Systems Dynamics

Course ID: 267MI – Fall 2023

Thomas Parisini Gianfranco Fenu

University of Trieste Department of Engineering and Architecture

267MI –Fall 2023

Lecture 4 Stability of Discrete-Time Dynamic Systems

Lecture 4: Table of Contents

4. Stability of Discrete-Time Dynamic Systems

4.1 Stability of Linear Discrete-Time Systems

4.1.1 Analysis of the Free State Movement

4.1.2 Stability Criterion Based on Eigenvalues

4.1.3 Analysis of the Characteristic Polynomial

Stability of Linear Discrete-Time Systems

Stability of Linear Discrete-Time Systems

Analysis of the Free State Movement

• Given the linear time-invariant discrete-time dynamic system

$$
\begin{cases}\nx(k+1) = Ax(k) + Bu(k) \\
y(k) = Cx(k) + Du(k)\n\end{cases}
$$

• In **equilibrium** conditions:

$$
x(0) = \bar{x}
$$

$$
u(k) = \bar{u}, k \ge 0
$$

$$
\implies x(k) = A^k \bar{x} + \sum_{i=0}^{k-1} A^{k-i-1} B\bar{u} = \bar{x}, \forall k \ge 0
$$

• **Perturbing the equilibrium** conditions:

$$
x(0) = \bar{x} + \delta \bar{x} \implies x(k) \neq \bar{x}, k \ge 0
$$

\n
$$
u(k) = \bar{u}, k \ge 0 \implies \text{perturbed state movement}
$$

\n
$$
\implies x(k) = A^k (\bar{x} + \delta \bar{x}) + \sum_{i=0}^{k-1} A^{k-i-1} B \bar{u}
$$

\n
$$
= \bar{x} + A^k \delta \bar{x}
$$

Hence:

$$
\delta x(k) = A^k \delta \bar{x}
$$

• Also, recall that:

$$
x_l(k) = A^k x(0)
$$

Stability and $\,A^k$

- The stability properties do not depend on the specific value taken on by the equilibrium state *x*¯
- Hence, the stability properties are a structural property of the linear dynamic system as a whole
- The stability properties depend on the time-behaviour of the $n \times n$ elements of the matrix A^k :
	- Stability \iff all elements of A^k are bounded $\forall k ≥ 0$
	- Asymptotic stability $\iff \lim_{k \to \infty} A^k = 0$
	- Instability \iff at least one element of A^k diverges

Recall that the matrix A^k can be expressed as a sum of the so-called response modes (**Part 2**):

- Let $\lambda_1, \ldots, \lambda_\sigma$ the **distinct** eigenvalues of A and n_i the **algebraic multiplicity** of such eigenvalues (with $\sum_{n=0}^{\infty}$ *i*=1 $n_i = n$).
- If $\lambda_i \neq 0$, $i = 1, \ldots \sigma$ then

$$
A^{k} = \sum_{i=1}^{\sigma} \left[A_{i0} \lambda_i^{k} 1(k) + \sum_{l=1}^{n_{i}-1} A_{il} l! \binom{k}{l} \lambda_i^{k-l} 1(k-l) \right]
$$

• if $\lambda_j = 0$, $\lambda_j \in \{\lambda_1, \ldots, \lambda_\sigma\}$ then the corresponding response modes are

$$
A_{j0} \cdot \delta(k) + \sum_{l=1}^{n_j - 1} A_{jl} \, l! \, \delta(k - l)
$$

• The matrices *Ail* can be determined as

$$
A_{il} = \frac{1}{l!} \frac{1}{(n_i - 1 - l)!} \lim_{z \to \lambda_i} \left\{ \frac{d^{n_i - 1 - l}}{dz^{n_i - 1 - l}} \left[(z - \lambda_i)^{n_i} (zI - A)^{-1} \right] \right\}
$$

where $l = 0, 1, 2, ..., n_i - 1$.

Stability and $\,A^k$

Using the response modes

$$
A^{k} = \sum_{i=1}^{\sigma} \sum_{l=0}^{n_{i}-1} \left[A_{il} l! \binom{k}{l} \lambda_{i}^{k-l} 1(k-l) \right]
$$

For the stability analysis, the **boundedness of the free-state movement** has to be ascertained. Since the matrices *Ajl* does not depend on *k* , it suffices to **analyse the boundedness of the terms**

$$
\begin{pmatrix} k \\ l \end{pmatrix} \lambda_i^{k-l} 1(k-l) \qquad l=0, 1, 2, \ldots, n_i-1
$$

where $\,n_i\,$ is the **algebraic multiplicity** of the eigenvalue $\,\lambda_i$.

Stability of Linear Discrete-Time Systems

Stability Criterion Based on Eigenvalues

Asymptotically Stable

Asymptotically Stable

Response mode for $x_2(k)$

DIA@UniTS – 267MI –Fall 2023 TP GF – L4–p13

Unstable

 $A =$ $\left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right]$ $\lambda_1 = \lambda_2 = 1$ $A^k =$ $\left[\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right]$

Response mode for $x_1(k)$

Response mode for $x_2(k)$

Algebraic and Geometrical Multiplicity of an Eigenvalue

Algebraic vs Geometrical Multiplicity of an Eigenvalue

- Let $\bar{\lambda}$ be an **eigenvalue** of A .
- The **eigenvectors** of *A* associated with *λ*¯ are the nonzero vectors in the **nullspace** of $A - \overline{\lambda}I$, called **the eigenspace** of A for $\overline{\lambda}$ and denoted by

null $(A - \overline{\lambda} I) = \mathcal{E}_A (\overline{\lambda})$

- The **geometric multiplicity** of the eigenvalue $\bar{\lambda}$ of A is the dimension of $\mathcal{E}_A(\bar{\lambda})$.
- The **algebraic multiplicity** of the eigenvalue $\bar{\lambda}$ of A is the multiplicity of $\bar{\lambda}$ as a root of the characteristic polynomial of A $p_A(z) = \det(zI - A)$.

Algebraic and Geometrical Multiplicity of an Eigenvalue (cont.)

Diagonalisable Matrices – Algebraic vs Geometrical Multiplicity of an Eigenvalue

- In general, an eigenvalue's algebraic and geometric multiplicity can differ. However, the geometric multiplicity can never exceed the algebraic one.
- Let $\lambda_1, \ldots, \lambda_\sigma$ the distinct eigenvalues of A and n_i the algebraic multiplicity of such eigenvalues. Of course [∑]*^σ i*=1 $n_i = n$
- If for every eigenvalue of A, the geometric multiplicity equals the algebraic multiplicity, then A is said to be **diagonalisable**.

Complete Stability Criterion Based on Eigenvalues of *A*

Stability Criterion

Given the system $x(k+1) = Ax(k)$ and denoting by $\lambda_i, i = 1, \ldots n$ the eigenvalues of matrix *A* .

- $\textbf{p} \mid \lambda_i \mid < 1, \, \forall \, i = 1, \ldots n \quad \iff \quad \textsf{\textsf{The system is as. stable}}$
- *∃ i,* 1 *≤ i ≤ n* : *|λⁱ | >* 1 =*⇒* The system is unstable
- $|\lambda_i| \leq 1, \forall i = 1, \ldots n$ $\exists j, 1 \le j \le n$: $|\lambda_j| = 1$ \mathcal{L} =*⇒* The system is not as. stable
	- λ_i : $|\lambda_i|$ = 1 have algebraic multiplicity = 1, then the system is stable (not as.)
	- λ_j : $|\lambda_j| = 1$ have algebraic multiplicity > 1 and the same value as geometrical multiplicity, then the system is stable (not as.)
	- λ_j : $|\lambda_j| = 1$ have algebraic multiplicity > 1, but the geometrical multiplicity is different, then the system is unstable

Stability of Linear Discrete-Time Systems

Analysis of the Characteristic Polynomial

Stability by Analysing the Characteristic Polynomial

- The previous complete stability criterion requires checking whether the eigenvalues of matrix *A* belong to the unit circle in the complex plane
- A number of techniques exist to perform the check above **without explicitly calculating** the eigenvalues of matrix *A*
- Considering the characteristic polynomial

 $p_A(z) = \det(zI - A) = \varphi_0 z^n + \varphi_1 z^{n-1} + \cdots + \varphi_{n-1} z + \varphi_n$

a suitable **bi-linear transformation** allows to reduce the problem of checking whether the roots of polynomial $p_A(z)$ belong to the unit circle in the complex plane to an **equivalent problem** of checking whether the roots of a suitable polynomial *qa*(*w*) belong to the complex left half-plane

• This equivalent problem can then be solved by using the **Routh-Hurwitz** technique (see the course *Fundamentals of Automatic Control*)

Use of the Bi-linear Transformation

Use of the Bi-linear Transformation (cont.)

Substitute

$$
z = \frac{w+1}{w-1}, \ z, w \in \mathbb{C}
$$

into

$$
z = \frac{w+1}{w-1}, \ z, \ w \in \mathbb{C}
$$

$$
z=\frac{w+1}{w-1},\ z,\ w\in\mathbb{C}
$$

$$
p_A(z) = \varphi_0 z^n + \varphi_1 z^{n-1} + \dots + \varphi_{n-1} z + \varphi_n
$$

thus obtaining

$$
q_A(w) = (w - 1)^n \left[\varphi_0 \frac{(w + 1)^n}{(w - 1)^n} + \varphi_1 \frac{(w + 1)^{n-1}}{(w - 1)^{n-1}} + \cdots + \varphi_{n-1} \frac{(w + 1)}{(w - 1)} + \varphi_n \right]
$$

and hence one gets

$$
q_A(w) = q_0 w^n + q_1 w^{n-1} + \dots + q_{n-1} w + q_n
$$

with suitable coefficients q_0, q_1, \ldots, q_n .

DIA@UniTS – 267MI –Fall 2023 TP GF – L4–p21

]

Use of the Bi-linear Transformation. Example 1

Given

$$
p_A(z) = z^3 + 2 z^2 + z + 1
$$

one gets

$$
q_A(w) = (w-1)^3 \left[\frac{(w+1)^3}{(w-1)^3} + 2 \frac{(w+1)^2}{(w-1)^2} + \frac{w+1}{w-1} + 1 \right]
$$

and after some algebra

 $q_A(w) = 5 w^3 + w^2 + 3 w - 1$

]

Hence, there is one root of *qA*(*w*) on the complex right-half plane which in turn implies that one of the roots of $p_A(z)$ lies outside the unit circle.

Use of the Bi-linear Transformation. Example 2

Given

$$
p_A(z) = z^2 + az + b
$$

with *a, b∈R* . Thus, one gets:

$$
q_A(w) = (w-1)^2 \left[\frac{(w+1)^2}{(w-1)^2} + a \frac{(w+1)}{(w-1)} + b \right]
$$

and after some easy algebra

$$
q_A(w) = (1 + b + a)w^2 + 2(1 - b)w - a + 1 + b
$$

$$
\begin{array}{c}\n2 \left| \begin{array}{c}\n(1+b+a) \\
2(1-b) \\
0 \end{array} \right| \xrightarrow{(1+b-a)} \n\end{array}\n\qquad\n\begin{array}{c}\n1+b+a > 0 \\
2(1-b) > 0 \\
1+b-a > 0\n\end{array}\n\Longrightarrow\n\begin{array}{c}\nb > -a-1 \\
b < 1 \\
b > a-1\n\end{array}
$$

DIA@UniTS – 267MI –Fall 2023 TP GF – L4–p23

Use of the Bi-linear Transformation. Example 2 (cont.)

The stability condition has a nice geometric interpretation:

 $\sqrt{ }$ $\bigg)$

 \mathbf{I}

 $b < 1$

267MI –Fall 2023

Lecture 4 Stability of Discrete-Time Dynamic Systems

END