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Sampling and Reconstructing



From Continuous-Time to Discrete-Time

Remarks

• Till now we carried out a general treatment of dynamic systems considering both
the continuous-time and the discrete-time cases

• Since the course is intended to cover data-based system dynamics, analysis and
estimation, from now on only the discrete-time case will be dealt with

• However, before doing this, the issue of conversion of a continuous-time into a
discrete-time by sampling has to be dealt with in some detail

DIA@UniTS – 267MI –Fall 2023 TP GF – L2–p2



Sampling and Reconstructing

Sampling and Reconstructing in Time
Domain



From Continuous-Time to Discrete-Time: Signal Taxonomy

Continuous-time vs. discrete-time signals
• continuous-time signal: a function of time (independent variable) x = x(t), such
that the independent variable time is continuous

• the domain of the function x = x(t) has the cardinality of the real numbers set R.
• discrete-time signal: a signal y = y(k), specified only for discrete values of time
(the independent variable)

• the domain of the function y = y(k) has the cardinality of the integer numbers set Z.
• a discrete-time signal is usually called sequence
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Signal Taxonomy (cont.)

Analog vs. digital signals
• analog signal: the amplitude of the signal may vary in a continuous range

• an analog signal can be both continuous-time and discrete-time signal.
• digital signal: a signal whose amplitude is quantized, i.e. the amplitude of a digital
signal can take only a finite number of values.

• a digital signal can be both continuous-time and discrete-time signal.
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Signal Taxonomy: Graphical Summary
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Sampling & Digital Coding: Main Issues

The conversion of an analog, continuous-time signal e = e(t) to a digital, discrete-time
sequence is subject to two main issues:

• loss of information, due to the conversion from continuous-time to discrete-time
(more details later)

• quantisation noise and distortion, due to the analog to digital conversion process

Sampling issues taken into account
• sampling and the loss of information, a glimpse on the theoretical motivations of,
and how to cope with this issue are discussed topics

• quantisation and coding issues are not taken into account

DIA@UniTS – 267MI –Fall 2023 TP GF – L2–p6



Sampling & Digital Coding: Main Issues (cont.)

From now on, consider the sampling procedure simply as a conversion from an analog,
continuous-time signal to an analog, discrete-time signal.

Moreover, hereafter each time-based signal will be labelled just as continuous-time or
discrete-time signal.

continuous-time discrete-time
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The Ideal Sampler

How to convert a continuous-time signal to a discrete-time one?

Periodic sampling using an ideal sampler
• the aim of the A/D converter is to transform a continuous-time signal x(t) into a
discrete-time sequence x(k)

• given a time interval ∆, called sampling period, applying a periodic sampling
means to extract and collect, creating a sequence, values of the signal
corresponding to time instants, integer multiples of the sampling period

{x(k)}k∈Z =⇒ {x(t) : t = k∆ , k ∈ Z}
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The Ideal Sampler (cont.)

An ideal sampler acts as an ideal electrical switch

• the switch commutes between the two states “open” and “closed”, driven by a
periodic pulse signal (called the clock signal), with the time period equal to the
sampling period ∆;

• when a clock pulse occurs, the switch closes instantaneously, the actual sample of
the input signal can be “copied” into the sampler output and then the switch
commutes (instantaneously) to the “open” state, waiting for the next clock pulse.

DIA@UniTS – 267MI –Fall 2023 TP GF – L2–p9



The Ideal Sampler (cont.)

Sampling rate
Given the sampling period ∆, let’s define the rate of conversion from continuous to
discrete time using

• sampling angular frequency
Ωs =

2π
∆

[rad/s]

• sampling frequency
fs =

1
∆

[Hz]

DIA@UniTS – 267MI –Fall 2023 TP GF – L2–p10



The Reconstructor

Consider now the backward operation: how to characterize the conversion of a
discrete-time signal to a continuous-time one?

Reconstruction using a data-holder
• the purpose of the D/A subsystem is to reconstruct the sampled signal into a form
that resembles the original signal, before sampling.

• the simplest D/A subsystem [indeed the most common one] is the so-called
zero-order-hold (ZOH).
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The Reconstructor (cont.)
Reconstruction using a D/A converter (cont.)
• the ZOH clamps the output signal to a value corresponding to that of the input
sequence at the current clock pulse, until the next clock pulse arrives.

x(t) = x(k) , k∆H ≤ t < (k + 1) ∆H k ∈ Z

• the time period ∆H is called holding period.

Note that the output signal of a ZOH is a stair-wise signal
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The Reconstructor (cont.)

Holding rate
Given the holding period ∆H, let’s define the rate of conversion for a D/A device using

• holding angular frequency
ΩH =

2π
∆H

[rad/s]

• holding frequency
fH =

1
∆H

[Hz]

Usually the sampling and holding frequencies have the same value.
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Sampling and Reconstructing

• What happens if a continuous-time signal is firstly sampled and then
reconstructed? How is the output signal of the ZOH w.r.t the original
continuous-time signal? The same or?

• Indeed, the output of the ZOH is a stair-wise signal, so the reconstructed signal is
different from the original one: sampling and reconstruction are just approximately
the opposite function of each other.
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Sampling and Loss of Information

xk , k ∈ Z
+

a priori knowledge
of the signal features

 x(t) = ?

• In general, reconstructing the continuous-time signal starting from the samples is
an ill-posed problem: the reconstruction may be ambiguous.
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Sampling a Sinusoidal Signal

Consider the signal x(t) = sin
(
Ω̄t

)
P =

2π
Ω̄

Select as sampling period the
value

∆ =
3
4 P =

3π
2Ω̄

Indeed, it’s easy to determine
sinusoidal signals, with period
P̂ > P , that may generate the
same values, obtained by
sampling x(t).

Note: the frequency of the ambiguous signal is lower than the frequency of the original
signal. This effect is called frequency aliasing (or frequency fold-over).
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Sampling a Sinusoidal Signal (cont.)

Reducing the sampling
period (i.e. increasing the
sampling frequency) the
ambiguity disappears: no
more frequency fold-over
effect.

∆ =
P

4 =
π

2 Ω̄

By choosing properly the sampling period, the frequency aliasing effect has been
avoided. Note: the effective sampling frequency is much higher than the signal time
frequency.
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Ideal Sampler & ZOH: Mathematical Model

• So far, it has been illustrated by examples that, when sampling a simple sinusoidal
signal, choosing properly the sampling period grants to avoid the aliasing effect.

• How to generalize? What is the effect of the sampling procedure? How does the
choice of the sampling period influence the frequency aliasing effect?

The influence of the sampling period on the aliasing effect will be explained by
modelling the direct connection of an ideal sampler to a ZOH (∆ is the sampling period)

ZOH
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Ideal Sampler & ZOH: Mathematical Model (cont.)

ZOH

The output of the ZOH is a continuous-time signal, expressed as

h(k∆+ τ) =x(k∆) , 0 ≤ τ < ∆ , k = 0, 1, 2, 3 · · · a stair-wise signal

h(t) =x(0) [1(t)− 1(t−∆)] + x(∆) [1(t−∆)− 1(t− 2∆)] + · · ·

=

+∞∑
k=0

x(k∆) [1(t− k∆)− 1 (t− (k + 1)∆)]
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Ideal Sampler & ZOH: Mathematical Model (cont.)

Applying the Laplace transform

L{1(t− k∆)} =
e−k∆s

s

L{h(t)} = H(s) =

+∞∑
k=0

x(k∆)
e−k∆s − e−(k+1)∆s

s

= 1− e−∆s

s
·

+∞∑
k=0

x(k∆) e−k∆s

function only of ∆
function of input signal
x(t) and sampling period ∆
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Ideal Sampler & ZOH: Mathematical Model (cont.)

a transfer function model
for the ZOH

the Laplace transform of
ideal sampler’s output as
continuous-time signal

H(s) = 1− e−∆s

s
·
+∞∑
k=0

x(k∆) e−k∆s = GZOH(s)X
∗(s)

where

GZOH(s) =
1− e−∆s

s
X∗(s)

△
=

+∞∑
k=0

x(k∆) e−k∆s
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Ideal Sampler & ZOH: Mathematical Model (cont.)

So far, we demonstrated the equivalence between the following two structures

ZOH

where x∗(t) = L−1 {X∗(s)} X∗(s)
△
=

+∞∑
k=0

x(k∆) e−k∆s
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Ideal Sampler as Impulse Modulator

Note: x∗(t) is a continuous-time representation of the ideal sampler output (indeed a
sequence of samples)

x∗(t) = L−1 {X∗(s)} = L−1
{

+∞∑
k=0

x(k∆) e−k∆s

}
Now, recalling the main properties of the Dirac delta function

L−1 {e−k∆s
}
= δ (t− k∆) δ(t) =

{
0 ∀t ̸= 0

undef. t = 0∫ +∞

−∞
δ(t) dt = 1

∫ +∞

−∞
f(t) δ(t− τ) dt = f(τ)

x∗(t) can be expressed as

x∗(t) = L−1
{

+∞∑
k=0

x(k∆) e−k∆s

}
=

+∞∑
k=0

x(k∆) δ(t− k∆)
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Ideal Sampler as Impulse Modulator (cont.)

x∗(t) =

+∞∑
k=0

x(k∆) δ(t− k∆)

=

+∞∑
k=0

x(t) δ(t− k∆)

=x(t) ·
+∞∑
k=0

δ(t− k∆)

=x(t) · δ∆(t)

where

δ∆(t) =

+∞∑
k=0

δ(t− k∆)

• x∗(t) can be expressed as the result of
the modulation of the original signal
x(t) with a train of Dirac impulses

• owing to this result, the ideal sampler
is also referred as an impulse
modulator
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Sampling and Reconstructing

Sampling and Reconstructing using
Laplace- and Z- Transform



Laplace- & Z- Transform of Ideal Sampler Output

• Since the output of the impulse modulator may be described as a continuous-time
signal x∗(t) but also as a discrete-time sequence x(k∆), how to correlate such
representations?

• Consider the Laplace-transform of x∗(t) and the Z-transform of the sequence x(k∆)

L{x∗(t)} = X∗(s) =

+∞∑
k=0

x(k∆)e−k∆s

Z {x(k∆)} = X(z) =

+∞∑
k=0

x(k∆) z−k

It’s easy to find that using the substitutions

z = es∆ ⇐⇒ s =
1
∆

log z

the Laplace transform may be rewritten as Z-transform and vice-versa.
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Properties ofX∗(s): X∗(s) vsX(s)

Definition: starred transform
The function X∗(s) = L{x∗(t)} is usually called the starred transform.

Property 1: the starred transformX∗(s) vs. X(s)

The starred transform may be expressed as a scaled summation of infinite copies of
the Laplace transform of the original analog signal X(s) = L{x(t)}, shifted each other
by jΩs (where Ωs =

2π
∆

and ∆ is the sampling period)

X∗(s) =
1
∆

k=+∞∑
k=−∞

X (s− jkΩs) , Ωs =
2π
∆

, X(s) = L{x(t)}

DIA@UniTS – 267MI –Fall 2023 TP GF – L2–p26



1st Property of Starred Transform - Sketch of Proof

Proof - a sketch.
Recall the ideal sampler output expression

x∗(t) =

+∞∑
k=0

x(k∆) δ(t− k∆)

Remember: the original, analog signal x(t) is a causal signal. Owing to this property, the
summation may be modified

x(t) ≡ 0 ∀t < 0 =⇒ x∗(t) =

+∞∑
k=−∞

x(k∆) δ(t− k∆)

According to this modification, let’s redefine also the impulse train

δ∆(t) =

+∞∑
k=−∞

δ(t− k∆)
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1st Property of Starred Transform - Sketch of Proof (cont.)

Now represent the impulse train as Fourier series

δ∆(t) =

k=+∞∑
k=−∞

C∆(k)e
jkΩst Ωs =

2π
∆

C∆(k) =
1
∆

∫ +∆
2

−∆
2

δ∆(t) e
−jkΩst dt

=
1
∆

∫ +∆
2

−∆
2

δ(t) e−jkΩst dt =
1
∆

Thus

δ∆(t) =
1
∆

k=+∞∑
k=−∞

ejkΩst
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1st Property of Starred Transform - Sketch of Proof (cont.)

By substitution of the impulse train expression into the ideal sampler output x∗(t), we
obtain

x∗(t) = x(t) · δ∆(t) =
1
∆

k=+∞∑
k=−∞

x(t) ejkΩst

Applying the Laplace transform

X∗(s) = L{x∗(t)} =
1
∆

k=+∞∑
k=−∞

∫ +∞

−∞

[
x(t) ejkΩs

]
e−st dt

Let’s apply the bilateral Laplace transform to x∗(t):
remember, we rewrote x∗(t) as it is non-causal signal
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1st Property of Starred Transform - Sketch of Proof (cont.)

Thus

X∗(s) =
1
∆

k=+∞∑
k=−∞

∫ +∞

−∞

[
x(t) ejkΩs

]
e−st dt

Recall the Laplace transform property
L
{
ekt f(t)

}
= F (s− k) ∀k ∈ C , F (s) = L{f(t)}

Finally

X∗(s) =
1
∆

k=+∞∑
k=−∞

X (s− jkΩs) , k ∈ Z , Ωs =
2π
∆
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Properties ofX∗(s): Periodicity of the Starred Transform

Property 2: the starred transform is periodic in s, with period jΩs

X∗(s) = X∗ (s+ jnΩs) , n ∈ N , Ωs =
2π
∆

Proof.
X∗ (s+ jnΩs) =

+∞∑
k=0

x(k∆) e−k∆(s+jnΩs)

Since Ωs ·∆ = 2π, applying the Euler’s relationship ejθ = cos θ + j sin θ

e−jnk∆Ωs = e−jnk2π = 1 ∀n , k ∈ N

thus

X∗ (s+ jnΩs) =
+∞∑
k=0

x(k∆)e−k∆s = X∗ (s)
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Properties ofX∗(s): Poles of the Starred Transform
Property 3: poles of the starred transform vs poles ofX(s)

If X(s) has a pole at s = ŝ,
then X∗(s) must have poles at s = ŝ+ jkΩs , k ∈ Z

Proof.
Rewrite the result of “Property 1”

X∗(s) =
1
∆

k=+∞∑
k=−∞

X (s− jkΩs)

=
1
∆

[
X(s) +X (s− jΩs) +X (s− 2jΩs) + · · ·

+X (s+ jΩs) +X (s+ 2jΩs) + · · ·
]

If X(s) has a pole at s = ŝ, then each term of the latter expression will contribute with a
pole at s = ŝ− jkΩs , k ∈ Z.
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Properties ofX∗(s): Poles of the Starred Transform (cont.)

Poles map of the starred transform

• if X(s) has a pole in s = −σ1 + jΩ1, then the sampling
operation will generate poles for X∗(s) in
s = −σ1 + jΩ1 ± jkΩs , k ∈ Z

• on the contrary, if X(s) has a pole in
s = −σ1 + j(Ω1 +Ωs), then X∗(s) will have a pole in
s = −σ1 + jΩ1

• pole locations in X(s) at s = −σ1 + j(Ω1 ± kΩs) , k ∈ Z
will result in identical pole locations in X∗(s)
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Properties ofX∗(s): Poles of the Starred Transform (cont.)

Primary and complementaries strips in the s-plane

• consider the s-plane of the starred transform and divide
it into strips

• the primary strip is defined as the strip for which{
s : s ∈ C , s = σ + jΩ , −Ωs

2 ≤ Ω ≤ +
Ωs
2

}
• if the pole-zero locations for the starred transform are
known in the primary strip, then the pole-zero locations
for X∗(s) in the entire s-plane are known.
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Properties ofX∗(s): Poles Map of Starred Transform
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Properties ofX∗(s): Poles of The Starred Transform (cont.)

What about zeros of starred transform?
Indeed, the zeros of X(s) do not uniquely determine the location of zeros of the
starred transform X∗(s). However, the zero locations of X∗(s) are periodic, with
period jΩs (Property 2).
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Sampling and Reconstructing

Sampling, Reconstructing and Aliasing
in the Frequency Domain



Laplace & Fourier Transform of
a Causal, Continuous-time Signal

Consider a causal, continuous-time signal x(t). The unilateral Laplace transform of such
a signal is defined as

L{x(t)} = X(s) =

∫ +∞

0
x(τ)e−sτ dτ

whereas the Fourier transform is

F{x(t)} = X(Ω) =

∫ +∞

−∞
x(τ)e−jΩτ dτ

Exploiting the signal causality, the Fourier transform may be rewritten as

F{x(t)} = X(Ω) =

∫ +∞

0
x(τ)e−jΩτ dτ = L{x(t)}|s=jΩ

provided that both transforms exist.
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Sampling and Aliasing in the Frequency Domain

Starred transform result in the frequency domain
Analysing the starred signal x∗(t) by applying the Fourier transform (instead of the
Laplace one), provides the same result:

the Fourier transform of the starred signal may be expressed as a scaled summation of
infinite copies of the Fourier transform of the original analog signal

X∗(Ω) =
1
∆

k=+∞∑
k=−∞

X (Ω− kΩs) , Ωs =
2π
∆

, X(Ω) = F {x(t)}
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Band-limited Signals

Suppose that the signal x(t) is a so-called band-limited signal, i.e. the amplitude
spectrum |X(Ω)| of the signal is non zero only if |Ω| ≤ ΩB (where X(Ω) = F{x(t)}).

What happens when we acquire such a signal by sampling? In particular, what if
Ωs > 2ΩB , Ωs = 2ΩB or Ωs < 2ΩB ?
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Band-limited Signals (cont.)

Band-limited signal
In rigorous terms, a signal is called a band-limited signal if

x(t) =

k=N∑
k=1

αk sin (Ωkt+ φk) , Ωk ≤ ΩB ∀k

or
x(t) =

∫ ΩB

0
α(Ω) sin [Ωt+ φ(Ω)] dΩ , Ω ∈ [0 , ΩB]
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Sampling and Aliasing in the Frequency Domain (cont.)

Ωs > 2ΩB

• no overlapping of spectra, so no aliasing
• to reconstruct the original signal (to isolate the original spectrum) a realizable
(causal) low-pass filter is needed
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Sampling and Aliasing in the Frequency Domain (cont.)

Ωs = 2ΩB

• still no overlapping of spectra, so no aliasing
• to reconstruct the original signal (to isolate the original spectrum) an ideal
(non-causal) low-pass filter is needed
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Sampling and Aliasing in the Frequency Domain (cont.)

Ωs < 2ΩB

• overlapping of spectra, so aliasing
• no way to reconstruct the original signal (to isolate the original spectrum)
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Sampling and Reconstructing

The Sampling Theorem



Sampling Theorem

Nyquist-Shannon theorem
A continuous-time signal which contains no frequency components greater than ΩB
rad/s, is uniquely determined by the signal samples{

xk = x(k∆) , k ∈ Z , ∆ : Ωs =
2π
∆

> 2ΩB

}
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Anti-aliasing Filter

• How to guarantee the band limitedness of a signal?
• From a practical point of view, how to restrict the bandwidth of the signal to the
band of interest, with the aim to satisfy the sampling theorem?

• anti-aliasing filter: a realizable low-pass filter

F (s) =
1

1+ s
Ω̄

, B =
[
0 , Ω̄

]
Ωs =

2π
∆

> 2Ω̄
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Sampling & Aliasing: Hands-On

Matlab live script
The impact of the sampling process on the reconstruction of the original
continuous-time signal starting from the sampled data, the effect of the
aliasing, the tuning of the anti-aliasing low-pass filters can be
experimented by means of a Matlab live script.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named
”L2_Sampling_Aliasing,” available in the ”Class Materials” file area of the MS Teams
course team, and uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' Sampling_Aliasing_IdealSampler . mlx ' ) ;
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Sampling and LTI Systems: from
Continuous-Time to
Discrete-Time Systems



Sampling and LTI Systems: from
Continuous-Time to
Discrete-Time Systems

The Step-Invariant Transform



C2d with Sampler & Hold

Consider the scheme

• How to obtain a discrete-time description of a linear, time-invariant,
continuous-time dynamic system?

• Both state variables and outputs are sampled by means of an ideal sampler
• The inputs to the LTI system are converted from discrete- to continuous-time using
a ZOH
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C2d with Sampler & Hold (cont.)

• Consider a LTI dynamic system, described by means of state equations
ẋ(t) =Acx(t) +Bcu(t)

y(t) =Ccx(t) +Dcu(t)

• The following expression holds

x(t) = eAc(t−t0)x (t0) +

∫ t

t0

eAc(t−τ)Bcu(τ) dτ

( from “Fundamentals in Control”) where

eAct = L−1
{
(sI −Ac)

−1
}
= I +Act+

A2ct
2

2 +
A3ct

3

3! + · · ·
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C2d with Sampler & Hold (cont.)

• Remember the stairwise behaviour of the output of a ZOH device

u(t) = uk = u(k∆) , k∆ ≤ t < (k + 1) ∆ k ∈ Z

• Evaluate the state movement expression in a time interval between two successive
sampling instants k∆ and (k + 1)∆

x [(k + 1)∆]) = eAc∆x (k∆) +

{∫ (k+1)∆

k∆

eAc(t−τ)Bc) dτ

}
u (k∆)

the input u(t) is a constant signal
during the considered time interval
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C2d with Sampler & Hold (cont.)

• Substitute r = (k + 1)∆− τ into the integral term and rewrite the last expression,

x [(k + 1)∆]) = eAc∆ x (k∆) +

{∫ ∆

0
eAcrBc dr

}
u (k∆)

• By comparison with the expression of the discrete-time state equations for the
dynamic system considered

x [(k + 1)∆] =Ad x (k∆) +Bd u (k∆)

y (k∆) =Cd x (k∆) +Dd u (k∆)

finally we obtain the continuous to discrete-time conversion rule, applying ZOH
(the so-called step–invariant transform)
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C2d with Sampler & Hold (cont.)

Step–invariant transform
Starting from a continuous-time LTI dynamic system

ẋ(t) =Acx(t) +Bcu(t)

y(t) =Ccx(t) +Dcu(t)

the corresponding discrete-time description, using a ZOH for inputs and ideal
samplers for state and output signals is given by

Ad = eAc∆ Bd =

∫ ∆

0
eAcrBc dr

Cd = Cc Dd = Dc
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C2d with Sampler & Hold: an Example

Consider


ẋ =

[
0 1
0 −a

]
x+

[
0
K

]
u

y =
[
1 0

]
x

and let’s determine the discrete-time description, by sampling with ZOH and ideal
samplers.

(sI −Ac)
−1

=
1

s(s+ a)

[
s+ a 1
0 s

]
=


1
s

1
s(s+ a)

0 1
s+ a


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C2d with Sampler & Hold: an Example (cont.)

Applying the step-invariant transform

eAc t = L−1
{
(sI −Ac)

−1
}
=

 1(t) 1
a

· 1(t)− 1
a
e−at · 1(t)

0 e−at · 1(t)



eAc ∆ =

 1 1
a

(
1− e−a∆

)
0 e−a∆



Bd =

∫ ∆

0
eAc r Bc dr =


∫ ∆

0

K

a

(
1− e−a r

)
dr

∫ ∆

0
Ke−a r dr


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Why Do They Call It the Step-Invariant Transform?

Step response of the sampled-time LTI system
The considered conversion technique from continuous-time to discrete-time LTI
systems is usually called step invariant transform, due to a peculiar feature of the
conversion rule itself:

• the conversion rule preserves the step response of the dynamic system, i.e. the
values of the step response of the discrete-time description of the LTI system are
exactly the samples of the step response of the effective continuous-time LTI
system. [Hint: what is the output of a ZOH if the input is a discrete-time step
sequence?]
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Why Do They Call It the Step-Invariant Transform? (cont.)

Continuous- and discrete-time step responses: a comparison
• Let’s consider the continuous-time LTI system

ẋ(t) =

[
0 1
0 −1

]
· x(t) +

[
0
10

]
· u(t)

y(t) =
[
1 0

]
· x(t)

• Chosen as sampling period the value ∆ = 0.1 s , the discrete-time description of the
considered LTI system is

x(k + 1) =
[
1 0.09516
0 0.9048

]
· x(k) +

[
0.04837
0.9516

]
· u(k)

y(k) =
[
1 0

]
· x(k)
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Why Do They Call It the Step-Invariant Transform? (cont.)

Continuous- and discrete-time step responses: a comparison (cont.)
• Let’s compare visually the step responses of the continuous-time LTI system and of
the discrete-time description
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The Step-Invariant Transform: Hands-On

Matlab live script
How to use Matlab to apply the step-invariant transform?
A Matlab live script is available.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named
”L2_Step_Invariant_Transform,” available in the ”Class Materials” file area of the MS
Teams course team, and uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' StepInvar iantTransform . mlx ' ) ;
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Sampling and LTI Systems: from
Continuous-Time to
Discrete-Time Systems

Practical Issues



C2d with Sampler & Hold: Practical Issues

Ad = eAc∆ Bd =

∫ ∆

0
eAcrBc dr

Cd = Cc Dd = Dc

• How does one determine in practice the matrices described into the step-invariant
transform?

• Are exact solutions or approximate expressions available?
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C2d with Sampler & Hold: Practical Issues (cont.)

Exact formulas for the step-invariant transform

Ad =eAc∆ ⇐= eAct = L−1
{
(sI −Ac)

−1
}

Bd =

∫ ∆

0
eAcrBc dr = A−1

c ·
[
eAc∆ − I

]
·Bc if Ac is nonsingular

Approximate expressions

Ad =eAc∆ ≈ I +Ac∆+
A2c∆

2

2! +
A3c∆

3

3! + · · ·

Bd =

∫ ∆

0
eAcrBc dr ≈

[
∆+

Ac∆
2

2! +
A2c∆

3

3! + · · ·
]
·Bc
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Lecture 2
Sampling and Reconstructing in Time Domain:
Sampling and LTI Systems

END
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