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State-Space Solution: the Time-Invariant case

• In the time-invariant case, matrices A(k), B(k), C(k), D(k) do not depend on
time-index k, that is they are constant matrices A,B,C,D .

• Hence, when considering a linear discrete-time free (no inputs) time-invariant
dynamic system:

x(k + 1) = Ax(k) , x(k0) = x0

one gets:
x(k) = φ(k, k0, x0) = Φ(k, k0)x0

where the discrete-time state-transition matrix now takes on the form

Φ(k, k0) =
k−1
Π

j=k0
A = A(k−k0) , k > k0 ; Φ(k0, k0) = I

• With some abuse of notation, we denote Φ(k − k0) to highlight the dependence on
(k − k0) instead of k and k0 separately.
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State-Space Solution: the Time-Invariant case (cont.)

Now, consider a linear discrete-time time-invariant dynamic system with inputs:

x(k + 1) = Ax(k) +Bu(k) , x(k0) = x0

Therefore, using
Φ(k − k0) = A(k−k0) , k > k0 ; Φ(k0, k0) = I

one gets
x(k) = φ(k, k0, x0, {u(k0), . . . , u(k − 1)})

= A(k−k0)x0 +
k−1∑
j=k0

Ak−(j+1)Bu(j) , k > k0

The explicit form Φ(k − k0) = A(k−k0) will be used later on to determine the state and
output evolution over time in closed-form.
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State-Space Solution: the Time-Invariant case (cont.)

• Free state movement. Setting u(k) = 0, ∀ k ≥ k0 gives:

x(k) = φ(k, k0, x0, 0) = φL(k) = A(k−k0)x0 , k > k0

• Forced state movement. Setting x0 = 0 gives:

x(k) = φ(k, k0, 0, {u(k0), . . . , u(k − 1)}) = φF (k)

=

k−1∑
j=k0

Ak−(j+1)Bu(j) , k > k0

The total state movement is thus given by:

φ(k, k0, x0, {u(k0), . . . , u(k − 1)}) = φL(k) + φF (k)

which is a direct consequence of the linearity of the dynamic system.
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State-Space Solution: the Time-Invariant case (cont.)

Now, by adding the output equation:{
x(k + 1) = Ax(k) +Bu(k) , x(k0) = x0
y(k) = Cx(k) +Du(k)

one gets:

y(k) = CA(k−k0)x0 +
k−1∑
j=k0

CAk−(j+1)Bu(j) +Du(k) , k > k0

• Free output movement. Setting u(k) = 0, ∀ k ≥ k0 gives:

y(k) = yL(k) = CA(k−k0)x0 , k > k0

• Forced output movement. Setting x0 = 0 gives:

y(k) = yF (k) =

k−1∑
j=k0

CAk−(j+1)Bu(j) +Du(k) , k > k0

The total output movement is thus given by: y(k) = yL(k) + yF (k)
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Input-Output Dynamic Description of Linear Systems

Preliminaries
Discrete-time unit impulse sequence

δ(k) =

{
0, k ̸= 0, k ∈ Z
1, k = 0

Discrete-time unit step sequence

1(k) =
{
0, k < 0, k ∈ Z
1, k ≥ 0, k ∈ Z

=⇒ δ(k) = 1(k)− 1(k − 1) ; 1(k) =


∞∑
j=0

δ(k − j), k ≥ 0

0, k < 0

Moreover, an arbitrary sequence {x(k)} can be expressed as x(k) =
∞∑

j=−∞
x(j)δ(k − j)
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Input-Output Dynamic Description of Linear Systems (cont.)

• Consider a linear discrete-time system
with scalar input and output

• Moreover, consider the ”external” input/output relationship

y(k) =

∞∑
j=−∞

h(k, j)u(j) (⋆)

Assumption. The sequences {h(k, j)} for any given k and {u(j)} are such that the
relationship (⋆) is well-defined. For example, {h(k, j)} ∈ l2 and {u(j)} ∈ l2 .

• Under the above assumption, relationship (⋆) is linear.
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Input-Output Dynamic Description of Linear Systems (cont.)
• Denote by h(k, j) the output response at time k produced by a unit impulse δ(j)

applied at time j

• By linearity, the output response at time k produced by a impulse of amplitude
u(j) applied at time j is h(k, j)u(j)

• By linearity, the output response at time k produced by two impulses of amplitude
u(j1) and u(j2) applied at times j1 and j2 , respectively, is
h(k, j1)u(j1) + h(k, j2)u(j2)

Input-Output Model
At time k , the system output y(k) produced by the input sequence {u(j)} is given by

y(k) =

∞∑
j=−∞

h(k, j)u(j)

where h(k, j) denotes the output response at time k produced by a unit impulse
δ(k − j) applied at time j
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Input-Output Dynamic Description of Linear Systems (cont.)

Properties

• Due to causality, the response to an input sequence has to be identically zero
before the input sequence is applied. Hence:

h(k, j) = 0 , ∀ j, ∀ k < j

Hence:

y(k) =

k∑
j=−∞

h(k, j)u(j)

=⇒ y(k) =

k0−1∑
j=−∞

h(k, j)u(j) +

k∑
j=k0

h(k, j)u(j)

= Y (k; k0 − 1) +
k∑

j=k0

h(k, j)u(j)
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Input-Output Dynamic Description of Linear Systems (cont.)

• The system is at rest at time k0 if

u(k) = 0, ∀ k ≥ k0 =⇒ y(k) = 0, ∀ k ≥ k0

and this implies Y (k; k0 − 1) = 0 .
• Hence, if the system is at rest at time k0 , it follows that

y(k) =

∞∑
j=k0

h(k, j)u(j)

and due to causality, one gets

y(k) =

k∑
j=k0

h(k, j)u(j)
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Input-Output Dynamic Description of Linear Systems (cont.)

• If the system is time-invariant, denoting by {h(k, 0)} the response to {δ(k)} , it
follows that {h(k − j, 0)} is the response to {δ(k − j)}

• Letting (with some abuse of notation)

h(k − j) := h(k − j, 0)

one gets the well-known convolution formula:

y(k) = u(k) ∗ h(k) =
∞∑

j=−∞
h(k − j)u(j)

or equivalently (via a change of variables)

y(k) = h(k) ∗ u(k) =
∞∑

i=−∞
h(i)u(k − i)
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Input-Output Dynamic Description of Linear Systems (cont.)

• Consider a linear discrete-time system
with vector input and output

• The scalar case (with all properties) can be generalised as:

y(k) =
∞∑

j=−∞
H(k, j)u(j)

H(k, j) =


h11(k, j) h12(k, j) · · · h1m(k, j)

h21(k, j) h22(k, j) · · · h2m(k, j)

· · · · · · · · ·
hp1(k, j) hp2(k, j) · · · hpm(k, j)


where hrs(k, j) denotes the r-th component of the response at time k produced
by a unit impulse applied at time j on the s-th component of the input, while all
other input components are set to zero.
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Relationship between State-Space and Input-Output Dynamic Descriptions

Consider a state-space description with initial state set to zero:{
x(k + 1) = A(k)x(k) +B(k)u(k) , x(k0) = 0
y(k) = C(k)x(k) +D(k)u(k)

Recalling that

y(k) =

k−1∑
j=k0

C(k)Φ(k, j + 1)B(j)u(j) +D(k)u(k) , k > k0

one gets immediately

H(k, j) =


C(k)Φ(k, j + 1)B(j) , k > j

D(k) k = j

0 k < j

which, in the time-invariant case, becomes

H(k − j) =


CAk−(j+1)B , k > j

D k = j

0 k < jDIA@UniTS – 267MI –Fall 2023 TP GF – L3–p13
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Determination of the State/Output Movement

In the time-invariant case, recall that the solution specialises as follows:{
x(k + 1) = Ax(k) +Bu(k) , x(k0) = x0
y(k) = Cx(k) +Du(k)

one gets:
y(k) = CA(k−k0)x0

+

k−1∑
j=k0

CAk−(j+1)Bu(j) +Du(k) , k > k0

where the state-transition matrix now is given by:

Φ(k − k0) = A(k−k0) , k > k0 ; Φ(k0, k0) = I
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Response Modes

• Without loss of generality we let k0 = 0 and we ”expand” matrix Ak−k0 = Ak in
”matrix partial fractions”.

• Clearly
det(zI −A) =

σ

Π
i=1

(z − λi)
ni

where λ1, . . . , λσ are the distinct eigenvalues of A and ni is the algebraic
multiplicity of such eigenvalues.

• Of course
σ∑

i=1
ni = n .
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Response Modes (cont.)

• Let’s assume λi ̸= 0 , i = 1 , . . . σ .
• It can be shown that:

Ak =

σ∑
i=1

[
Ai0λ

k
i 1(k) +

ni−1∑
l=1

Ailk(k − 1) · · · (k − l + 1)λk−l
i 1(k − l)

]

where
Ail =

1
l!

1
(ni − 1− l)!

lim
z→λi

{
dni−1−l

dzni−1−l

[
(z − λi)

ni(zI −A)−1
]}
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Response Modes (cont.)

Hence:

• Ak can be expressed as a sum of terms Aill!

(
k

l

)
λk−l
i which are called

Response Modes
• If an eigenvalue λi has algebraic multiplicity ni , then, in general, ni response
modes

Aill!

(
k

l

)
λk−l
i , l = 0, 1, . . . , ni − 1

can be associated to λi .
• When all eigenvalues of A are distinct, one has σ = n; ni = 1, i = 1, . . . , n and

Ak =

n∑
i=1

Aiλ
k
i

with Ai = lim
z→λi

[
(z − λi)(zI −A)−1

]
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Response Modes: A particular Case

• If an eigenvalue λj of A is zero, then the terms in the expression of Ak ,
corresponding to the zero eigenvalue must be modified.

• The terms corresponding to λj = 0 are

Aj0 · δ(k) +
nj−1∑
l=1

Ajl l! δ(k − l)

where
Ajl =

1
l!

1
(nj − 1− l)!

lim
z→0

{
dnj−1−l

dznj−1−l

[
znj (zI −A)−1

]}
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Response Modes: A different Characterisation

In the special case of distinct eigenvalues of A :

• In such a case: det(zI −A) =
n

Π
i=1

(z − λi) and Ak =

n∑
i=1

Aiλ
k
i

• It can be shown that Ai = viṽ
⊤
i where:

• (λiI −A)vi = 0 : vi right eigenvector associated with λi

• ṽ⊤i (λiI −A) = 0 : ṽ⊤i left eigenvector associated with λi

In fact:

Q := [v1 | v2 | · · · | vn] =⇒ P = Q−1 =


ṽ⊤1
...
ṽ⊤n

 ; ṽ⊤i vj =

{
1 i = j

0 i ̸= j

and then
(zI −A)−1 = [zI −Qdiag [λ1, . . . , λn]Q

−1]−1

= Q[zI − diag [λ1, . . . , λn]]
−1Q−1

= Qdiag [(z − λ1)
−1, . . . , (z − λn)

−1]Q−1 =
n∑

i=1
viṽ

⊤
i (z − λi)

−1
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Response Modes: A different Characterisation (cont.)

• If the initial state vector x0 is ”parallel” to eigenvector vj of A , then the only
response mode showing up int the state movement is λk

j :

x0 = αvj =⇒ x(k) = Akx0 = v1ṽ
⊤
1 x0λ

k
1 + · · ·+ vnṽ

⊤
n x0λ

k
n = αvjλ

k
j

Example: consider A =

[
−1 2
0 1

]
; λ1 = −1, λ2 = 1

=⇒ Q = [v1 | v2] =

[
1 1
0 1

]
, Q−1 =

[
ṽ⊤1
ṽ⊤2

]
=

[
1 −1
0 1

]

Ak = v1ṽ
⊤
1 λ

k
1 + v2ṽ

⊤
2 λ

k
2 =

[
1 −1
0 0

]
(−1)k +

[
0 1
0 1

]
1k

and thus, if x0 = αv1 = α

[
1
0

]
then the response mode 1k does not show up in the

free state response starting from such an initial state x0
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Calculation of Ak by Similarity Transformation

Consider:

• x(k + 1) = Ax(k) , x(0) = x0 =⇒ x(k) = Akx0

• T ∈ Rn×n, det(T ) ̸= 0 =⇒ x = T x̂, x̂ = T−1x

Hence x̂(k + 1) = T−1Ax(k) = T−1ATx̂(k), x̂0 = T−1x0 which yields

x̂(k) = (T−1AT )
k
T−1x0

Letting Â := T−1AT , one gets the closed-form expression for the free-state response
expressed in the original state coordinates

x(k) = TÂkT−1x0
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Calculation of Ak by Similarity Transformation (cont.)

The matrices A and Â are similar, and T is called a similarity transformation.

Â := T−1AT ⇐⇒ A = TÂT−1

Âk = T−1AkT ⇐⇒ Ak = TÂkT−1

Note: also the matrices Ak and Âk are similar.

Question: may we take advantage of a suitable similarity transformation in evaluating
Ak?
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Calculation of Ak by Similarity Transformation (cont.)

Case 1. Suppose that matrix A admits the construction of a basis of n

linearly-independent eigenvectors vi associated with the eigenvalues λi, i = 1, . . . , n
(not necessarily distinct).
Thus:

T = [v1|v2| · · · |vn] =⇒ D = T−1AT =


λ1 · · · 0
... . . . ...
0 · · · λn


Hence:

Dk =


λ1

k · · · 0
. . .

0 · · · λn
k



=⇒ x(k) = TDkT−1x0 = T


λ1

k · · · 0
. . .

0 · · · λn
k

T−1x0
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Calculation of Ak by Similarity Transformation (cont.)

Case 2. Consider the general case in which matrix A has multiple eigenvalues. It is
always possible1 to construct a basis of n linearly-independent vectors vi such that:

T = [v1|v2| · · · |vn] =⇒ J = T−1AT =


J0 · · · · · · 0
... J1

...
... . . . ...
0 · · · · · · Js


where J is the so called Jordan canonical form of the matrix A .

Matrix J is block-diagonal and its special structure makes it possible to compute Ak in
closed-form.

1For details, see the Ch. 2 in the ref. book: Antsaklis P. J. and Michel A. N. , Linear Systems, Birkhäuser, 2006.
Refer also to the course Control Theory, taught by Prof. Felice A. Pellegrino.
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Qualitative Behaviour of Response Modes

•
(

k

ni

)
λk−ni
i with λ ∈ R , multiplicity = 1
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Qualitative Behaviour of Response Modes

•
(

k

ni

)
λk−ni
i with λ ∈ R , multiplicity > 1
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Qualitative Behaviour of Response Modes

•
(

k

ni

)
λk−ni
i with λ ∈ C , multiplicity = 1
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Qualitative Behaviour of Response Modes

•
(

k

ni

)
λk−ni
i with λ ∈ C , multiplicity > 1
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Response Modes & MATLAB: Hands-On

Matlab live script
How to compute the response mode matrices using MATLAB, either in
the scenario of all distinct eigenvalues, either in the case of multiple
eigenvalues can be experimented by means of a Matlab live script.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named
”L3_Response_Modes,” available in the ”Class Materials” file area of the MS Teams
course team, and uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' LTI_movements_response_modes . mlx ' ) ;
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External Description of LTI Dynamic Systems: Transfer Function

Recall the relationship between the state space description and the impulse response
(an external description):{

x(k + 1) = A(k)x(k) +B(k)u(k) , x(k0) = 0
y(k) = C(k)x(k) +D(k)u(k)

Recalling that

y(k) =
k−1∑
j=k0

C(k)Φ(k, j + 1)B(j)u(j) +D(k)u(k) , k > k0

one gets immediately

H(k, j) =


C(k)Φ(k, j + 1)B(j) , k > j

D(k) k = j

0 k < j

which, in the time-invariant case, becomes

H(k − j) =


CAk−(j+1)B , k > j

D k = j

0 k < j
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Transfer Function

Consider the time-invariant dynamic system:{
x(k + 1) = Ax(k) +Bu(k) , x(k0) = 0
y(k) = Cx(k) +Du(k)

Applying the Z Transform to both sides one gets:
z [X(z)− x0] = AX(z) +BU(z)

=⇒ (zI −A)X(z) = z x0 +BU(z)

=⇒


X(z) = (zI −A)−1z x0 + (zI −A)−1BU(z)

Y (z) = CX(z) +DU(z)

=⇒ Y (z) = C(zI −A)−1z x(0) +
[
C(zI −A)−1B +D

]
U(z)

Letting x0 = 0 , it follows that:

Y (z) =
[
C(zI −A)−1B +D

]
U(z) = H(z)U(z)

and H(z) is called transfer function.
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Transfer Function (cont.)

Let’s analyse the structure of the transfer function:

H(z) =



H11(z) · · · H1m(z)
...

...
Hi1(z) · · · Him(z)

...
...

Hp1(z) · · · Hpm(z)


H(z) is a p×m matrix where the i-th component of the output vector is given by:

Yi(z) =

m∑
j=1

Hij(z)Uj(z) = Hi1(z)U1(z) +Hi2(z)U2(z) + · · ·

Hence:
x(0) = x0
ur(k) = 0, r ̸= j

=⇒ Hij(z) =
Yi(z)

Uj(z)
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Transfer Function of equivalent dynamic systems

Recall: {
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

Let x̂ := T−1x , where T ∈ Rn×n is a generic non-singular n× n matrix ( det(T ) ̸= 0 ).
Then, the equivalent state-space description is given by:{

x̂(k + 1) = T−1x(k + 1) = T−1ATx̂(k) + T−1Bu(k) = Âx̂(k) + B̂u(k)

y(k) = CT x̂(k) +Du(k) = Ĉx̂(k) +Du(k)

Hence: {
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
⇐⇒

{
x̂(k + 1) = Âx̂(k) + B̂u(k)

y(k) = Ĉx̂(k) +Du(k)
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Transfer Function of equivalent dynamic systems (cont.)

Ĥ(z) = Ĉ(zI − Â)−1B̂ + D̂

= C
[
T
(
zI − T−1AT

)−1
T−1

]
B +D

= C
[
T
(
zT−1T − T−1AT

)−1
T−1

]
B +D

= C
[
T
(
T−1(zI −A)T

)−1
T−1

]
B +D

= C
[
TT−1 (zI −A)

−1
TT−1

]
B +D

= C
[
(zI −A)

−1
]
B +D

= H(z)

Hence: the transfer function does not depend on the specific choice of the state
variables
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Transfer Function: Properties

Consider the scalar case, that is, u(k) ∈ R , y(k) ∈ R :

H(z) = C
[
(zI −A)

−1
]
B +D

and

(zI −A)
−1

=


z − a11 −a12 · · · −a1n

−a21 z − a22
...

... . . .
−an1 · · · z − ann


−1
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Transfer Function: Properties (cont.)

The inverse can be expressed as:

(zI −A)
−1

=
1

det (zI −A)
K(z)

where K(z) is the matrix of the algebraic complements.

Clearly:

• det (zI −A) is a polynomial with degree n

• K(z) = [kij(z); i, j = 1, . . . , n] where kij(z) is a polynomial of degree < n, ∀ i, j

• C (zI −A)
−1

B =
1

det (zI −A)
CK(z)B =

M(z)

φ(z)
where M(z) is a polynomial of

degree < n,
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Transfer Function: Properties (cont.)

Therefore:
H(z) = C (zI −A)

−1
B +D =

M(z)

φ(z)
+D

=
M(z) +Dφ(z)

φ(z)
=

N(z)

φ(z)

where:

• N(z) in general is a polynomial of degree n

• In case of a strictly proper system, that is D = 0 , N(z) in general is a polynomial
of degree < n

• All the above holds if no common factors between N(z) and φ(z) are present
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Transfer Function: Properties (cont.)

In the presence of common factors between N(z) and φ(z) :

H(z) =
N(z)

φ(z)

• φ(z) is a factor of φ(z) of degree ν < n

• N(z) has degree m < ν and has degree ν only if D ̸= 0 (non strictly proper
systems)
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Transfer Function: Poles and Zeros (scalar case)

• Poles: roots of polynomial φ(z)
• Zeros: roots of polynomial N(z)

• The poles are eigenvalues of A

• An eigenvalue of A might not belong to the set of poles when common factors are
present

• In case of more then one input and/or more than one output extra-care has to be
exercised
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Transfer Function: Example


x(k + 1) =

[
1 1
0 −1

]
x(k) +

[
1
1

]
u(k)

y(k) = [0 1]x(k)

n = 2

Hence:

G(z) = [0 1]
[

z − 1 −1
0 z + 1

]−1 [
1
1

]

= [0 1] 1
(z − 1)(z + 1)

[
z + 1 1
0 z − 1

][
1
1

]

=
(z − 1)

(z − 1)(z + 1) =
1

z + 1
Thus: φ(z) = z + 1 is a factor of φ(z) = (z − 1)(z + 1)
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Transfer Function: Example (cont.)

The state equations have the form:
x1(k + 1) = x1(k) + x2(k) + u(k)

x2(k + 1) = −x2(k) + u(k)

y(k) = x2(k)

Only the dynamics
{

x2(k + 1) = −x2(k) + u(k)

y(k) = x2(k)
shows up in the transfer function

G(z) =
1

z + 1 and the time-evolution of x1(k) is not influencing the output y(k) .
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Transfer Function: Example in the Non-Scalar Case


x(k + 1) =

[
0 1
−1 −2

]
x(k) +

[
0 −1/2
1 1/2

]
u(k)

y(k) = [−3 3]x(k)
Hence, one gets:

H(z) = [−3 3]
[

z −1
1 z + 2

]−1 [
0 −1/2
1 1/2

]

= [−3 3] 1
(z + 1)2

[
z + 2 1
−1 z

][
0 −1/2
1 1/2

]

=

[
− 3
z + 1

3(z − 1)
(z + 1)2

] [ 0 −1/2
1 1/2

]
=

[3(z − 1)
(z + 1)2

3
z + 1

]
The notion of zeros and poles of a transfer function in the non-scalar case is more
complicated (and less useful though)
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Transfer Function: Alternative Definition in the Scalar Case

x(0) = 0
u(k) = δ(k)

=⇒ U(z) = Z[δ(k)] = 1

Therefore:
H(z) =

Y (z)

U(z)
=

Y (z)

1 = Y (z)

that is:
H(z) = Z[ Impulse Response ]
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Determination of Response Modes: Example 1

Consider: 
x(k + 1) =

[
−0.5 2
0 0.1

]
x(k) +

 1

−0.5

 u(k)

y(k) =
[
2 −1.5

]
x(k)

Determine the free-state movement

xl(k) = Ak x(0)

starting from the initial state

x(0) =
[

10
−10

]
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Determination of Response Modes: Example 1 (cont.)

The free-state movement is given by

x(k) = Ak x(0) +
k−1∑
i= 0

Ak−i−1Bu(i)

We are going to determine the free-state movement in two ways:

• by the Z transform
• by calculating the matrix Ak.
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Determination of Response Modes: Example 1 (cont.)

Calculation by the Z transform

xl(k) = Ak x(0) =⇒ Xl(z) = z (z I − A)
−1

x(0)

(z I − A) =

[
z + 0.5 −2
0 z − 0.1

]
=⇒ (z I − A)

−1
=


2

2 z + 1
40

(2 z + 1) (10 z − 1)

0 10
10 z − 1


Hence:

Xl(z) =


20 z (10 z − 21)

(10 z − 1) (2 z + 1)

− 100 z
10 z − 1


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Determination of Response Modes: Example 1 (cont.)

First, we proceed with the inverse Z transform:

Xl(z) =

 Xl 1(z)

Xl 2(z)

 =


20 z (10 z − 21)

(10 z − 1) (2 z + 1)

− 100 z
10 z − 1


Hence:

Xl 1(z) =
20 z (10 z − 21)

(10 z − 1) (2 z + 1)

=⇒ Xl 1(z)

z
=

20 (10 z − 21)
(10 z − 1) (2 z + 1) =

C1
z − 1

10
+

C2
z + 1

2

C1 = lim
z→ 1

10

20 (10 z − 21)
10 (2 z + 1) = −1003 ; C2 = lim

z→− 1
2

20 (10 z − 21)
2 (10 z − 1) =

130
3

thus getting: Xl 1(z) = −1003
z(

z − 1
10
) +

130
3

z(
z + 1

2
)
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Determination of Response Modes: Example 1 (cont.)

Then, it follows that:

Xl(z) =

 −1003
z(

z − 1
10
) +

130
3

z(
z + 1

2
)

− 10 z(
z − 1

10
)


and thus:

xl(k) =


{
−1003

( 1
10

)k

+
130
3

(
− 1
2

)k
}

· 1(k)

− 10
( 1
10

)k

· 1(k)


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Determination of Response Modes: Example 1 (cont.)

Now, as alternative technique, we proceed with calculating the matrix Ak.

• A =

[
−0.5 2
0 0.1

]
• Eigenvalues: λ1 = −0.5 , λ2 = 0.1 . Hence, matrix A admits a diagonal similar
matrix because the eigenvalues are distinct

• The characteristic polynomial is given by:

pA(λ) = det(λI −A) = (λ+ 0.5)(λ− 0.1)

• A basis of linearly independent eigenvectors is now determined.
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Determination of Response Modes: Example 1 (cont.)

• Az = λ1z with z =

[
z1
z2

]
[

−0.5 2
0 0.1

][
z1
z2

]
= −0.5 ·

[
z1
z2

]
=⇒

{
−0.5z1 + 2z2 = −0.5z1

0.1z2 = −0.5z2

For example: z2 = 0 =⇒ z(1) =

[
1
0

]
• Az = λ2z[

−0.5 2
0 0.1

][
z1
z2

]
= 0.1 ·

[
z1
z2

]
=⇒

{
−0.5z1 + 2z2 = 0.1z1

0.1z2 = 0.1z2

For example: z2 =
3
10z1 =⇒ z(2) =

[
10
3

]
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Determination of Response Modes: Example 1 (cont.)

One now proceeds with calculating the equivalent state-space representation of matrix
A:

T =
[
z(1)

∣∣∣z(2) ] = [ 1 10
0 3

]
=⇒ T−1 =

1
3

[
3 −10
0 1

]
thus obtaining:

Ã = T−1AT =
1
3

[
3 −10
0 1

] −12 2

0 1
10

[ 1 10
0 3

]
=

 −12 0

0 1
10


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Determination of Response Modes: Example 1 (cont.)

The calculation of Ak is now straightforward:

Ak = MÃkM−1 = M


(
−12

)k

0

0
( 1
10

)k

M−1

=

[
1 10
0 3

]
(
−12

)k

0

0
( 1
10

)k

 · 13

[
3 −10
0 1

]

=


(
−12

)k
(
−103

(
−12

)k

+
10
3

( 1
10

)k
)

0
( 1
10

)k


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Determination of Response Modes: Example 1 (cont.)

Finally, from

Ak =


(
−12

)k
(
−103

(
−12

)k

+
10
3

( 1
10

)k
)

0
( 1
10

)k


and x(0) =

[
10
−10

]
, one gets:

xl(k) =


{
−1003

( 1
10

)k

+
130
3

(
− 1
2

)k
}

· 1(k)

− 10
( 1
10

)k

· 1(k)


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Determination of Response Modes: Example 2

Consider: {
x1(k + 1) = x1(k) + 4x2(k)
x2(k + 1) = x1(k) + x2(k)

Setting x(0) =
[
1
1

]
, show in two different ways that

lim
k→∞

x1(k)

x2(k)
= 2

We are going to determine the free-state movement yielding x1(k), x2(k), ∀k ≥ 0 in two
ways:

• by the Z transform
• by calculating the matrix Ak.
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Determination of Response Modes: Example 2 (cont.)

Using the Z transform:

{
zX1(z)− z = X1(z) + 4X2(z)

zX2(z)− z = X1(z) +X2(z)
=⇒


X1(z) =

z(z + 3)
(z + 1)(z − 3)

X2(z) =
z2

(z + 1)(z − 3)
Hence: 

x1(k) =

[(
−12

)
(−1)k +

3
2 3

k

]
1(k)

x2(k) =

[1
4 (−1)

k +
3
4 3

k

]
1(k)

=⇒ lim
k→∞

x1(k)

x2(k)
= lim

k→∞

(3
2

)
3k(3

4

)
3k

= 2
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Determination of Response Modes: Example 2 (cont.)

Using the calculation of Ak :

A =

[
1 4
1 1

]
=⇒ det(λI −A) = λ2 − 2λ− 3 = 0 =⇒

distinct eigenval-
ues
λ1 = 3, λ2 = −1

ker(A− 3I) =

{[
2
1

]}

ker(A+ I) =

{[
−2
1

]} =⇒

T =

[
−2 2
1 1

]

T−1 = −14

[
1 −2
−1 −2

]
Thus

Ã = T−1AT =

[
−1 0
0 3

]
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Determination of Response Modes: Example 2 (cont.)

By some algebra:

Ak = T Ãk T−1 =


1
2 3

k +
1
2 (−1)

k 3k − (−1)k

1
4
(
3k − (−1)k

) 1
2 3

k +
1
2 (−1)

k


and then:

x(k) = Akx(0) =


x1(k) =

[(
−12

)
(−1)k +

3
2 3

k

]
1(k)

x2(k) =

[1
4 (−1)

k +
3
4 3

k

]
1(k)

=⇒ lim
k→∞

x1(k)

x2(k)
= lim

k→∞

(3
2

)
3k(3

4

)
3k

= 2
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Lecture 3
State and Output Movement of Linear
Discrete-Time Systems

END
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