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Stability of Linear Systems via Analysis of the Free State Movement

• Given the linear time-invariant discrete-time dynamic system{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

• In equilibrium conditions:

x(0) = x̄

u(k) = ū, k ≥ 0

=⇒ x(k) = Ak x̄+

k−1∑
i=0

Ak−i−1Bū = x̄, ∀k ≥ 0
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Stability of Linear Systems via Analysis of the Free State Movement (cont.)

• Perturbing the equilibrium conditions:

x(0) = x̄+ δx̄

u(k) = ū, k ≥ 0 =⇒ x(k) ̸= x̄, k ≥ 0
perturbed state movement

=⇒ x(k) = Ak (x̄+ δx̄) +

k−1∑
i= 0

Ak−i−1Bū

= x̄+Ak δx̄

Hence:
δx(k) = Akδx̄

• Also, recall that:
xl(k) = Ak x(0)
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Stability of Linear Systems via Analysis of the Free State Movement (cont.)

Stability and Ak

• The stability properties do not depend on the specific value taken on by the
equilibrium state x̄

• Hence, the stability properties are a structural property of the linear dynamic
system as a whole

• The stability properties depend on the time-behaviour of the n× n elements of
the matrix Ak :

• Stability ⇐⇒ all elements of Ak are bounded ∀ k ≥ 0
• Asymptotic stability ⇐⇒ lim

k→∞
Ak = 0

• Instability ⇐⇒ at least one element of Ak diverges
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Stability of Linear Systems via Analysis of the Free State Movement (cont.)

Recall that the matrix Ak can be expressed as a sum of the so-called response modes
(Part 2):

• Let λ1, . . . , λσ the distinct eigenvalues of A and ni the algebraic multiplicity of

such eigenvalues (with
σ∑

i=1
ni = n ).

• If λi ̸= 0 , i = 1 , . . . σ then

Ak =

σ∑
i=1

[
Ai0λ

k
i 1(k) +

ni−1∑
l=1

Aill!

(
k

l

)
λk−l
i 1(k − l)

]

• if λj = 0 , λj ∈ {λ1, . . . , λσ} then the corresponding response modes are

Aj0 · δ(k) +
nj−1∑
l=1

Ajl l! δ(k − l)
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Stability of Linear Systems via Analysis of the Free State Movement (cont.)

• The matrices Ail can be determined as

Ail =
1
l!

1
(ni − 1− l)!

lim
z→λi

{
dni−1−l

dzni−1−l

[
(z − λi)

ni(zI −A)−1
]}

where l = 0, 1, 2, . . . , ni − 1 .
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Stability of Linear Systems via Analysis of the Free State Movement (cont.)

Stability and Ak

Using the response modes

Ak =

σ∑
i=1

ni−1∑
l=0

[
Aill!

(
k

l

)
λk−l
i 1(k − l)

]

For the stability analysis, the boundedness of the free-state movement has to be
ascertained. Since the matrices Ajl does not depend on k , it suffices to analyse the
boundedness of the terms(

k

l

)
λk−l
i 1(k − l) l = 0, 1, 2, . . . , ni − 1

where ni is the algebraic multiplicity of the eigenvalue λi .
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Stability & Qualitative Behaviour of Response Modes

•
(

k

l

)
λk−l
i with λi ∈ R , multiplicity ni = 1 (so l = 0 ).
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Stability & Qualitative Behaviour of Response Modes

•
(

k

l

)
λk−l
i with λi ∈ R , mult. ni > 1 ( l = 0, 1, . . . ni − 1 ).
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Stability & Qualitative Behaviour of Response Modes

•
(

k

l

)
λk−l
i with λi ∈ C , multiplicity ni = 1
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Stability & Qualitative Behaviour of Response Modes

•
(

k

l

)
λk−l
i with λi ∈ C , multiplicity ni > 1
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Stability & Behaviour of Response Modes: Example 1

Asymptotically Stable

A =

[
1/2 0
0 1/2

]

λ1 = λ2 =
1
2

Ak =

[
(1/2)k 0
0 (1/2)k

]

Response modes for x1(k)

and x2(k)
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Stability & Behaviour of Response Modes: Example 2

Asymptotically Stable

A =

[
1/2 1
0 1/2

]

λ1 = λ2 =
1
2

Ak =

[
(1/2)k k(1/2)k−1
0 (1/2)k

]

Response mode for x1(k)

Response mode for x2(k)
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Stability & Behaviour of Response Modes: Example 3

Stable (not asymptotically)

A =

[
1 0
0 1

]
λ1 = λ2 = 1

Ak =

[
1 0
0 1

]

Response modes for x1(k)

and x2(k)

DIA@UniTS – 267MI –Fall 2023 TP GF – L4–p14



Stability & Behaviour of Response Modes: Example 4

Unstable

A =

[
1 1
0 1

]

λ1 = λ2 = 1

Ak =

[
1 k

0 1

]

Response mode for x1(k)

Response mode for x2(k)
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Algebraic and Geometrical Multiplicity of an Eigenvalue

Algebraic vs Geometrical Multiplicity of an Eigenvalue
• Let λ̄ be an eigenvalue of A .
• The eigenvectors of A associated with λ̄ are the nonzero vectors in the nullspace
of A− λ̄ I , called the eigenspace of A for λ̄ and denoted by

null
(
A− λ̄ I

)
= EA

(
λ̄
)

• The geometric multiplicity of the eigenvalue λ̄ of A is the dimension of EA
(
λ̄
)
.

• The algebraic multiplicity of the eigenvalue λ̄ of A is the multiplicity of λ̄ as a root
of the characteristic polynomial of A pA(z) = det (zI −A) .
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Algebraic and Geometrical Multiplicity of an Eigenvalue (cont.)

Diagonalisable Matrices – Algebraic vs Geometrical Multiplicity of an Eigenvalue
• In general, an eigenvalue’s algebraic and geometric multiplicity can differ. However,
the geometric multiplicity can never exceed the algebraic one.

• Let λ1, . . . , λσ the distinct eigenvalues of A and ni the algebraic multiplicity of

such eigenvalues. Of course
σ∑

i=1
ni = n

• If for every eigenvalue of A, the geometric multiplicity equals the algebraic
multiplicity, then A is said to be diagonalisable.
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Complete Stability Criterion Based on Eigenvalues of A

Stability Criterion
Given the system x(k + 1) = Ax(k) and denoting by λi, i = 1, . . . n the eigenvalues of
matrix A .

• |λi| < 1, ∀ i = 1, . . . n ⇐⇒ The system is as. stable
• ∃ i, 1 ≤ i ≤ n : |λi| > 1 =⇒ The system is unstable

• |λi| ≤ 1, ∀ i = 1, . . . n
∃ j, 1 ≤ j ≤ n : |λj | = 1

}
=⇒ The system is not as. stable

• λj : |λj | = 1 have algebraic multiplicity = 1, then the system is stable (not as.)
• λj : |λj | = 1 have algebraic multiplicity > 1 and the same value as geometrical
multiplicity, then the system is stable (not as.)

• λj : |λj | = 1 have algebraic multiplicity > 1, but the geometrical multiplicity is different,
then the system is unstable
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Stability by Analysing the Characteristic Polynomial

• The previous complete stability criterion requires checking whether the
eigenvalues of matrix A belong to the unit circle in the complex plane

• A number of techniques exist to perform the check above without explicitly
calculating the eigenvalues of matrix A

• Considering the characteristic polynomial

pA(z) = det(zI −A) = φ0z
n + φ1z

n−1 + · · ·+ φn−1z + φn

a suitable bi-linear transformation allows to reduce the problem of checking
whether the roots of polynomial pA(z) belong to the unit circle in the complex
plane to an equivalent problem of checking whether the roots of a suitable
polynomial qa(w) belong to the complex left half-plane

• This equivalent problem can then be solved by using the Routh-Hurwitz technique
(see the course Fundamentals of Automatic Control)
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Use of the Bi-linear Transformation

z =
w + 1
w − 1 , z, w ∈ C

|z| < 1 ⇐⇒ Re(w) < 0
|z| = 1 ⇐⇒ Re(w) = 0
|z| > 1 ⇐⇒ Re(w) > 0

DIA@UniTS – 267MI –Fall 2023 TP GF – L4–p20



Use of the Bi-linear Transformation (cont.)

Substitute
z =

w + 1
w − 1 , z, w ∈ C

into
pA(z) = φ0z

n + φ1z
n−1 + · · ·+ φn−1z + φn

thus obtaining

qA(w) = (w − 1)n
[
φ0

(w + 1)n

(w − 1)n + φ1
(w + 1)n−1

(w − 1)n−1
+ · · ·

+φn−1
(w + 1)
(w − 1) + φn

]
and hence one gets

qA(w) = q0 w
n + q1 w

n−1 + · · ·+ qn−1 w + qn

with suitable coefficients q0, q1, . . . , qn .
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Use of the Bi-linear Transformation. Example 1

Given
pA(z) = z3 + 2 z2 + z + 1

one gets

qA(w) = (w − 1)3
[
(w + 1)3
(w − 1)3 + 2

(w + 1)2
(w − 1)2 +

w + 1
w − 1 + 1

]
and after some algebra

qA(w) = 5w3 + w2 + 3w − 1

Hence, there is one root of qA(w) on the complex right-half plane which in turn implies
that one of the roots of pA(z) lies outside the unit circle.
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Use of the Bi-linear Transformation. Example 2

Given
pA(z) = z2 + az + b

with a, b∈R . Thus, one gets:

qA(w) = (w − 1)2
[
(w + 1)2
(w − 1)2 + a

(w + 1)
(w − 1) + b

]
and after some easy algebra

qA(w) = (1+ b+ a)w2 + 2(1− b)w − a+ 1+ b


1+ b+ a > 0
2(1− b) > 0
1+ b− a > 0

=⇒


b > −a− 1
b < 1
b > a− 1
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Use of the Bi-linear Transformation. Example 2 (cont.)

The stability condition has a nice geometric interpretation:


b > −a− 1
b < 1
b > a− 1
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