by category and in order of decreasing
precedence.

* For example, multiplicative operators take precedence over additive operators.

* Within the same category, operators are evaluated in the order that they appear in the program.

* Unary operators, also called monadic operators, have a single operand; binary operators have two
operands; ternary operators have three.

=5 UNIVERSITA Dipertimento &
@ DEGLI STUDI H Ingegneria

= DITRIESTE Ia e A. Carini — Digital System Architectures

Operators

Operator

Description

//\\ UNIVERSITA 5)
{ala} pecLrsTUDI) e

%=’ DITRIESTE Sk

++ post-increment at+; // a=a+l
== post-decrement X3 [/ x=x=1
& memory address of a variable x=2&y; // x=the memory
// address of y
~ bitwise NOT z=~a;
Boolean NOT Ix
= negation y=-a;
++ pre-increment ++a; // a=a+l
= pre-decrement =X; [/ x=x-1
(type) casts a variable to (type) x=(int)c; // cast c toan
// int and assign it to x
sizeof () size of a variable or type in bytes long int y;
x=sizeof(y); // x=4
Multiplicative * multiplication y=x*12;
/ division z=9/3;//z=3
% modulo z2=5%2;//z=1

A. Carini — Digital System Architectures

Operators

Category Operator Description Example
Additive + addition y=a+2;
- subtraction y=a-2
Bitwise Shift <« bitshift left z=5<<2; //z=0b00010100
>> bitshift right *x=92>>3; // x=0b00000001
Relational == equals y==2
I= not equals x 1=7
< less than y <12
> greater than val > max
<= less than or equal z<=2
>= greater than or equal y>=10
Bitwise & bitwise AND y=a&l5;
" bitwise XOR y=2"3;
| bitwise OR y=a|b;
Logical && Boolean AND X && y
| | Boolean OR x ||y

=% UNIVERSITA - Dipartimero &
DEGLI STUDI Ingegneria
< DITRIESTE Ia e Architettura

A. Carini — Digital System Architectures

Operators

&% UNIVERSITA

DEGLI STUDI

fia)

Category Operator Description Example
Ternary ?: ternary operator y=x7?%az:b;//if xis TRUE,
// y=a, else y=b

Assignment = assignment X=22;

+= addition and assignment y+=3 /ly=y+3

—= subtraction and assignment z —10; /lz=z-10

= multiplication and assignment X *=4 [l x=x*4

/= division and assignment y /=10; /fy=y/10

%= modulo and assignment X %=4 I x=x%4

>y= bitwise right-shift and assignment X >>=5; [/ x=x>>5

K= bitwise left-shift and assignment x {{=2; /1 x=x<<2

&= bitwise AND and assignment y &=15; //y=y&15

- bitwise OR and assignment X |=y [x=x]y

A= bitwise XOR and assignment X A=y [/ x=x"y

Dipartimento di
Ingegneria
e Architettura

A. Carini — Digital System Architectures

Ternary operator

(a) y=(a>b) ?a:b; //parentheses not necessary, but makes it clearer
(b)if(a>b)y=a;
else y=D0;

e Cconsiders a variable to be TRUE if it is nonzero and FALSE if it is zero.

* Logical and ternary operators, as well as control-flow statements such as if and while, depend on the
truth of a variable.

* Relational and logical operators produce a result that is 1 when TRUE or O when FALSE.

) g [i3) e i Dig .
&:f/j i Ia e A. Carini — Digital System Architectures

Operator examples

Expression Result Notes

44 /14 3 Integer division truncates

44 %14 2 44 mod 14 e *=por+4=g3re

0x2C && OXE //0b101100 & 0b1110 1 Logical AND compound assignments
0x2C || OXE //0b101100 | | Ob1110 1 Logical OR * x+=10; is equivalent to
0x2C & OxE //0b101100 & 0b1110 0xC (0b001100) Bitwise AND X=X+ 10'

0x2C | OxE //0b101100 | Ob1110 0x2E (0b101110) Bitwise OR

0x2C ~ OxE //0b101100 ~ 0b1110 0x22 (0b100010) Bitwise XOR

OxE << 2 //0b1110 << 2 0x38 (0b111000) Left shift by 2

0x2C >> 3 //0b101100 >> 3 0x5 (0b101) Right shift by 3

x=14; x=16

X+=2;

y =0x2C; //y=0b101100 y=0xC (0b001100)

¥ &= 0xF; //y &= 0b1111

x=14; y=44; x=15, y=58 Increment x after using it

y=y+x++;

x=14; y=44; x=15, y=59 Increment x before using it

Y=y 4+

% UNIVERSITA 5 Diparinerto - |
DEGLI STUDI Ia Ingegneria N Dlgltal System N

s DITRIESTE e Architettura

Function calls

* Large programs are divided into functions with well-defined inputs, outputs, and behavior.

// Return the sum of the three input variables
int sum3(int a, int b, int ¢) {

int result=a+b+c;

return result;
}

* The function declaration begins with the return type, int, followed by the name, sum3, and the inputs
enclosed within parentheses(int a, int b, int c).

* Curly braces {} enclose the body of the function, which may contain zero or more statements.

* The return statement indicates the value returned to the caller, i.e., the output of the function.

e Afunction can only return a single value.

int y=sum3(10, 15, 17);

After this call to sum3, y holds the value 42.

) BB 13 s o .
g,/y; i Ia e A. Carini — Digital System Architectures

Function calls

* Although a function may have inputs and outputs, neither is required.

// Print a prompt to the console
void printPrompt(void)
{
printf("Please enter a number from1-3:\n");

}

* The keyword void before the function name indicates that nothing is returned.
* void between the parentheses indicates that the function has no input arguments.

) BB 13 s inl— Dig .
&:f/j i Ia geg A. Carini — Digital System Architectures

e Architettura

Function prototype

e A function must be declared in the code before it is called.

This may be done by placing the called function earlier in the file, with main placed at the end of the C
file after all the functions it calls.

* Alternatively, a function prototype can be placed in the program before the function is defined.

* The function prototype is the first line of the function, declaring the return type, function name,
and function inputs.

It is good style to place prototypes for all of a program’s functions near the beginning of the C
file or in a header file.

W BER [e ini - Dig i
@)j DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Function prototype

f#include <stdio.h>

// function prototypes
int sum3(int a, int b, int ¢);
void printPrompt(void);

int main(void)
{
int y =sum3(10, 15, 20);

printf("sum3 result: %d\n", y);
printPrompt();
}

int sum3(int a, int b, int ¢) {
int result =atb+c;
return result;

}

void printPrompt(void) {
printf("Please enter a number from1-3:\n");

Console Output

sum3 result: 45
Please enter a number from 1-3:

Ila' gl A. Carini — Digital System Architectures

Control flow statements

* Cprovides control-flow statements for conditionals and loops.
* Conditionals execute a statement only if a condition is met: if, if/else, and switch/case
* Aloop repeatedly executes a statement as long as a condition is met: while, do/while, and for loops

@ UNIVERSITA 5 Diperinento o .
S AR TTACS (3) e A. Carini — Digital System Architectures

S

If and if/them statements

* Anif statement executes the statement immediately following it when the expression in parentheses
is TRUE (i.e., nonzero).

* The general format is: int dontFix =0;
if (expression)

statement if (aintBroke ==1)

dontFix=1;
* Curly braces, {}, are used to group one or more statements into a compound statement or block.

// 1f amt >=$2, prompt user and dispense candy
if (amt >=2) {
printf("Select candy.\n");
dispenseCandy =1;

* if/else statements execute one of two statements depending on a condition:
if (expression)

Statemeﬂtl if(a>b)y=a;
else else y=>b:
statement? ’

&

) SRS T e
il Ingegneria ini — Dioi i
/y'j i |a e A. Carini — Digital System Architectures

switch/case statements

* switch/case statements execute one of several statements depending on the value of an expression:

switch (variable) {
case (expressionl): statementl break;
case (expression2): statement? break;
case (expression3): statement3 break;
default: statement4

}

* If the keyword break is omitted, execution begins at the point where the condition is TRUE and then
falls through to execute the remaining cases below it.

// Assign amt depending on the value of option

_ ‘ * A switch/case statement is equivalent to a series of
switch (option) {

case 1: amt=100: break: nested if/else statements: // Assign amt depending on the value of option
case 2: amt=150; break; if (option==1) amt=100;
case 3: amt=20; break: else if (option==2) amt=50;
case 4: amt=10; break; else if (option==3) amt=20;
default: printf("Error: unknown option.n"); else if (option==4) amt=10;

} else printf("Error: unknown option.\n");

/@\\ UNIVERSITA - Doarireno o o .
e, 24 DEGLISTUCE 1a facia A. Carini — Digital System Architectures
s

while Loops

* while loops repeatedly execute a statement until a condition is not met

while (condition)
statement

// Compute 9! (the factorial of 9)
int i=1, fact=1;

// multiply the numbers from1 to 9
while (i <10) { // while loops check the condition first
fact *=1;

Aamre

/-}'\\ &

#5% UNIVERSITA Dpormeno s
f@ DEGLI STUDI 1 Ingegneria
%= DITRIESTE Ila'

CEE ST A. Carini — Digital System Architectures

do/while Loops

do/while loops are like while loops but the condition is checked only after the statement is executed

once:
do

statement
while (condition); «————The condition is followed by a semi-colon.

// Query user to guess a number and check it against the correct number.

fidefine MAXGUESSES 3
ftdefine CORRECTNUM 7
int guess, numGuesses =0;

do f{
printf("Guess a number between 0 and 9. You have %d more guesses.\n",

(MAXGUESSES-numGuesses));
scanf("%d", &guess); // read user input

numGuesses++;
} while ((numGuesses < MAXGUESSES) & (guess != CORRECTNUM));

// do Toop checks the condition after the first iteration

if (guess == CORRECTNUM)
printf("You guessed the correct number!\n");

A. Carini — Digital System Architectures

x»‘\ umvensm\ 0 Diparmento t
w DEGLI STUDI Ingegneria
’ DITRIESTE Ia e Architettura

for Loops

» forloops, like while and do/while, repeatedly execute a statement until a condition is not satisfied.

* However, for loops add support for a loop variable, which typically keeps track of the number of loop
executions.

* The general format of the for loop is

for (initialization; condition; Toop operation)
statement

* The initialization code executes only once, before the for loop begins.
* The condition is tested at the beginning of each iteration of the loop. If not TRUE, the loop exits.
* The loop operation executes at the end of each iteration.

// Compute 9!
int i; // loop variable
int fact =1;

for (i=1; i<10; i++)

fact *=1;
/—xx UNIVERSITA h o - .
} DEGLI STUDI Ingegneria 5
@%ﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

ﬁ‘\

(-

R

for Loops

v
D
D

* Aforloop could be expressed equivalently, but less conveniently, as

initialization;
while (condition) {
statement
loop operation;

}

MNIVERSITA . Dipartimento di
EGLI STUDI Ingegneria
ITRIESTE I a e Architettura

A. Carini —

Digital System Architectures

More data types: pointers

* A pointeris the address of a variable.

// Example pointer manipulations
int salaryl, salary2; // 32-bit numbers

int *ptr; // apointer specifying the address of an int variable
salaryl =67500; // salaryl =$67,500 = 0x000107AC
ptr=_&salaryl; // ptr = 0x0070, the address of salaryl

salary2 =*ptr + 1000; /* dereference ptr to give the contents of address 70 =$67,500,
then add $1,000 and set salary?2 to $68,500 */

g ™\
Address Data Variable Nam; /Address Data Variable Name
(Byte #) ! (Byte #), '
0x7B 1 0x7B 0x00
0%7 0x7A 0x00
;;72 I 0x70 0x79 o0
0x78 Jptr 0x78 0x70 dptr Figure eC.3 Contents of memory
0x77 0x77 0x00
e 58500 o ST after G Code Example eC.18
0x75 0x75 0x0B executes shown (a) by value and
0x74 | salary2 0x74 0x94 | salary2) N)
0x73 I 0x73 0%00 1 (b) by byte using little-endian
0x72 0x72 0x01
Ui?i 67500 'C);Ti Oi:}'«‘ memory
0x70 | salary1 0x70 OxAC | salary1
] [} | |
o AN
(a) Memory (b) Memory

) wvesss, | N
] Ingegneria e, .
@J DITRIESTE |a Sk A. Carini — Digital System Architectures

More data types: pointers

* Inavariable declaration, a star (*) before a variable name indicates that the variable is a pointer to the

declared type.
int *ptr; // a pointer specifying the address of an int variable

* Inusing a pointer variable, the * operator dereferences a pointer, returning the value stored at the
indicated memory address contained in the pointer.

salary?2 = *ptr +1000; /* dereference ptr to give the contents of address 70 =%$67,500,
then add $1,000 and set salary2 to $68,500 */

* The & operator is pronounced “address of,” and it produces the memory address of the variable being
referenced.
ptr=&salaryl; // ptr =0x0070, the address of salaryl

* Dereferencing a pointer to a non-existent memory location or an address outside of the range
accessible by the program will usually cause a program to crash.
* The crash is often called a segmentation fault.

) BB 13 s inl— Dig .
&:f/j i Ia geg A. Carini — Digital System Architectures

e Architettura

More data types: pointers

* Pointers are particularly useful when a function needs to modify a variable, instead of just returning a

value.
* Functions can’t modify their inputs directly, but we can make the input a pointer to the variable.

* This is called passing an input variable by reference instead of by value.

* A pointer to address 0 is called a null pointer and indicates that the pointer is not actually pointing to
meaningful data. It is written as NULL in a program (with NULL defined in <stddef.h>).

UNIVERSITA 5 Dipartimento B B |
; gl%llss#ém Ia :‘gm:;:m A. Carini — Digital System Architectures

More data types: pointers

// Quadruple the value pointed to by a
fHinclude <stdio.h>

void quadruple(int *a)

{
*a:*a *4:

1

int main(void)

{
int x=5;
printf("x before: %d\n", x);
quadruple(&x);
printf("x after: %d\n", x);
return 0;

Console Output

x before: 5
x after: 20

NIVERSITA = Dipartimento
guay Ia R A. Carini — Digital System Architectures

e Architettura

More data types: arrays

* Anarray is a group of similar variables stored in consecutive addresses in memory.
* The elements are numbered from 0 to N-1, where N is the length of the array.

lTong scores[3];

// array of three 4-byte numbers

O . N (a ™
Address Data Variable Name Address Data Variable Name
(Byte #) | (Byte #) | |

0x4B 0x4B 0x00 ‘
Ox4n Ox4n 0x00
0x49 97 0x49 0x00
0x48 | scores[2] 0x48 0x61 | scores[2]
0x47 1 0x47 0x00 1
0x46 0x46 0x00
0x45 81 0x45 0x00
Ox44 Jscores[1] 0x44 0x51 |scores[1]
0x43] 0x43 0x00]
0x42 0x42 0x00
0x41 93 0x41 0x00
0x40 1 scores[0] 0x40 0x5D | scores[0]

I |

! ' \

AN
Memory Memory

* InC, the array variable, in this case scores, is a pointer to the 15t element.
* |tisthe programmer’s responsibility not to access elements beyond the end of the array.

% UNIVERSITA Diporinenio @
f_ “\E DEGLI STUDI H Ingegneria
‘o= DITRIESTE 1A) <Acnietura

A. Carini — Digital System Architectures

More data types: arrays

* The elements of an array can be initialized either at declaration using curly braces {},
long scores[31=1{93, 81, 97}; // scores[0]=93; scores[1]=81; scores[2]=97;
* orindividually in the body of the code, 1ongscoresrs:

scores[0] =93;
scores[1] =81;
scores[2]=97;

* Inthe first case, if there are fewer initializers than the number specified, the missing elements will be
zero.

* Each element of an array is accessed using brackets [].
// User enters 3 student scores into an array
Tong scores[3];
int i, entered;

printf("Please enter the student's 3 scores.\n");
for (1=0; i<3; i++) {
printf("Enter a score and press enter.\n");
scanf("%d", &entered);
scores[i] =entered;
}

printf("Scores: %d %d %d\n", scores[0], scores[1], scores[2]);

(@) s | FR e
18l)5 Ingegneria fr Do .
%=/ DITRIESTE |a & Architettura A. Carini — Digital System Architectures

More data types: arrays

* When an array is declared, the length must be constant so that the compiler can allocate the proper
amount of memory.

* However, when the array is passed to a function as an input argument, the length need not be defined
because the function only needs to know the address of the beginning of the array.

// Initialize a 5-element array, compute the mean, and print the result.
fHinclude <stdio.h>

// Returns the mean value of an array (arr) of Tength Ten
float getMean(int arr[]1, int len) {
int 1;
float mean, total =0;
for (i=0; i <len; i++)
total +=arr[il;

mean = total / len;
return mean;

) Sersss | FN
] Ingegneria A (R .
Q@; DITRIESTE |a Sk A. Carini — Digital System Architectures

More data types: arrays

int main(void) {
int datal41= {78, 14, 99, 27};
float avg;

avg = getMean(data, 4);

printf("The average value is: %Zf.\n", avg);
Console Qutput
The average value is: 54.500000.

* Anarray argument is equivalent to a pointer to the beginning of the array. Thus, getMean could also
have been declared as

float getMean(int *arr, int len);

* Although functionally equivalent, datatype[] is the preferred method for passing arrays as input
arguments because it more clearly indicates that the argument is an array.

(@) BCEIS | R e
8] ingegneria oS . B
[\@?’,\/} DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

More data types: arrays

* Afunctionis limited to a single output, i.e., return variable. However, by receiving an array as an input
argument, a function can essentially output more than a single value by changing the array itself.

// Sort the elements of the array vals of Tength Ten from lTowest to highest
void sort(int vals[], int len)
{

int i, j, temp;

for (i=0; i<len; i++) {
for (j=i+1; j<len; j++) {
if (vals[i] > vals[jl) {
temp =vals[il;
vals[il=vals[jl;
vals[j] = temp:

void sort(int *vals, int len);:
] void sort(int vals[], int len);
void sort(int vals[100], int Ten);

&N Dipartimento d
{(‘ ﬂ"g gg(l;{ERsllJTI:‘:I I) Ingegneria A. Carini — Digital System Architectures
DITRIESTE |a ’

e Architettura

Number of elements of an array

In the function where the array is declared, the number of elements in the array can be found from:
sizeof (array) / sizeof (arrayElement)

* E.g,
int a[l0];
sizeof (a)/sizeof (int) is10;

* This is useful to determine the number of elements when the array size is deduced by the initialization
int al[l= {1, 2, 100, .., 5, 2};

* Note however that in a function with a parameterarray[], sizeof (array) isjustthe size of

the pointer to the array, because arrays are passed by reference and the number of elements is
unknown.

UNIVERSITA 5 Dipartimento B B |
; gl%llss#ém Ia :‘gm:;:m A. Carini — Digital System Architectures

Arrays and Pointers

* InC, there is a strong relationship between pointers and arrays.
* Any operation that can be achieved by array subscripting can also be done with pointers.
* The declaration
int afl10];
* defines an array of size 10, that is, a block of 10 consecutive objects named a[0], a[1], ...,a[9]

a:

alo]al1] al[9]
* If paisa pointer to an integer, declared as Pa;
int *pa; \
* then the assignment a:
pa = &al[0]; a[0]
* sets pa to point to element zero of a; that is, pa contains the address of a[0].

X = *pa;
* will copy the contents of a [0] into x.

) g [i3) e i Dig .
&:f/j i Ia e A. Carini — Digital System Architectures

Arrays and Pointers

* If pa points to a particular element of an array, then by definition pa+1 points to the next element,
pa+i points i elements after pa, and pa-1 points i elements before. Thus, if pa pointstoa[0],

. * (patl)

* referstothecontentsofa[1],pa+iistheaddressofa[i],and * (pa+i)isthe contentsofa[i].

pa: patil: pat2:

alo]
* These remarks are true regardless of the type or size of the variables in the array a.
* The meaning of "adding 1 to a pointer” is that pa+1 points to the next object, and pa+1i points to
the i-th object beyond pa.

=/ DITRIESTE e Architettura

=% UNIVERSITA P Cpartinonto &
@ BITRIESTE Ia R A. Carini — Digital System Architectures

Arrays and Pointers

After the assignment
pa = &al0];
* paanda haveidentical values.
* Since the name of an array is a synonym for the location of the initial element, the assignment
pa=&a[0] can also be written as
pa = a;
e a[i]canalso be writtenas * (a+1) !
* Inevaluatinga[i], Cconvertsitto * (a+i) immediately; the two forms are equivalent.
* Moreover,pa[1i] isidentical to * (pa+1i).

* There is one difference between an array name and a pointer that must be kept in mind:
* Apointerisavariable, so pa=a and pa++ are legal.
* Butanarray name is not a variable; constructions like a=pa and a++ are illegal.

Note that the expression *p++ is parsed as * (p++),and notas (*p) ++.

=5 UNIVERSITA Dipertimento &
@ DEGLI STUDI H Ingegneria

= DITRIESTE Ia e A. Carini — Digital System Architectures

Arrays and Pointers

* When an array name is passed to a function, what is passed is the location of the initial element.
* Within the called function, this argument is a local variable, and so an array name parameter is a
pointer, that is, a variable containing an address.

/* strlen:

return length of string s */

int strlen (char *s)

{
int n;
for (n = 0; *s != "\0', s++)
n++;
return n;
}

* Asformal parameters in a function definition,

* are equivalent.

=5 UNIVERSITA Dipertimento &
f_ ,\\;j DEGLI STUDI H Ingegneria
&»E;/y‘ DITRIESTE I a e Architettura

char s/|] and char *s

A. Carini — Digital System Architectures

More data types: arrays

* Arrays may have multiple dimensions.

// Initialize 2-D array at declaration
int grades[10][8] ={ {100, 107, 99, 101, 100, 104, 109, 117},
{103, 101, 94, 101, 102, 106, 105, 110},
{101, 102, 92, 101, 100, 107, 109, 110},
{114, 106, 95, 101, 100, 102, 102, 100},
{98, 105, 97, 101, 103, 104, 109, 109},
{105, 103, 99, 101, 105, 104, 101, 105},
{103, 101, 100, 101, 108, 105, 109, 100},
{100, 102, 102, 101, 102, 101, 105, 102},
{102, 106, 110, 101, 100, 102, 120, 103},
{99, 107, 98, 101, 109, 104, 110, 108

* Multi-dimensional arrays used as input arguments to a function must define all but the first

dimension.
void print2dArray(int arr[101081]);
void print2dArray(int arr[1[81);
’,/‘ =5 &N A = Dipartimento di
[@ E?ﬁ‘},‘?jgg' I| a’ facia A. Carini — Digital System Architectures

More data types: arrays

#include <stdio.h>

// Print the contents of a 10x8 array
void print2dArray(int arr[10]1081])
{
inti, J;
for (i=0; 1<10; i++) { // for each of the 10 students
printf("Row %d\n", i);
for (j=0; j<8; j++) {
printf("%d ", arr[iJ[jl); // print scores for all 8 problem sets
}
printf("\n");

}

// Calculate the mean score of a 10x8 array
float getMean(int arr[101[81)
{

inti, j;

float mean, total =0;

// get the mean value across a 20 array
for (i=0; 1<10; i++) {

e | [N
/ Ingegneria o '
PITRIESTE 1) R A. Carini — Digital System Architectures

More data types: arrays

for (j=0; j<8; j++) {
total +=arrlillj]; // sumarray values

!
mean = total/(10*8);
printf("Mean is: Zf\n", mean);

return mean;

* Note that because an array is represented by a pointer to the initial element, C cannot copy or

compare arrays using the = or == operators.
* Instead, you must use a loop to copy or compare each element one at a time.

) Sersss | FN
] Ingegneria A (R .
Qg&; DITRIESTE |a Sk A. Carini — Digital System Architectures

More data types: characters

* Acharacter (char) is an 8-bit variable.
* |t can be viewed either as a two’s complement number between -128 and 127 or as an ASCII code for
a letter, digit, or symbol.
* ASCII characters can be specified as a numeric value (in decimal, hexadecimal, etc.) or as a printable
character enclosed in single quotes.
* The letter A has the ASCIl code 0x41, B=0x42, etc. Thus, 'A' + 3 is 0x44, or 'D".

) BB 13 s o .
g,/y; i Ia e A. Carini — Digital System Architectures

More data types: characters

Table eC.4 Special characters

Special Character Hexadecimal Encoding Description

\r 0x0D carriage return

\n 0x0A new line

\t 0x09 tab

\O 0x00 terminates a string
\\ 0x5C backslash

\ " 0x22 double quote

\! 0x27 single quote

\a 0x07 bell

Windows text files use \r\n to represent end-of-line while UNIX-based systems use \n,
which can cause nasty bugs when moving text files between systems.

s R e
Ingegneria A '
- DITRIESTE Fal et A. Carini — Digital System Architectures

Table 6.5 ASCIl encodings

More data types: characters

Char # Char # Char # Char # Char # Char

20 space| 30 0 40 @ 50 P 60 ’ 70 p
21 ! 31 1 41 A 51 Q 61 a 71 q
22 " 32 2 42 B 52 R 62 b 72 r

23 if 33 3 43l C Si) S 63 c 73 s

24 $ 34 4 44 D 54 T 64 d 74 t

25 % 35 5 45 E 55 U 65 e 75 u

26 & 36 6 46 F 56 Vv 66 f 76 v

27 ‘ 37 7 47 G 57 W 67 g 77 W

28 (38 8 48 H 58 X 68 h 78 X

29) 39 9 49 1 59 Y 69 i 79 y

2A * 3A : 4A J SA Z 6A J 7A z
2B I 3B : 4B K 5B [6B k 7B {
2C . 3C < 4C L 5C \ 6C 1 7C \
2D - 3D = | 4D M 5D 1 6D m 7D }
2E . 3E > 4E N SE " 6E n 7E ~
2F / 3F ? 4F 0 SF 6F 0

#OC% UNIVERSITA - Diarrnts) ” |
BF%{-IIESSII:I%m Ia Ingegneria . Dlgltal System o

e Architettura

More data types: strings

* Astringis an array of characters used to store a piece of text of bounded but variable length.
* Each character is a byte representing the ASCIl code for that letter, number, or symbol.
* The size of the array determines the maximum length of the string, but the actual length of the string

could be shorter.

* InC, the length of the string is determined by looking for the null terminator at the end of the string.

char greeting[10] = "Hello!";

s , N , ™
Address Data Variable Name Address Data Variable Name
(Byte #) | ! (Byte #)! !

0x5A 0x5A
0x59 0x59 unknown
0x58 0x58 unknown
0x57 0x57 unknown
0x56 0x56 0x00
0x55 n " 0x55 0x21
0x54 Hello' 0Ox54 Ox6F
0x53 0x53 0x6C
0x52 0x52 Ox6C
0x51 0x51 0x65
0x50 1 str 0x50 0x48 1 str
0x4F 0x4F
! 1 |
. J
Memory Memory

=% UNIVERSITA Diperieerio
f_ ,\\;j DEGLI STUDI 1 Ingegneria
‘o= DITRIESTE 1) < Arenitettura

Figure eC.5 The string “Hello!”
stored in memory

A. Carini — Digital System Architectures

More data types: strings

* an alternate declaration of the string greeting:

char *greeting = "Hello!"; Console Output
printf("greeting: %s", greeting);
greeting: Hello!

* Unlike primitive variables, a string cannot be set equal to another string using the equals operator, =
* Each element of the character array must be copied from the source string to the target string.
// Copy the source string, src, to the destination string, dst

void strcpy(char *dst, char *src)
{

int i=0;
do {

dst[il=srcl[il; // copy characters one byte at a time
b while (srcl[i++]); // until the null terminator is found

&N Dipartimento d
{(‘ ﬂ"g gg(l;{ERsllJTI:‘:I I) Ingegneria A. Carini — Digital System Architectures
DITRIESTE |a ’

e Architettura

ﬁ‘\

w\\

R

More data types: structures

* InC, structures are used to store a collection of data of various types.
* The general format of a structure declaration is

struct name {
typel elementl;
type? element?;

}

* where struct is a keyword indicating that it is a structure, name is the structure tag name, and
element1 and element2 are members of the structure.

struct contact {

char name[30];

int phone;

float height; // inmeters
I g

struct contact cl;

strcpy(cl.name, "Ben Bitdiddle");
cl.phone =7226993;
cl.height =1.82;

g E(l;{F E]s’UTDA| . Il)\uamn\emn @
ingegneria Py
DITRIESTE I a e Architettura A. Carini

Digital System Architectures

More data types: structures

* Just like built-in C types, you can create arrays of structures and pointers to structures.

struct contact classlist[200];
classlist[0].phone =9642025;

° It is common to use pointers to structures.

* Cprovides the member access operator -> to dereference a pointer to a structure and access a
member of the structure.

struct contact *cptr;
cptr=2a&classlistl[42];
cptr->height =1.9; // equivalent to: (*cptr).height=1.9;

e

) s | EN
] Ingegneria A (R .
Qg&; DITRIESTE |a Sk A. Carini — Digital System Architectures

Precedence Operator Description Associativity

4 - Suffix/postfix increment and decrement Left-to-right
More data types: structures 0
(1 Array subscripting
a . Structure and union member access
The ta ble |IStS the precedence d nd aSSOC|at|V|ty -> Structure and union member access through pointer
of C operators. Operators are listed top to foric i I (T sl) ,
- Prefix increment and decrementlnote 11 Right-to-left
bottom, in descending precedence. +- Unary plus and minus
I~ Logical NOT and bitwise NOT
2 (type) Cast
& Indirection (dereference)
& Address-of
sizeof Size-oflnote 2l
Taken from https://en.cppreference.com/w/c/language/operator_precedence
3 */% Multiplication, division, and remainder Left-to-right
4 +- Addition and subtraction
5 << >> Bitwise left shift and right shift
. <<= For relational operators < and < respectively
>>= For relational operators > and > respectively
7 === For relational = and # respectively
8 & Bitwise AND
9 A Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
11 && Logical AND
12 |1 Logical OR
13 2 Ternary conditionallnote 31 Right-to-left
= Simple assignment
4= -= Assignment by sum and difference
14 *= /= %= Assignment by product, quotient, and remainder
<<=>>= Assignment by bitwise left shift and right shift
&="=|= Assignment by bitwise AND, XOR, and OR
15 , Comma Left-to-right

R | o)
1. ngEg"E"a B » '
 DITRIESTE 1) caenvenrs A. Carini — Digital System Architectures

https://en.cppreference.com/w/c/language/operator_precedence#cite_note-1
https://en.cppreference.com/w/c/language/operator_precedence#cite_note-2
https://en.cppreference.com/w/c/language/operator_precedence#cite_note-3

More data types: structures

* Structures can be passed as function inputs or outputs by value or by reference.

* Passing by value requires the compiler to copy the entire structure into memory for the function.

* Passing by reference involves passing a pointer to the structure, which is more efficient.

struct contact stretchByValue(struct contact c)
{

c.height +=0.02;

return c;

]
void stretchByReference(struct contact *cptr)

{
cptr->height +=0.02;
}

int main(void)

{
struct contact George;

George.height =1.4; // poor fellow has been stooped over
George = stretchByValue(George); // stretch for the stars
stretchByReference(&George); // and stretch some more

N i]
{@1 DECLI STUD II a) ingegneria

“Z=s DITRIESTE i

A. Carini — Digital System Architectures

More data types: typedef

* Calso allows you to define your own names for data types using the typedef statement.

typedef struct contact {
char name[30];

int phone;

float height; // in meters
} contact; // defines contact as shorthand for "struct contact"”
contact cl; // now we can declare the variable as type contact

typedef unsigned char byte;
typedef char bool;

fidefine TRUE 1

ffdefine FALSE 0

byte pos = 0x45;
bool ToveC = TRUE;

typedef double vector[3];
typedef double matrix[3]1[3];

vectora=1{4.5, 2.3, 7.0};
matrixb=1{1{3.3, 4.7, 9.2}, {2.5, 4, 9}, (3.1, 99.2, 88}};

UNIVERSITA

@‘ BF%'ESTUEDI Ia :'gffr"'i;:m A. Carini — Digital System Architectures

Dipartiments di

Dynamic memory allocation

* In all the examples thus far, variables have been declared statically: their size is known at compile time.
* This can be problematic for arrays and strings of variable size because the array must be declared large

enough to accommodate the largest size the program will ever see.

* Analternative is to dynamically allocate memory at run time when the actual size is known.
* The malloc function from stdlib.h allocates a block of memory of a specified size and returns a pointer

to it. If not enough memory is available, it returns a NULL pointer instead.

// dynamically allocate 20 bytes of memory
short *data=malloc(10*sizeof(short));

* The free function de-allocates the memory so that it could later be used for other purposes.
* Failing to de-allocate dynamically allocated data is called a memory leak and should be avoided.

IVERSITA 5 Dipartimento B . |
TG'{-IIESS%DI Ia :‘gm:;:m A. Carini — Digital System Architectures

Dynamic memory allocation

// Dynamically allocate and de-allocate an array using malloc and free
#include <stdlib.h>

// Insert getMean function from C Code Example eC.24.

int main(void) {
int Ten, i;

int *nums;

printf("How many numbers would you 1ike to enter? ")
scanf("%d", &len);
nums =malloc(len*sizeof(int));
if (nums == NULL) printf("ERROR: out of memory.\n");
else {
for (i=0; i<len; i++) {
printf("Enter number: F
scanf("%d", &nums[i1);
i
printf("The average is %f\n", getMean(nums, len));
}
free(nums);

f\ UNIVERSITA 3 CETTIC
L,,;\fﬂ DEGLI i) oo A. Carini — Digital System Architectures

e Architettura

Example Linked lists

* Alinked list is a common data structure used to store a variable number of elements.

* Each element in the list is a structure containing one or more data fields and a link to the next
element.

* The first element in the list is called the head.

* The code in the following slides describes a linked list for storing computer user accounts to
accommodate a variable number of users.

* Each user has a user name, a password, a unique user identification number (UID), and a field
indicating whether they have administrator privileges.

* Each element of the list is of type userL, containing all of this user information along with a link to the
next element in the list.

* A pointer to the head of the list is stored in a global variable called users, and is initially set to NULL to
indicate that there are no users.

* The program defines functions to insert, delete, and find a user and to count the number of users.

UNIVERSITA Diparimento &
@ DEGLI STUDI H Ingegneria

= DITRIESTE Ia e A. Carini — Digital System Architectures

Example Linked lists

#include <stdlib.h>
f#finclude <string.h>

typedef struct userlL {

char uname[807]; // user name
char passwd[80]; // password
int uid; // user identification number
int admin; // 1 indicates administrator privileges
struct userl *next;
} userl;

userL *users = NULL;

void insertUser(char *uname, char *passwd, int uid, int admin) {

userl *newlser;

newlUser =malloc(sizeof(userL)); // create space for new user
strcpy(newUser->uname, uname) ; // copy values into user fields
strcpy(newlser->passwd, passwd);

newUser->uid =uid;

newlser->admin = admin;

newlser->next = users; // insert at start of Tinked 1ist
users =newlser;

NIVERSITA = Dipartimento
R Ia R A. Carini — Digital System Architectures

e Architettura

Example Linked lists

void deleteUser(int uid) { // delete first user with given uid
userl *cur = users;

userlL *prev = NULL;

while (cur !=NULL) {

if Ccur->uid==uid) { // found the user to delete
if (prev==NULL) users = cur->next;
else prev->next = cur->next;
free(cur);
return; // done

}

prev =cur; // otherwise, keep scanning through Tist

cur =cur->next;

}

userl *findUser(int uid) {

userL *cur = users;

while (cur !=NULL) {
if (cur->uid==uid) return cur;
else cur =cur->next;

}

return NULL;

Il a) Ingegneria A. Carini — Digital System Architectures

e Architettura

Example Linked lists

int numUsers(void) {
userl *cur = users;

int count =0;

while (cur !=NULL) {
count++;
cur =cur->next;

}

return count;

() BT | [b
\ Fil Ingegneria Al P .
Y= DITRIESTE a e A. Carini — Digital System Architectures

e Architettura

Standard libraries

* Programmers commonly use a variety of standard functions, such as printing and trigonometric
operations.

* To save each programmer from having to write these functions from scratch, C provides libraries of
frequently used functions.

* Each library has a header file and an associated object file, which is a partially compiled C file.

* The header file holds variable declarations, defined types, and function prototypes.

* The object file contains the functions themselves and is linked at compile-time to create the
executable.

* Because the library function calls are already compiled into an object file, compile time is reduced.

W BER [e ini - Dig i
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Standard libraries

C Library Header File Description

stdio.h Standard input/output library. Includes functions
for printing or reading to/from the screen or a file
(printf, fprintf and scanf, fscanf) and to open
and close files (fopen and fclose).

stdlib.h Standard library. Includes functions for random
number generation (rand and srand), for
dynamically allocating or freeing memory (malloc
and free), terminating the program early (exit),
and for conversion between strings and numbers
(atoi, atol, and atof).

math.h Math library. Includes standard math functions
such as sin, cos, asin, acos, sqrt, 1og, 10910,
exp, floor, and ceil.

string.h String library. Includes functions to compare, copy,
concatenate, and determine the length of strings.

i Eé{IEE-IS.Ugl - Il)\panumemu?l
ingegneria " © |
gy 3 A. Carini — Digital System Architectures

Printf

* The print formatted statement printf displays text to the console.

* Its required input argument is a string enclosed in quotes " ".

* The string contains text and optional commands to print variables.

* Variables to be printed are listed after the string and are printed using format codes.

// Simple print function
#include <stdio.h>
int num=42;
int main(void) {
printf("The answer is %d.\n", num);

Console Output:

The answer is 42.

(ORGSO o Yoo
S ingegneria " ¢ |
Q&.&j DITRIESTE 1) et TP yem et

Printf

Table eC.6 printf format codes for printing variables

%d Decimal

%u Unsigned decimal

%X Hexadecimal

%0 Octal

%t Floating point number (f1oat or double)

%e Floating point number (float or double) in scientific notation

(e.g., 1.56¢7)

%c Character (char)

%s String (null-terminated array of characters)

y

,..}‘ﬁ\‘ UNIVERSITA . Dipertmenio & . N '
e DEGLISTUCE 1a facia A. Carini — Digital System Architectures

Printf

* Floating point formats (floats and doubles) default to printing six digits after the decimal point.

* To change the precision, replace %f with %w.df, where w is the minimum width of the number, and d
is the number of decimal places to print.

* Note that the decimal point is included in the width count.

// Print floating point numbers with different formats
float pi =3.14159, e=2.7182, c=2.998e8;
printf("pi=%4.2f\ne =%8.3f\nc =%5.3f\n", pi, e, c);

Console Output:

pi=3.14
e = 2.718
¢ =299800000.000

) Sersss | FN
] Ingegneria A (R .
Q@; DITRIESTE |a Sk A. Carini — Digital System Architectures

Printf

* Because % and \ are used in print formatting, to print these characters:

// How to print % and \ to the console
printf("Here are some special characters: %% \\ \n");

Console Output:

Here are some special characters: %\

@ weesm | R me
[5 Ingegneria fr Do .
te DITRIESTE |a e A. Carini — Digital System Architectures

scanf

* The scanf function reads text typed on the keyboard. It uses format codes in the same way as printf.

* When the scanf function is encountered, the program waits until the user types a value.

* The arguments to scanf are a string (indicating one or more format codes) and pointers to the
variables where the results should be stored.

// Read variables from the command 1ine
ftinclude <stdio.h>

int main(void)
{
int a;
char str[801];
float f;

printf("Enter an integer.\n");

scanf("%d", &a);

printf("Enter a floating point number.\n");

scanf("%f", &f);

printf("Enter a string.\n");

scanf("%s", str); // noteno & needed: str is a pointer

@ UNIVERSITA - Dpetimento o .
&kmf/j DITRIESTE a it A. Carini — Digital System Architectures

e Architettura

File manipulation

* Many programs need to read and write files, either to manipulate data already stored in a file or to log
large amounts of information.
* InC, the file must first be opened with the fopen function.
* |t can then be read or written with fscanf or fprintf in a way analogous to reading and writing to the
console.
* Finally, it should be closed with the fclose command.
* The fopen function takes as arguments the file name and a print mode.
* ltreturns a file pointer of type FILE*.
* |f fopenis unable to open the file, it returns NULL.
* The modes are:
* "w": Write to a file. If the file exists, it is overwritten.

. r'": Read from a file.

. a": Append to the end of an existing file. If the file doesn’t exist, it is created.

W) st i) e D .
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

File manipulation

// Write "Testing filewrite." to result.txt
#include <stdio.h>
#include <stdlib.h>

int main(void) {
FILE *fptr;

if ((fptr =fopen("result.txt", "w")) == NULL) {
printf("Unable to open result.txt for writing.\n");
exit(l); //exit the program indicating unsuccessful execution

}
fprintf(fptr, "Testing file write.\n");

fclose(fptr);

ey .
& %% UNIVERSITA
Lé’fﬂ\,\;} DEGLI STUDI
‘=’ DITRIESTE

Ingegneria
e Architettura

Ila) A. Carini — Digital System Architectures

File manipulation

#include <stdio.h>

int main(void)
{
FILE *fptr;
int data;

// read in data from

if ((fptr =fopen("data.txt", "r")) =NULL) {
printf("Unable to read data.txt\n");

exit(l);
}

while (!feof(fptr))
fscanf(fptr, "%d"
printf("Read data
}

fclose(fptr);

UNIVERSITA . Dipartimenta d
DEGLI STUDI Ingegneria
DITRIESTE I a e Architettura

input file

{ // check that the end of the file hasn't been reached

, &data);
: %d\n", data);

data.txt

25321489

Console Output:

Read data: 25
Read data: 32
Read data: 14
Read data: 89

A. Carini — Digital System Architectures

Other Handy stdio Functions

The sprintf function prints characters into a string, and sscanf reads variables from a string.
The fgetc function reads a single character from a file, while fgets reads a complete line into a
string.

fscanf is rather limited in its ability to read and parse complex files, so it is often easier to fgets

one line at a time and then digest that line using sscanf or with a loop that inspects characters one
at a time using fgetc.

% UNIVERSITA e
@ DEGLI STUDI H Ingegneria
&‘t‘:_;/y: DITRIESTE Ia e Architettura

A. Carini — Digital System Architectures

Other Handy stdio Functions

Reading and writing binary files is pretty much the same as any other file, the only difference is how you
open it:

unsigned char buffer[10];

FILE *ptr;

ptr = fopen("test.bin","rb"); // r for read, b for binary

fread (buffer,sizeof (buffer),1,ptr); // read 10 bytes to our buffer

Writing to a file is pretty much the same, with the exception that you're using fwrite() instead of fread():

FILE *write ptr;
write ptr = fopen("test.bin","wb"); // w for write, b for binary
fwrite (buffer,sizeof (buffer),1l,write ptr); // write 10 bytes from our buffer

W BER [e ini - Dig i
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

stdlib

The standard library stdlib.h provides general purpose functions including random number generation

(rand and srand), dynamic memory allocation (malloc and free), exiting the program early (exit), and
number format conversions.

To use these functions, add the following line at the top of the C file:

#finclude <stdlib.h>

GLI STUDI

IVERSITA = e
Ingegneria
TRIESTE Ia e Architettura

A. Carini — Digital System Architectures

rand and srand

* rand returns a pseudo-random integer.

* Pseudo-random numbers have the statistics of random numbers but follow a deterministic pattern
starting with an initial value called the seed.

* To convert the number to a particular range, use the modulo operator (%)

#include <stdlib.h>
int x, y;

X =rand(); // x=a random integer
y=rand() %10; // y=a random number from0 to 9
printf(“x=%d, y=%d\n”, x, y);

Console Output:

x =1481765933, y =3

nﬁ"v BECL; SuB) |' '\ il o .
,,,,/'; DITRIESTE |a s A. Carini — Digital System Architectures

e Architettura

rand and srand

* The values generated by the previous program will be the same each time the program runs.
* We can create a different sequence of random numbers at each run by changing the seed.
* This is done by calling the srand function, which takes the seed as its input argument.

// Produce a different random number each run

#include <stdlib.h>
#include <time.h> // needed to call time()

int main(void)
{

int x;
srand(time(NULL)) ; // seed the random number generator
x=rand() % 10; // random number from 0 to 9

printf("x=%d\n", x);

For historical reasons, the time function usually returns the current time in seconds relative to January 1, 1970 00:00
UTC. UTC stands for Coordinated Universal Time, which is the same as Greenwich Mean Time (GMT).

P .
F2 UNIVERSITA P o—
@ sifmiese | 1) R A. Carini — Digital System Architectures

=/ DITRIESTE

exit

* The exit function terminates a program early.

* |t takes a single argument that is returned to the operating system to indicate the reason for
termination.

* 0indicates normal completion, while nonzero conveys an error condition.

(e R e

= DITRIESTE e A. Carini — Digital System Architectures

Format Conversion: atoi, atol, atof

* Functions for converting strings to integers, long integers, or doubles: atoi, atol, atof, respectively.
// Convert ASCII strings to ints, longs, and floats
fFinclude <stdlib.h>

int main(vaoid)

{
int x;
long int y;
double z;
x=atoi("42");
y=atol("833");
z=atof("3.822");

printf("x=%d\ty =%d\tz="%f\n", x, y, 2);

Console Output:

x=42 y=833 z=3.822000

T A e
18l kil Ingegneria fr Do .
$5=// DITRIESTE la) = A. Carini — Digital System Architectures

e Architettura

math.h

* The library math.h provides math functions, such as trigonometry functions, square root, and logs.
* To use math functions, use #include <math.h>

// Example math functions
#include <stdio.h>
f#include <math.h>

int main(void) {
floata, b, c,d, e, f, g, h;
Gonsole Output:

a=cos(0); // 1, note: the input argument is in radians

- * . 1 1

S R 4/ Al NEEES MEENS EE CEss) a=1,b=3.141593, c=12,d=7, e=2.00, f=3, g=178.00, h = 1024.00
c=sqrt(l44); /112

d=exp(2); // en2 =7.389056,

e=10g(7.389056); // 2 (natural logarithm, base e)

f=10g910(1000); // 3 (log base 10)
g="~floor(178.567); // 178, rounds to next lowest whole number
h=pow(2, 10); // computes 2 raised to the 10th power

printf("a=%.0f, b=%f, c=%.0f, d=%.0f, e=%.2f, f=%.0f, g=%.2f, h=%.2f\n",
a,b,c,d,e, f,qg,h);

@) s | [v
[t 5 Ingegneria fr Do .
%z’ DITRIESTE |a & Architettura A. Carini — Digital System Architectures

string.h

* The string library string.h provides commonly used string manipulation functions.

// copy src intodst and return dst
char *strcpy(char *dst, char *src);

// concatenate (append) src to the end of dst and return dst
char *strcat(char *dst, char *src);

// compare two strings. Return O if equal, nonzero otherwise
int strcmp(char *s1, char *s2);

// return the Tength of str, not including the null termination
int strilen(char *str);

#3% UNIVERSITA 3 EE
Léﬂm DEGLI STUDI |a Ingegneria A. Carini — Digital System Architectures

%=’ DITRIESTE e Architeftura

Static Variables

* The keyword static can be applied to both external (global) and internal (local) variables.

* The static declaration, applied to an external variable or function, limits the scope of that object to the
rest of the source file being compiled. External static thus provides a way to hide names to other .c
files.

* Internal static variables are local to a particular function just as automatic variables are, but unlike
automatics, they remain in existence rather than coming and going each time the function is
activated. This means that internal static variables provide private, permanent storage within a single
function.

Z, UNIVERSITA -) o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

Compiler and command line options

* Multiple C files are compiled into a single executable by listing all file names on the compile line:

gcc main.c fileZ2.c file3.c

Compiler Option Description Example
-0 outfile specifies output file name gcc -o hello hello.c
-§ create assembly language output file (not executable) gcc -Shello.c

this produces hello.s

v verbose mode — prints the compiler results and gcc -v hello.c
processes as compilation completes

-0level specify the optimization level (level is typically 0O gcc -03 hello.c
through 3), producing faster and/or smaller code at the
expense of longer compile time

--version list the version of the compiler gcc -version
--help list all command line options gcc --help
-Wall print all warnings gcc -Wall hello.c

% UNIVERSITA - Dipartimento - |
DEGLI STUDI Ia Ingegneria N Dlgltal System ——

8 :/ DITRIESTE e Architettura

Command Line Arguments

* Like other functions, main can also take input variables.
* However, unlike other functions, these arguments are specified at the command line.

// Print command line arguments gcc -o testa rgs testar‘gs Ne
#include <stdio.h> ./testargs argl 25 lTastarg!
int main(int argc, char *argv[]) Console Output:
{

int i; argv[0]=./testargs

argv[1l] =argl
argvl2] =25
argv[3] =1lastarg!

for (i=0; i<argc; i++)
printf("argvl%d]l =%s\n", i, argv[il);

e argcstands for argument count, and it denotes the number of arguments on the command line.
* argv stands for argument vector, and it is an array of the strings found on the command line.
* Note that the executable name is counted as the 15t argument.

A el i Y
5 Ingegneria ini — Dioi i
& o DiTRIESTE Ia Ingegneria A. Carini — Digital System Architectures

e

Command-line Arguments

* In environments that support C, there is a way to pass command-line arguments or parameters to a
program when it begins executing.

* When mainis called, it is called with two arguments.

* The first (conventionally called argc, for argument count) is the number of command-line arguments
the program was invoked with; the second (argv, for argument vector) is a pointer to an array of
character strings that contain the arguments, one per string.

* Multiple levels of pointers are used to manipulate these character strings.

* E.g., the program echo, which echoes its command-line arguments on a single line, separated by
blanks: echo hello, world printsthe output hello, world

* By convention, argv [0] is the name by which the program was invoked, so argc is at least 1.

* Inthe example above, argcis3,and argv[0], argv[1l], andargv[2] are"echo", "hello,"
and "world" respectively. argv:

* The standard requires that argv [argc] be a null pointer. ’

| —{ectotg]
o —{het10,\]
o
0

W BER [e ini - Dig i
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Command-line Arguments

The first version of echo treats argv as an array of character pointers:

#include <stdio.h>

/* echo command-line arguments; 1lst version */
int main(int argc, char *argvl|])

{
int 1i;
for (1 = 1; 1 < argc; 1it++)
printf ("$s%s", argv[i], (1 < argc-1) 2 "™ " : "");
printf ("\n");
return 0;
}

) g [i3) e i~ Dig .
g‘,/yﬂ DITRIESTE |a Sk A. Carini — Digital System Architectures

Command-line Arguments

Since argv is a pointer to an array of pointers, we can manipulate the pointer rather than index the

array. This next variant is based on incrementing argv, which is a pointer to pointer to char, while
argc is counted down:

#include <stdio.h>

/* echo command-line arguments;

2nd version */
int main(int argc, char *argvl(])

{
while (--argc > 0)
printf ("$s%s", *++argv, (argc > 1) 2 " " : "");
printf ("\n");
return 0;
}

IVERSITA . Dipartimento di
GLI STUDI Ingegneria
TRIESTE I a e Architettura

A. Carini — Digital System Architectures

Common mistakes

C Code Mistake eC.1 MISSING & IN scanf

Erroneous Code Corrected Code:

int a; int a;

printf("Enter an integer:\t"); printf("Enter an integer:\t");
scanf("%d", a); // missing & before a scanf("%d", &a);

C Code Mistake eC.2 USING = INSTEAD OF == FOR COMPARISON

Erroneous Code Corrected Code
if (x=1) // always evaluates as TRUE if (x==1)
printf("Found!\n"); printf("Found!\n");

C Code Mistake eC.3 INDEXING PAST LAST ELEMENT OF ARRAY

Erroneous Code Corrected Code
int array[10]; int array[10];
array[10] =42; // index is 0-9 array[9]=42;

=% UNIVERSITA - Dpertmerio
' DEGLI STUDI Ingegneria
* DITRIESTE I a e Architettura

A. Carini — Digital System Architectures

Common mistakes

C Code Mistake eC.4 USING = IN #define STATEMENT

Erroneous Code Corrected Code

// replaces NUMwith "=4" in code fdefine NUM 4
Jidefine NUM = 4

C Code Mistake eC.5 USING AN UNINITIALIZED VARIABLE

Erroneous Code Corrected Code
inti; int i =10;
if (i==10) // 7 isuninitialized if (i ==10)

C Code Mistake eC.6 NOT INCLUDING PATH OF USER-CREATED HEADER
FILES

Erroneous Gode Corrected Code

f#include "myfile.h" #include "othercode\myfile.h"

UNIVERSITA . Dipartimenta d
DEGLI STUDI Ingegneria
DITRIESTE I a e Architettura

A. Carini — Digital System Architectures

Common mistakes

C Code Mistake eC.7 USING LOGICAL OPERATORS (!, ||, 4&) INSTEAD OF
BITWISE (~, |, &)

Erroneous Code Corrected Code

char x=15; // logical NOT: x=10 char x=~5; // bitwise NOT: x=0b11111010
char y=5|[2; //logical OR: y=1 char y=5|2;// bitwise OR: y=0b00000111
char z=58&842; // lTogical AND: z=1 char z=5&2;// Togical AND: z =0b00000000

C Code Mistake eC.8 FORGETTING break IN A switch/case STATEMENT

Erroneous Code Corrected Code

char x="'d"; char x="'d";

switch (x) { switch (x) {
case 'u': direction=1; case 'u': direction=1; break;
case 'd': direction=2; case 'd': direction=2; break;
case '1': direction=3; case '"1': direction =3; break;
case 'r': direction=4; case 'r': direction=4; break;
default: direction=20; default: direction=20;

} }

// direction=0 // direction=2

UNIVERSITA 0 Dipartimento d
BF%HESSTTUEDI |a Ingegneria A. Carini — Digital System Architectures

e Architettura

Common mistakes

C Code Mistake eC.9 MISSING CURLY BRACES {}

Erroneous Gode Corrected Code
if (ptr==NULL) // missingcurly braces if (ptr==NULL) {
printf("Unable to open file.\n"); printf("Unable to open file.\n");

exit(l); // always executes exit(l);
i

C Code Mistake eC.10 USING A FUNCTION BEFORE IT IS DECLARED

Erroneous Code Corrected Code

int main(void) void test(void)
{ {...

test(); 1
}

int main(void)
void test(void) {

looa

test();
| t

UNIVERSITA . Dipartimenta d
DEGLI STUDI Ingegneria
DITRIESTE I a e Architettura

A. Carini — Digital System Architectures

Common mistakes

C Code Mistake eC.11 DECLARING A LOCAL AND GLOBAL VARIABLE
WITH THE SAME NAME

Erroneous Code Corrected Code
int x=5; // global declaration of x int x=5; // global declaration of x
int test(void) int test(void)
{ {
int x=3; // local declaration of x inty=3; //local variableisy

} }

C Code Mistake eC.12 TRYING TO INITIALIZE AN ARRAY WITH {} AFTER
DECLARATION

Erroneous Code Corrected Code

int scores[3]; int scores[3]=1{93, 81, 97};
scores = {93, 81, 97}; // won't compile

R o e
Ingegneria A '
PITRIESTE Fal et A. Carini — Digital System Architectures

Common mistakes

C Code Mistake eC.13 ASSIGNING ONE ARRAY TO ANOTHER USING =

Erroneous Code Corrected Code

int scores[3] = {88, 79, 93}; int scores[3] = {88, 79, 93};
int scores2[3]; int scores2[3];

SCores2 = scores; for (i=0; i<3; i++)

scores2[i]=scores[i];

C Code Mistake eC.14 FORGETTING THE SEMI-COLON AFTER A do/while

LOOP
Erroneous Code Corrected Code
int num; int num;
do { do {
num = getNum() ; num = getNum() ;
} while (num < 100) // missing ; } while (num < 100);

% UNIVERSITA 5 Diperimento 3
) DEGLI STUDI Ingegneria
DITRIESTE Ia e Architettura

A. Carini — Digital System Architectures

Common mistakes

C Code Mistake eC.15 USING COMMAS INSTEAD OF SEMICOLONS IN for
LOOP

Erroneous Code Corrected Code

for (i=0, 1 <200, i++) for (i=0; 1 <200; i++)

C Code Mistake eC.16 INTEGER DIVISION INSTEAD OF FLOATING POINT
DIVISION

Erroneous Gode Corrected Code

// integer (truncated) division occurs when
// both arguments of division are integers
float x=9/4; // x=2.0

// at Teast one of the arguments of
// division must be a float to

// perform floating point division
float x=9.0/4; // x=2.25

C Code Mistake eC.17 WRITING TO AN UNINITIALIZED POINTER

Erroneous Code Corrected Code
int*y=77; int x, *y =&x;
*y=177;

% UNIVERSITA 5 Diparimento
DEGLI STUDI Ingegneria
DITRIESTE I a e Architettura

A. Carini — Digital System Architectures

References

Sarah Harris and David Harris “Digital Design and Computer Architecture. ARM Edition”, Morgan
Kaufmann, 2015.

* Appendix C

Ritchie, Dennis M., Brian W. Kernighan, and Michael E. Lesk. The C programming language. Englewood
Cliffs: Prentice Hall, 1988.

* 5.3 Pointers and Arrays (pages 97-100)

=5 UNIVERSITA Dipertimento &
f_ ,\\;j DEGLI STUDI H Ingegneria
&»E;/y‘ DITRIESTE I a e Architettura

A. Carini — Digital System Architectures

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101

