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Anticipating Critical Transitions
Marten Scheffer,1,2* Stephen R. Carpenter,3 Timothy M. Lenton,4 Jordi Bascompte,5
William Brock,6 Vasilis Dakos,1,5 Johan van de Koppel,7,8 Ingrid A. van de Leemput,1 Simon A. Levin,9
Egbert H. van Nes,1 Mercedes Pascual,10,11 John Vandermeer10

Tipping points in complex systems may imply risks of unwanted collapse, but also opportunities
for positive change. Our capacity to navigate such risks and opportunities can be boosted by
combining emerging insights from two unconnected fields of research. One line of work is
revealing fundamental architectural features that may cause ecological networks, financial
markets, and other complex systems to have tipping points. Another field of research is uncovering
generic empirical indicators of the proximity to such critical thresholds. Although sudden
shifts in complex systems will inevitably continue to surprise us, work at the crossroads of these
emerging fields offers new approaches for anticipating critical transitions.

About 12,000 years ago, the Earth sud-
denly shifted from a long, harsh glacial
episode into the benign and stable Hol-

ocene climate that allowed human civilization to
develop. On smaller and faster scales, ecosystems
occasionally flip to contrasting states. Unlike grad-
ual trends, such sharp shifts are largely unpre-
dictable (1–3). Nonetheless, science is now carving
into this realm of unpredictability in fundamental
ways. Although the complexity of systems such
as societies and ecological networks prohibits ac-
curate mechanistic modeling, certain features turn
out to be generic markers of the fragility that may
typically precede a large class of abrupt changes.
Two distinct approaches have led to these in-
sights. On the one hand, analyses across networks
and other systems with many components have
revealed that particular aspects of their structure
determine whether they are likely to have critical
thresholds where they may change abruptly; on
the other hand, recent findings suggest that cer-
tain generic indicators may be used to detect if a
system is close to such a “tipping point.”We high-
light key findings but also challenges in these

emerging research areas and discuss how excit-
ing opportunities arise from the combination of
these so far disconnected fields of work.

The Architecture of Fragility
Sharp regime shifts that punctuate the usual fluc-
tuations around trends in ecosystems or societies
may often be simply the result of an unpredict-
able external shock. However, another possibility
is that such a shift represents a so-called critical
transition (3, 4). The likelihood of such tran-
sitions may gradually increase as a system ap-
proaches a “tipping point” [i.e., a catastrophic
bifurcation (5)], where a minor trigger can invoke
a self-propagating shift to a contrasting state. One
of the big questions in complex systems science
is what causes some systems to have such tipping

points. The basic ingredient for a tipping point
is a positive feedback that, once a critical point
is passed, propels change toward an alternative
state (6). Although this principle is well under-
stood for simple isolated systems, it is more chal-
lenging to fathom how heterogeneous structurally
complex systems such as networks of species,
habitats, or societal structures might respond to
changing conditions and perturbations. A broad
range of studies suggests that two major features
are crucial for the overall response of such sys-
tems (7): (i) the heterogeneity of the components
and (ii) their connectivity (Fig. 1). How these
properties affect the stability depends on the na-
ture of the interactions in the network.

Domino effects. One broad class of networks
includes those where units (or “nodes”) can flip
between alternative stable states and where the
probability of being in one state is promoted by
having neighbors in that state. Onemay think, for
instance, of networks of populations (extinct or
not), or ecosystems (with alternative stable states),
or banks (solvent or not). In such networks, het-
erogeneity in the response of individual nodes
and a low level of connectivity may cause the net-
work as a whole to change gradually—rather than
abruptly—in response to environmental change.
This is because the relatively isolated and differ-
ent nodes will each shift at another level of an en-
vironmental driver (8). By contrast, homogeneity
(nodes beingmore similar) and a highly connected
network may provide resistance to change until a
threshold for a systemic critical transition is reached
where all nodes shift in synchrony (8, 9).

This situation implies a trade-off between lo-
cal and systemic resilience. Strong connectivity
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Fig. 1. The connectivity and homogeneity of the units affect the way in which distributed systems with
local alternative states respond to changing conditions. Networks in which the components differ (are
heterogeneous) and where incomplete connectivity causes modularity tend to have adaptive capacity in
that they adjust gradually to change. By contrast, in highly connected networks, local losses tend to be
“repaired” by subsidiary inputs from linked units until at a critical stress level the system collapses. The
particular structure of connections also has important consequences for the robustness of networks,
depending on the kind of interactions between the nodes of the network.
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promotes local resilience, because effects of local
perturbations are eliminated quickly through sub-
sidiary inputs from the broader system. For
instance, local damage to a coral reef may be
repaired by “mobile link organisms” from nearby
reefs, and individual banks may be saved by
subsidiary inputs from the larger financial sys-
tem (10). However, as conditions change, high-
ly connected systems may reach a tipping point
where a local perturbation can cause a domino
effect cascading into a systemic transition (8).
Notably, in such connected systems, the repeated
recovery from small-scale perturbations can
give a false impression of resilience, masking
the fact that the system may actually be ap-
proaching a tipping point for a systemic shift.
For example, before the sudden large-scale
collapse of Caribbean coral systems in the 1980s
evoked by a sea urchin disease outbreak, the
reefs were considered highly resilient systems,
as they recovered time and time again from de-
vastating tropical storms and other local pertur-
bations (11). In summary, the same prerequisites
that allow recovery from local damage may set
a system up for large-scale collapse.

Robustness in different kinds of networks. In
addition to the work on systems where units can
switch between alternative states in a contagious
way, there has been an increasing interest in
understanding robustness of webs of other kinds
of interactions. For instance, species in ecosys-
tems can be linked through mutualistic (+/+)
interactions such as in pollinators and plants, or
by competition (−/−) or predation (+/−). Rather
than asking what causes the overall systems re-
sponse to be catastrophic or gradual, most of
these studies have focused on what topology of
interaction structures makes the overall system
less likely to fall apart when components are ran-
domly removed. The answer turns out to depend
on the kind of interactions between the units.
Overall, networks with antagonistic interactions
(e.g., competition) are predicted to be more ro-
bust if interactions are compartmentalized into
loosely connectedmodules, whereas networks with
strong mutualistic interactions (e.g., pollination)
are more robust if they have nested structures
where specialists are preferentially linked in their
mutualism to generalists that act as hubs of con-
nectivity (12, 13). Empirical studies in ecology
suggest that the structures predicted to be more
robust are also found most in nature (13–15), but
this is an active field of research where new in-
sights are still emerging (16) and much remains
to be explored.

The challenge of designing robust systems.
Work on ecological networks has led to the idea
that we might apply our insights in the function-
ing of natural systems when it comes to design-
ing structures that are less vulnerable to collapse.
For instance, about half a year before the collapse
of global financial markets in 2008, it was pointed
out (17) that it could be helpful to analyze the
financial system for the generic structural features
that were found by ecologists to affect the risk
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Fig. 2. Critical slowing down as an indicator that the system has lost resilience and may therefore be
tipped more easily into an alternative state. Recovery rates upon small perturbations (C and E) are slower
if the basin of attraction is small (B) than when the attraction basin is larger (A). The effect of this slowing
down may be measured in stochastically induced fluctuations in the state of the system (D and F) as
increased variance and “memory” as reflected by lag-1 autocorrelation (G and H).
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Fig. 3. (A) Flickering to an alternative state as a warning signal in highly stochastic systems. In such
situations, the frequency distribution of states (B and C) can be used to approximate the shape of the
basins of attraction of the alternative states (D and E). The data in this example are generated with a
model of overexploitation (38): dx

dt = x(1 – x
K ) –

cx
1 + x with different additive and multiplicative

stochastic terms (30) (we used K = 11).
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of systemic failure. Building on such parallels
between the architecture of ecological and fi-
nancial systems, Haldane and May (18) have
made specific recommendations to encourage
modularity and diversity in the financial sectors
as a way to decrease systemic risk. There are
still obvious challenges in bridging from eco-
systems and conceptual models to societal struc-
tures, and much will be beyond our reach when
it comes to “design.” For instance, the extremely
fast global spread of information is an impor-
tant feature of current social systems, and the
worldwide connection of social-ecological sys-
tems through markets implies a daunting level
of complexity (19). Nonetheless, this line of
thinking about features that affect robustness
across systems clearly offers fresh perspectives

on the question of how we can make the com-
plex networks on which we depend more robust.

Early-Warning Signals for Critical Transitions
Although such insight into structural determi-
nants of robustness and fragility can guide the
design of systems that are less likely to go through
sharp transitions, there are so far no ways in
which these features can be used to measure how
close any particular system really is to a critical
transition. A new field of research is now emerg-
ing that focuses on precisely that (20).

Critical slowing down near tipping points.
One line of work is based on the generic phe-
nomenon that in the vicinity of many kinds of
tipping points, the rate at which a system recovers
from small perturbations becomes very slow, a

phenomenon known as “critical slowing down”
(Fig. 2). This happens, for instance, at the clas-
sical fold bifurcation, often associated with the
term “tipping point,” as well as more broadly in
situations where a system becomes sensitive so
that a tiny nudge can cause a large change (20).
The increasing sluggishness of a system can be
detected as a reduced rate of recovery from (ex-
perimental) perturbations (21, 22). However,
the slowness can also be inferred indirectly from
rising “memory” in small fluctuations in the state
of a system (Fig. 2), as reflected, for instance, in a
higher lag-1 autocorrelation (23, 24), increased
variance (25), or other indicators (26, 27).

Not all abrupt transitions will be preceded
by slowing down. For instance, sharp change
may simply result from a sudden big external
impact. Also, slowing down of rates can have
causes other than approaching a tipping point
(e.g., a drop in temperature). Therefore, slowing
down is neither a universal warning signal for
shifts nor specific to an approaching tipping
point. Instead, slowing down should be seen
as a “broad spectrum” indicator of potential fun-
damental change in the current regime. Further
diagnosis of what might be coming up requires
additional information.

Changing stability landscapes in stochastic
systems. In highly stochastic systems, transitions
will typically happen far from local bifurcation
points. This makes it unlikely that in such sto-
chastic situations slowing down is a useful char-
acteristic to measure. Nevertheless, the behavior
of systems exposed to strong perturbation re-
gimes can hint at features of the underlying
stability landscape. When an alternative basin of
attraction begins to emerge, one may expect that
in stochastic environments, systems will occa-
sionally flip to that state, a phenomenon referred
to as “flickering” (20). Rising variance can reflect
such a change. Moreover, under certain assump-
tions, the probability density distribution of the
state of a system can even be used to estimate how
the potential landscape reflecting the stability
properties of the system changes over time (28)
or is affected by important drivers (29) (Fig. 3).
The idea behind this approach is that even if
stochasticity is large, systems will more often
be found close to attractors than far away from
them. The scope of this approach is different from
that implied in work on critical slowing down.
Slowing down suggests an increased probability
of a sudden transition to a new unknown state.
By contrast, the information extracted from more
wildly fluctuating systems suggests a contrast-
ing regime to which a system may shift if con-
ditions change. Just as in the detection of critical
slowing down, patterns in the data should be in-
terpreted with caution. For instance, multimo-
dality of the frequency distribution of states over
a parameter range may be caused by nonlinear
responses to other, unobserved drivers or from a
multimodality of the distribution of such driv-
ers. Also, the character of the perturbation regime
may have a large effect.

Table 1. Studies of early-warning indicators for critical transitions in different complex systems. (+) Cases
in which early warning signals were detected by indicators; (0) cases in which transitions were not
preceded by indicators; (–) cases of unknown or opposite effect.

Field Phenomenon Indicator Signal References

Chemistry Critical slowing down Recovery rate/
return time

+ (39)

Physics Critical slowing down Return time/
dominant eigenvalue

+ (40)

Rate of change
of amplitude

+ (41)

Engineering Critical slowing down Autocorrelation at lag 1 + (42)
Tectonics Not specified Autocorrelation/

spatial correlation
+ (43)

Climate Critical slowing down Autocorrelation at lag 1 + (23, 44, 45)
0 (44, 46)

Detrended fluctuation analysis + (27, 44)
- (44)

Increasing variability Variance + (44)
0 (44, 46)

Skewed responses Skewness 0 (47)
Ecology Critical slowing down Return time/dominant eigenvalue + (22, 48–50)

Autocorrelation at lag 1 + (22)
Spectral reddening 0 (48)
Spatial correlation + (48, 49, 51, 52)

Increasing variability Variance + (48, 49, 52, 53)
0 (22, 54)

Spatial variance + (48, 49, 55, 56)
Skewed responses Skewness + (48, 49)

Microbiology Critical slowing down Autocorrelation at lag 1 + (57)
Variance + (57)

Return time + (57)
Skewness 0 (57)

Physiology Critical slowing down Recovery rate/
return time

+ (58)

Epilepsy Critical slowing down Correlation + (59, 60)
Increasing variability Variance + (61)

Behavior Critical slowing down Recovery rate/
return time

+ (62, 63)

Sociology Critical slowing down Autocorrelation at lag 1 +/0 (64)
Variance +/0 (64, 65)

Fisher information + (66)
Finance Not specified Correlation + (60)

Not specified Shannon index + (67)
Not specified Variance + (68)
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Prospects, challenges, and limitations.Although
research on empirical indicators of robustness
and resilience is just beginning, there is already a
fast-growing body of modeling as well as em-
pirical work (Table 1). Nonetheless, major chal-
lenges remain in developing robust procedures
for assessment. One problem is that methods for
detection of incipient transitions from time series
tend to require long, high-resolution data (23, 30).
As a picture of a spatial pattern can carry much
more information than a single point in a time
series, the interpretation of spatial patterns is a
potentially powerful option. Like increased mem-
ory in time series, correlation between neighbor-
ing units can reflect slowing down (31). Similarly,
spatial data can be used to infer how resilience of
alternative states depends on key drivers (29). Var-
ious aspects of spatial patterns may also change
in specific ways near a critical point (31–36), but
these patterns and their interpretation differ
across systems in ways that are not yet entirely
understood.

A fundamental limitation is that the indicators
cannot be used to predict transitions, as stochastic
shocks will always play an important role in
triggering transitions before a bifurcation point is
reached. Also, interpreting absolute values of in-
dicators as signaling particular levels of fragility
so far remains beyond reach. Thus, indicators
should be used to rank situations on a relative
scale from fragile to resilient. Detecting early-
warning signals in monitoring time series may
seem an obvious application. However, this re-
quires the rare situation of having high-resolution
data for a system that moves toward a tipping

point gradually (37). In addition to such chal-
lenges in detection, there are still gaps in our
understanding of how indicators will behave in
more complex situations. Given these limitations,
there is no “silver bullet” approach. Instead, a
diverse collection of complementary indicators
and methods of applying them is emerging. A
state-of-the-art overview linked to a Web site
with open-source software for data analysis is
published elsewhere (30) (www.early-warning-
signals.org).

Toward an Integrative Approach for
Anticipating Critical Transitions
So far, research on network robustness and work
on empirical indicators of resilience have been
largely segregated. However, connecting these
fields opens up obvious new perspectives. First,
there is complementarity in the existing approaches.
The structural features that create tipping points
and the different empirical indicators for their
proximity offer alternative angles for diagnosis
and potential action (Fig. 4). A smart combina-
tion of approaches in a unified framework may
therefore greatly enhance our capacity to antici-
pate critical transitions.

At the same time, linking these two vital
fields may generate exciting new directions for
research. For instance, an intriguing question is
how early-warning signals for loss of resilience
may best be detected in a complex network (e.g.,
of species, persons, or markets). Will particular
nodes in the network reveal critical slowing
down or other early-warning indicators more
than others? Can we know a priori which nodes

would carry such a clear signal?
Or would some integrative in-
dicator over the entire network
be best? Clearly, this is an open
area of research, and much may
be gained by developing the dif-
ferent lines of work into an inte-
grative science for understanding
and predicting fragility and tran-
sitions in complex systems. Oc-
casional radical transitions will
continue to surprise us. How-
ever, the emerging field of re-
search that we have sketched
may reduce the realm of sur-
prise in transitions related to
tipping points.

Perhaps the most exciting
aspect of this work is that it is
uncovering generic features that
should in principle hold for any
complex system. This implies
thatwemay use these approaches
even if we do not understand all
details of the underlying mech-
anisms that drive any particu-
lar system. This is the rule rather
than the exception, as we are
far from being able to construct
accurate predictive mechanistic

models for most, if not all, complex systems.
So far, most work on generic indicators of re-
silience has been carried out in ecology and cli-
mate science (Table 1). However, social sciences
and medicine might well be particularly rich fields
for exploration.

Developing sound predictive systems based
on these generic properties poses major chal-
lenges. However, the potential gains are for-
midable. Empirically detecting opportunities
where positive transitions in social or ecological
systems can be invoked with minimal effort
may be of great value. On the risk side, guide-
lines for designing financial systems that are less
prone to systemic failure, or ways to foresee crit-
ical transitions ranging from epileptic seizures
to the collapse of fish stocks or tipping elements
of the Earth climate system, rank high in their
importance to humanity.
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