CHIMICA ORGANICA I

Organizzazione

Docente:

- Prof.ssa Fulvia Felluga
	- stanza 349, III piano Edificio C11
	- E-mail: [ffelluga@units.it](mailto:benedett@units.it)
	- Tel.: 040 558 3924
	- Ricevimento: per appuntamento (e-mail)

Organizzazione

8 CFU / 64 ore

Lezioni frontali (teoria) ed esercizi

Lavagna/power point

Raccomandato prendere appunti e usare un libro.

Libri di testo

John McMurry Chimica Organica PICCIN-NUOVA LIBRARIA

D'Auria M.V.; Taglialatela Scafati O.; Zampella A. Guida ragionata allo svolgimento di

esercizi di chimica organica LOGHIA

Brown W.H.; Foote, C.S.; Iverson, B.L. Chimica Organica **EdiSES**

Janice Gorzynski Smith Organic Chemistry McGraw-Hill

Vollhardt K. Peter; Schore Neil E. Chimica organica Zanichelli

Solomons T.W. Graham; Fryhle Craig B. Chimica organica Zanichelli

Seyhan N. Ege Chimica Organica: Struttura e reattività Idelson-Gnocchi

Modalità di esame

Scritto e orale

Scritto: 2 verifiche in itinere o prova scritta in appello Esito: ammesso o non ammesso alla prova orale In caso di superamento il voto resta valido per tutto l'anno accademico (fino alla sessione straordinaria)

Orale: negli appelli ufficiali

Prerequisiti: aver superato l'esame di Chimica Generale ed Inorganica

L' ATTUALE SITUAZIONE LEGATA AL COVID E ALLA SUA EVOLUZIONE POTREBBERO INFLUIRE SULL' ORGANIZZAZIONE DEL CORSO E SULLE MODALITA' DI ESAME. QUESTI ASPETTI VERRANNO DISCUSSI CON IL DOCENTE

Obiettivi formativi

Acquisire le conoscenze di base su:

- struttura e legame di molecole organiche semplici (monofunzionali),
- meccanismi delle principali reazioni organiche,
- reattività dei principali gruppi funzionali,
- sintesi delle principali classi di composti organici,
- proprietà stereochimiche delle molecole organiche e chiralità.

Materiale in Moodle

-
-
- -
	-
	-
	-

ORGANIC CHEMISTRY = Chemistry of Carbon Compounds

The Inorganic World Non-Living Entities Rational Laws

Organic World Living Entities Vital Spark

Joseph Proust 1754-1826

Inorganic Compounds: Es. NH_3 , H_2O Definite Proportions

Organic World: Es. CH_4 , C_2H_6 , C_3H_8 , C_2H_4 C_2H_2 Similar properties but different proportions: Vitalism!

1828: The End of Vitalism

ORGANIC CHEMISTRY = Chemistry of Covalent Carbon Compounds

•Carbon Compounds covalently bonded to other atoms

H B N O Si P S F Cl Br I Heteroatoms

Organic Compounds are Ubiquitous

There are approximately 60.000.000 organic molecules.

- –Biomolecules: c*arbohydrates, lipids, proteins and nucleic acids*.
- Materials: c*otton*, *paper*, *wood, leather, silk, wool, benzin, mineral oils.*
- –Synthetic molecules and materials: *drugs, plastics, paints, dyes, artificial fibres, fertilizers, aromas, cosmetics, detergents, parfumes, sweeteners,* etc.

Organic Compounds

The Carbon Atom

- Atomic Number: 6
- 2 Isotopes

 $12C$ (98,9%): 6 protons, 6 neutrons $13C(1,1\%)$: 6 protons, 7 neutrons

• Electron Configuration: 1s² 2s² 2p²

1. Carbon Forms Covalent Bonds With Many Other Elements

2. Carbon Is Tetravalent

3. Carbon Forms Very Strong Bonds

4 Carbon forms chains

Energy (kJ/mol)

3. Carbon Forms Branched Chains and Cyclic Structures

5. Carbon Forms Multiple Bonds

Organic Chemistry

- Structure
- Reactivity
- *Structure* and *reactivity* are correlated.

Goals

- Assign Structure and Name to Organic Compounds.
- Predict:
	- The tridimensional structure
	- The effects on reactivity (reaction rates and equilibrium constants)
- Design simple synthetic pathways
- Communicate with an appropriate language

Drawing molecules

Molecular Formula

General empirical formula of organic compounds: C_CH_HBr_{Br}Cl_{Cl}F_FI_IN_NO_O

Condensed Formula

• Different degrees of condensation

Condensed Formula

Condensed Formula

• Complex structures can be written on a single line using parentheses.

$$
H - C - C - C - C - C - H
$$
\n
$$
H - C - H
$$
\n
$$
H
$$

$$
\begin{array}{ll}\n\mathsf{CH}_{3} \\
\mathsf{CH}_{3}\text{-}\mathsf{CH}\text{-}\mathsf{CH}\text{-}\mathsf{CH}_{2}\text{-}\mathsf{CH}_{3} &= \mathsf{CH}_{3}\mathsf{CH}(\mathsf{CH}_{3})\mathsf{CH}(\mathsf{CH}_{2}\mathsf{CH}_{3})\mathsf{CH}_{2}\mathsf{CH}_{3} & \text{Branched alkanes} \\
\mathsf{CH}_{2}\text{-}\mathsf{CH}_{3} & & \text{Branched alkanes}\n\end{array}
$$

Skeletal (Linear) Formula

Minimal, non ambiguous, information

- Carbon atoms are omitted and lie on interceptions between bonds and at the end of the chain.
- Hydrogen atoms are omitted. Each carbon atom free valence is saturated with hydrogens.
- Atoms other than C and H (heteroatoms) are not omitted*.*

Skeletal (Linear) Formula

 $CH₃CH=CHCH₃$

$$
H - C \equiv C - CH_3
$$

 $CH_3CH_2CH=CH_2$

Examples

Skeletal Formula

Molecular Models

Benzylpenicillin (penicillin G)

Element Coloring Scheme

Atomic Structure and Bonding

Chapter 1 Organic Chemistry, 8th Edition John McMurry

Common Elements

Lewis Model

- Bonds are made by localised electron pairs.
- In Lewis structures electrons are represented as dots.
- Three general rules.
	- Include only valence electrons.
	- If possible, every 2^{nd} raw element should have 8 electrons.
	- Every H atom has 2 electrons.

Lewis Symbols for elements

Bonding patterns for common neutral elements

Bonding Patterns for ions

Geometry – VSEPR Theory

- The number of *Valence Shell Electron Pairs* (groups) around an atom defines the geometry of that atom.
- A group is an atom or a non bonding pair of electrons.
- Groups will tend to be as far apart as possible.

Geometry – VSEPR Theory

 180° $H-C=CH$ 180°

4 groups: CH₄

3 groups: BF_3 and C_2H_4

2 trigonal molecules

All 3 atoms are in the plane

3 atoms around B 3 atoms around each C

All 6 atoms are in the plane

space-filling model

Energies of Multiple Bonds

Models for the Chemical Bond

• Valence Orbital theory.

- –Covalent bonds are formed by the overlap of two atomic orbitals and the electron pair is shared by both atoms.
- –A valence bond is localized between two atoms.
- Molecular Orbital theory.
	- n atomic orbitals are combined to give a new set of n molecular orbitals (bonding and antibonding).
	- Molecular orbitals are delocalized on the whole molecule.

Valence Orbitals

- Bonds are formed by the in-phase overlap of two atomic orbitals each contributing one electron.
- The electron pair is localized between two atoms and is shared by both atoms.
- Hydrogen uses the 1s orbital to form σ bonds.
- 2nd row atoms use hybrid orbitals (sp^3 , sp^2 , sp) to form σ bonds.
- 2nd row atoms use p orbitals to form π bonds that have a nodal plane.
- Atomic orbitals overlap better in σ bonds (co-linear) than in π bonds (parallel).

Molecular Orbitals

- Valence electrons occupy molecular orbitals delocalized on the whole molecule.
- The combination of *n* atomic orbitals gives *n* new molecular orbitals.
- Bonding orbitals have lower energies and antibonding orbitals have higher energies and bonding orbitals have higher energies
than the starting atomic orbitals (1806-1986)

(1896-1986)

The H_2 molecule:

Atomic Orbitals of Carbon

1s ² 2s ² 2p²

sp³ Hybrids

sp³ Hybrids

• The mixing of a spherical 2*s* orbital and three 2*p* orbitals generates four sp^3 orbitals, each with a small and a large lobe.

Methane

The overlap of a half-full *1s* orbital of hydrogen with a half-full sp^3 orbital of carbon bond gives a σ orbital.

Ethane

sp² Hybrids

Ethylene C_2H_4

C-C double bond

sp Hybrids

Acetylene C_2H_2

C-C triple bond

Structures of C_2H_6 , C_2H_4 , C_2H_2

Polar Bonds Intermolecular Interactions Delocalised Bonds

Chapter 2 Organic Chemistry, *8th Edition* John E. McMurry

Polar Covalent Bonds

In polar bonds, bonding electrons are attracted towards the more electronegative atom.

- The higher the electronegativity difference, the higher the polar character of a covalent bond.
	- \triangle ΔX > 1.9 \Rightarrow ionic bond
	- ΔX < 0.5 \Rightarrow apolar covalent bond : C-C, C-H
	- $\Delta X = 0.5 1.9 \Rightarrow$ polar covalent bond : H-F, H-Cl,

O-H, N-H, C-N, C-O, C-F, C-Cl C-Li, C-Mg

Pauling's Electronegativities

Dipole Moments

Polar molecules have one or more polar bonds.

• Apolar molecules either do not have polar bonds or have polar bonds whose dipoles cancell each other. E.g. $CO₂$

Intermolecular interactions

- ❑ Intermolecular interactions are also called non-covalent or non-bonded interactions.
- ❑ Intermolecular interactions depend on the type and number of functional groups.
- In neutral molecules there are three main types of intermolecular interactions.
	- Vand der Waals interactions (London dispersion forces) VDW
	- Dipole-dipole interactions $-$ DD
	- Hydrogen bonds– HB

strength

The Hydrogen Bond

❑ The hydrogen bond is an electrostatic interaction betweeen a O-H or N-H group and a lone pair on O or N.

The Hydrogen Bond

Dipole-Dipole Interactions

❑ Dipole-dipole interactions are attraction forces between the permanent dipoles of two molecules.

Van der Waals (London) Forces

- ❑ VdW forces are weak interactions originating from temporary variations of the molecule's electron density distribution.
- ❑ They are the only attractive forces in apolar molecules.

Dipoles generated by a temporay asymmetry in the electron density

Van der Waals (London) Forces

- ❑ Van der Waals interactions are present in all molecules.
- ❑ The larger the surface area, the larger the attractive force between two molecules, and the stronger the intermolecular forces.

Van der Waals (London) Forces

- ❑ VdW forces depend on polarizability.
- ❑ Larger atoms, like iodine, which have more loosely held valence electrons, are more polarizable than smaller atoms like fluorine, which have more tightly held electrons

Summary

Polar molecules interact strongly than apolar ones.

Boiling Point

- ❑ The boiling point is the temperature at which the vapor pressure of a liquid is equal to the external pressure.
- ❑ Energy is required to break intermolecular interactions.
- ❑ The higher the intermolecular interactions, the higher the b.p..
- ❑ Compounds with similar M.W.:

Boiling Point

 $=$

b.p. = 42 °C **b.p.** = -78 °C

I is more polarizable Smaller F has a low polarizability

Melting Point

❑ M.p. and b.p. follow the same trend.

 $CH_3CH_2CH_2CH_2CH_3$ CH₃CH₂CH₂CHO $CH_3CH_2CH_2CH_2OH$ **pentane butanal 1-butanol** $mp = -130 °C$ $mp = -96 °C$ $mp = -90 °C$ **Melting point**
Solubility

- Solubility is a measure of the degree to which a compound (solute) dissolves in a liquid (solvent).
- Interactions between ions or molecules are replaced by interactions with the solvent

Solubility

- Compounds dissolve in sovents with which they can interact efficiently.
- "Like dissolves like."
- Polar compounds dissolve in polar solvents. Apolar or weakly polar compounds dissolve in apolar/weakly polar solvents)
- Three physical quantities are related to polarity:
	- The dipole moment μ
	- The dielectric constant ε
	- The miscibility with water

Solvents

- Solvents are generally classified in three cathegories.
	- *polar protic*: containing OH.
	- *(di)polar aprotic*: they have a high dipole moment but do not contain –OH groups
	- *apolar*: low dielectric constants; do not mix with water

Apolar Solvents

Polar Protic Solvents

Polar Aprotic Solvents

Delocalized Electrons and Bonds. Resonance

- The structure and properties of certain molecules can not be explained by the simple valence orbital model with localized electrons.
- In this case, a single Lewis structure is replaced by a set of Lewis structures called resonance structures.

- •Resonance structures have the same disposition of atoms but a different arrangement of electrons (π electrons and lone pairs).
- •Bond lengths and angles do not change in resonance structures.
- •Resonance is a simple theory to adapt conventional Lewis structures to the representation of molecules with delocalized electrons and bonds.

Resonance - Delocalized Bonds

- 1. Resonance structures are not real. No single resonance structure can adequately represent the real structure of a species with delocalized electrons.
- 2. Resonance structures are not isomers. They only differ in the distribution of electrons not in the disposition of the nuclei.
- 3. Resonance structures are not in equilibrium.

Localized charge

Resonance structures Resonance

hybrid

less stabile and the Delocalized Delocalized charge more stabile

Acetate ion

(ab initio 3-21g calculation)

electrostatic potential mapped onto the Van der Waals surface

note symmetry

Conjugation and resonance

Delocalization occurs in conjugated systems Conjugated systems have at least three adiacent and parallel p orbitals

See chapter: Conjugated dienes

Conjugation and resonance

Allylic systems

$$
Z=C, N, O
$$

• Allylic carbocation is an example of conjugated system.

• Conjugation stabilizes allylic carbocation

Conjugation and resonance

Allylic systems

Localized pair in sp3

Delocalized pair in $sp²$

Trigonal sp² nitrogen

Writing resonance structures

1. Atom with lone pair adiacent to a π bond: anions

Exercise: write the resonance hybrid

Writing resonance structures

2. Atom with lone pair adiacent to a π bond: neutral molecules

3. Carbocation adiacent to a π bond

Exercise: write the resonance hybrid

Writing resonance structures

4. Conjugated double bonds

Exercise: write the resonance hybrid

Other systems described by resonance

3. Polar double bonds

4. Electron pair adiacent to a positive charge

Acids and Bases Electrophiles and Nucleophiles Organic Reaction Mechanisms

Chapters 2 & 6 Organic Chemistry, *8th Edition* John McMurry

Brønsted-Lowry Acids and Bases

• Acids donate protons to an acceptor

All Brønsted-Lowry acids contain a ionizable proton.

• Bases accept protons from a donor

All Brønsted-Lowry bases contain a lone pair or a π bond.

Brønsted-Lowry Acids and Bases

• An acid-base reaction is a proton transfer reaction

$$
X-H + Y \longrightarrow X + H-Y
$$

$$
\delta^{-} \delta^{+}
$$

- Acids donate protons to an acceptor All Brønsted-Lowry acids contain a polar X-H bond. (X=O, Halogens)
- Bases accept protons from a donor All Brønsted-Lowry bases contain a lone pair.

$$
HCl + H2O \longrightarrow H3O+ + Cl2
$$
strong acid
\n
$$
CH3COOH + H2O \longrightarrow CH3COO- + H3O+
$$
 weak acid
\n
$$
NH3 + H2O \longrightarrow NH4+ + OH2
$$

Organic Acids

 $Ar =$ aromatic

Organic Bases

Brønsted-Lowry Acids and Bases

❑ Certain molecules can behave both as acids and bases.

Lewis Acids and Bases

- A Lewis acid accepts an electron pair from a donor. Lewis acids have a low energy empty orbital.
- A Lewis base donates an electron pair to an acceptor. Lewis bases have a high energy full orbital (lone pair or π bonds).

Lewis Acids and Bases

- All Brønsted-Lowry acids are Lewis acids. Not all Lewis acids are Brønsted-Lowry acids.
- Only species with ionizable protons are Brønsted-Lowry acids. Any electron acceptor is a L.A.

• All Brønsted-Lowry bases are also Lewis bases. They must have either a lone pair or a π bond.

$$
\mathbf{H}^{\mathbf{1}}\mathbf{C}^{\mathbf{1}}\mathbf{H}^{\mathbf{2}}\mathbf{C}^{\mathbf{1}}\mathbf{H}^{\mathbf{3}}\mathbf{H}
$$

Reactions Between Lewis Acids and Bases

- Organic reactions can in most cases be described as reactions between electron poor species (Lewis acids) and electron rich species (Lewis bases).
- The electron poor species (Lewis acid) is called electrophile.
- The electron rich species (Lewis base) is called nucleophile.
- The movement of electrons is indicated with curved arrows.

Electrophiles and Nucleophiles

Electrophiles and Nucleophiles

• Nucleophiles and electrophiles may also contain polar bonds

How to Write an Organic Reaction

How to Write an Organic Reaction

❑ In a sequence, the individual steps are numbered.

Organic Reactions

- Type of reaction (bond breaking/bond formation):
	- \triangleright substitution
	- \triangleright addition
	- \triangleright elimination
	- ➢ rearrangement/transposition
- Mechanism $=$ movement of electrons:
	- \triangleright ionic (polar)
	- \blacktriangleright radicalic
	- ρ pericyclic

Substitutions

- □ In a general substitution reaction, an atom or group Y replaces an atom or group Z at carbon.
- **□** Substitutions involve breaking and forming σ bonds.

Eliminations

u In an elimination reaction two σ bonds are broken and one π bond is formed.

Additions

 \Box In an addition reaction a π bond is broken and two new σ bond are formed.

Additions and Eliminations

 \Box Eliminations are the inverse of additions. A π bond is formed in eliminations and a π bond is broken in additions.

Addition

Rearrangements or Transpositions

❑ In a rearrangement or transposition the bonding pattern of a single reagent changes giving a constitutional isomer.

1-butene 2-butene

Bond Breaking

Bond Formation

❑ A new bond can be formed in two ways:

• From two radicals each contributing a single electron.

$$
A \xrightarrow{\wedge} B \xrightarrow{\qquad} A-B
$$

▪ From a nucleophile contributing an electron pair and an electrophile accepting the electron pair. Nu and E may be ions or neutral molecules

$$
\overbrace{A^+ \quad + \quad B^{\bullet -}} \longrightarrow A - B
$$

Energy is released in the formation of a bond

Carbocations, Carbanions, Radicals

Carbocations, Carbanions, Radicals

- ❑ Radicals and carbocations are electrophiles because the carbon atom does not have a full octet.
- □ Carbanions are nucleophiles because the carbon atom has a lone pair.

Bond Dissociation Energy

□ Bond dissociation energy is the energy necessary to break a bond omolytically.

$A - B$	A^*	$+$	B^*
Breaking a bond requires energy	ΔH° = bond dissociation energy		

Bond Dissociation Energy

- ❑ The bond dissociation energy is a measure of the strength of the bond.
- ❑ The stronger the bond, the higher its dissociation energy.
- ❑ In general, shorter bonds are stronger.
- ❑ Bond dissociation energies decrease along a group.

A Reaction Mechanism……

- ❑ Accounts for all reagents and products and their ratios.
- ❑ Describes in which order bonds are broken and formed and the rates of individual steps.
- ❑ In a *concerted reaction* reagents are directly converted into products in a single step.

❑ A multistep reaction involves the formation of one or more reactive intermediates.

Transition State Theory and Collisional Theory

❑ Collisional theory: rigid collision between reacting species.

❑ Transition state theory: continuous deformation of reagent structure into product structure

Transition State

Transition State Theory - Energy Diagrams

- **□** The activation energy ΔG^{\neq} is the energy required for a reaction to take place.
- θ Λ G[≠] = Λ H[≠]-T Λ S[#]
- θ Λ G[≠] is correlated with the reaction's rate constant.

Eyring equation:

$$
k = \frac{k_B T}{h} e^{-\frac{\Delta G}{RT}}
$$

 Λ $\mathcal{C}^{\#}$

- ❑ The transition state structure is intermediate between the structures of reagents and products. In the transition state there are partial bonds and partial charges (if the mechanism is ionic).
- \Box Transition states are represented in brackets with the # symbol.

Energy Diagrams

One step reaction

Energy Diagrams

rds: rate determining step

Energy Diagrams

Complete energy diagram for the two-step reaction:

Chapter 3.1 Organic Chemistry, *8th Edition* J. McMurry

 $R-X$

Organic Residue (Radical)

Functional Group

(from a hydrocarbon)

(heteroatom or group of atoms containing one ore or more heteroatoms)

A functional group is an atom or a group of atoms all or in part $#$ than C with specific and well defined physico-chemical properties.

- Only C−C and C−H bonds
- No functional groups
- Does not posses polar bond or π bonds: very unreactive.
- Gas at NTP
- Insoluble in water

- OH functional groups
- Polar C-O and O-H bonds
- **Lone pair on O**
- Reacts with electrophiles
- Reacts with strong bases
- Liquid at NTP
- Soluble in water

1.Define a class of compounds

- –Compounds belonging to the same class have similar properties and reactivity.
- 2.Are frequently the reaction site
	- –Define the reactivity of a molecule
- 3.Determine the name
	- –For example all ketones have the suffix –one:
		- » acetone
		- » cyclopropanone
		- » cortisone

Hydrocarbons

- Hydrocarbons possess only C−C e C−H bonds.
	- aliphatic (alkanes, alkenes, alkynes) and aromatic.

Functional Groups Containing $C-Y \sigma$ bonds

Functional Groups Containing The C=O Bond

Polyfunctional Molecules

Organic Compounds

Line Notations

SMILES: OC([C@@H]1N2C([C@@H](NC(CC3=CC=CC=C3)=O)[C@H]2SC1(C)C)=O)=O

InChI: InChI=1S/C16H18N2O4S/c1-16(2)12(15(21)22)18-13(20)11(14(18)23-16)17-10(19)8-9-6-4-3-5-7- 9/h3-7,11-12,14H,8H2,1-2H3,(H,17,19)(H,21,22)/t11-,12+,14-/m1/s1

InChIKey: JGSARLDLIJGVTE-MBNYWOFBSA-N

1. Carbon Forms Covalent Bonds With Many Other Elements

The Hydrogen Bond

• For any group of three atoms having a double bond X=Y and an atom Z that contains a p orbital with zero, one, or two electrons, two resonance structures are possible:

• Three p orbitals on three adjacent atoms, even if one of the p orbitals is empty, make the allyl carbocation conjugated.

Transition State

coordingta di reazione