L'acqua nelle piante: stato termodinamico e trasporto

Equazioni fenomenologiche che descrivono il trasporto spontaneo/passivo di materia, sia essa acqua, singole molecole, elettroni ecc..., riconducibili a:

Flusso (F) = Forza traente x Conduttanza (K)

Flusso = V/t

K = fattore di proporzionalità che tiene conto delle caratteristiche fisiche del sistema

K = 1/R

R = resistenza

Quale natura ha la forza traente nel caso dell'acqua?

Ovvero, perché l'acqua si sposta da un punto A ad un punto B?

G=energia libera di Gibbs = l'energia di un sistema disponibile per la conversione in lavoro, a temperatura e pressione costanti

Come possiamo quantificare l'energia libera (o meglio, le variazioni di G) di una sostanza?

POTENZIALE ELETTROCHIMICO

$$\mu = \mu_0 + RT \ln a + P\overline{V} + zEF + mgh$$

 μ_0 = potenziale in condizioni standard

R = costante dei gas

T = T assoluta in K

a = attività (per soluzioni diluite corrisponde alla concentrazione)

P = pressione

V = volume parziale molare della sostanza

z = carica elettrica della sostanza

E = potenziale elettrico

F = costante di Faraday

m = massa della sostanza

g = accelerazione di gravità

h = altezza alla quale si trova la sostanza

Potenziale elettrochimico di una sostanza (μ_i)

Energia libera per mole di sostanza (J mol⁻¹)

$$\mu_i = \mu_i^* + f_{concentrazione} + f_{elettrico} + f_{pressione} + f_{gravità}$$

$$\mu_i = \mu_i^* + RTIna_i + zFE + PV + mgh$$

Nota: nel caso dell'acqua:

 $\pi = \text{RTIna}_{w}/\text{V}$ da cui **RTIna**_w = πV_{w} dove π è il potenziale osmotico (MPa)

 V_w : volume parziale molare dell'acqua = 18 cm³ mol⁻¹

 $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1} \text{ ovvero } 0.008314 \text{ L MPa mol}^{-1} \text{ K}^{-1}$

T = temperature (K)

Nota: $a_w = P/P_0$, dove P è la pressione di vapore della soluzione, e P_0 è la pressione di vapore dell'acqua pura

Nel caso dell'acqua...

Potenziale chimico dell'acqua, μ_w

$$\mu_w = \mu_w^* + f_{pressione} + f_{concentrazione} + f_{gravità}$$

$$\mu_w = \mu_w^* + V_wP + \pi V_w + mgh$$

Per convenzione μ_w^* dell'acqua pura a pressione atmosferica e a 25 °C è pari a zero

Potenziale dell'acqua = potenziale chimico dell'acqua per unità di volume molare:

$$\mu_{\rm w}/V_{\rm w} = V_{\rm w}P/V_{\rm w} + \pi V_{\rm w}/V_{\rm w} + {\rm mgh/V_{\rm w}}$$

$$\Psi = \Psi_p + \Psi_s + \Psi_g$$

$$\Psi = P + \pi + \rho g h$$

$$1 \text{ bar} = 0.9869 \text{ atm}$$

 $\underline{J \text{ mol}^{-1}} = \underline{N \text{ m}} = \underline{N} = \text{Pa (Pascal, unità di misura della pressione)}$ $m^3 \text{ mol}^{-1} \quad m^3 \quad m^2$

Per soluzioni diluite:

$$\pi = -RTc_s$$
 (sempre ≤ 0)

Potenziale dell'acqua o potenziale idrico (Ψ_{w})

Potenziale chimico dell'acqua diviso il volume parziale molare dell'acqua

Il <u>potenziale dell'acqua</u> è l'energia per unità di volume necessaria per trasportare l'acqua a T costante da un punto del sistema al punto di riferimento

E' una misura dell'energia libera dell'acqua rispetto all'energia libera dell'acqua pura

A cosa serve la misura di Ψ_{w} ?

Valutare lo stato idrico della pianta

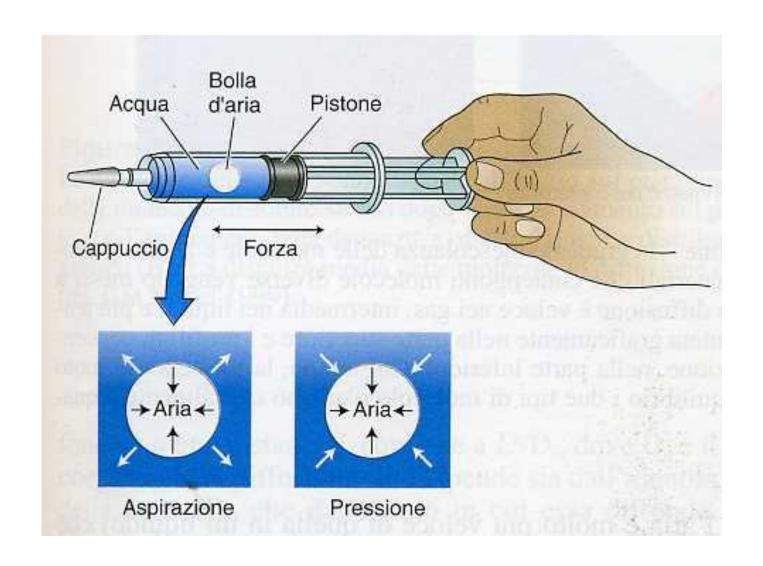
Definire la direzione del flusso di acqua attraverso le membrane cellulari, i tessuti e gli organi della pianta

$$\Psi_{w} = \Psi_{p} + \Psi_{s} + \Psi_{g}$$

Ψ_w dipende dalla pressione, dalla concentrazione, e dalla gravità

Ψ_p Potenziale di pressione (P)

(o PRESSIONE IDROSTATICA)


$$P = P_{assoluta} - P_{atmosferica}$$

 $\Psi_{\rm p}$ può essere positivo, uguale a zero o negativo

Pressione idrostatica positiva = pressione di turgore (all'interno delle cellule, mediamente da 0 a circa 2.0 MPa)

Pressione idrostatica negativa = tensione (nello xilema da 0 a -10 MPa, nel suolo da 0 a -20 MPa)

Pressioni idrostatiche positive e negative

Il potenziale dell'acqua (senza soluti) alla pressione atmosferica è uguale a 0

$$P = P_{assoluta} - P_{atmosferica}$$

Nello stato standard:

$$P_{assoluta} = P_{atmosferica} = 0.1 MPa$$

Quindi

$$P = 0$$
; $\Psi = 0$ MPa

Nel vuoto:

$$P_{assoluta} = 0$$

Quindi

$$P = -0.1 \text{ MPa}; \ \Psi = -0.1 \text{ MPa}$$

Ψ_{s}

Potenziale di soluto o Potenziale osmotico (π)

Rappresenta l'effetto dei soluti disciolti sul potenziale dell'acqua

In una soluzione l'attività dell'acqua (aw) è sempre < 1

Ψ_s è quindi sempre < 0

 $(a_w = P/P_0, dove P è la pressione di vapore della soluzione, e <math>P_0$ è la pressione di vapore dell'acqua pura)

In base all'equazione di van't Hoff

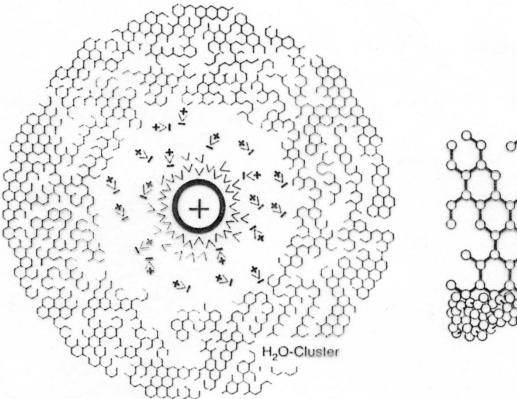
$$\pi = -RTC_s$$

R = costante dei gas $(8.32 \text{ J mol}^{-1} \text{ K}^{-1})$

T = temperatura assoluta

 C_s = concentrazione di soluti espressa come osmolalità (moli di soluti totali disciolti in 1 L di acqua)

Nota: per soluzioni diluite, π dipende solo dal numero di particelle di soluto per unità di volume e <u>NON dalla natura del soluto</u>!


I soluti RIDUCONO IL POTENZIALE DELL'ACQUA poichè diminuiscono l'energia libera dell'acqua, cioè la sua capacità di compiere un lavoro

Miscelare soluti e acqua aumenta l'entropia del sistema!

Diminuzione dell'energia libera rispetto a quella dell'acqua nello stato standard (acqua pura)

Potenziale osmotico: interazione acqua-soluti

Potenziale di matrice: interazione acqua-superfici idrofile

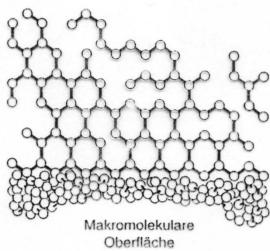


TABELLA 3.2 Valori di RT e del potenziale osmotico di soluzioni a varie temperature

		Potenziale osmotico (MPa) di soluzioni con concentrazione di soluto in mol l ⁻¹ d'acqua			
Temperatura (°C)	RT* (L MPa mol ⁻¹)	0,01	0,10	1,00	Potenziale osmotico dell'acqua di mare (MPa)
0	2,271	-0,0227	-0,227	-2,27	-2,6
20	2,436	-0,0244	-0,244	-2,44	-2,8
25	2,478	-0,0248	-0,248	-2,48	-2,8
30	2,519	-0,0252	-0,252	-2,52	-2,9

^{*} $R = 0.0083143 L MPa mol^{-1} K^{-1}$.

A 20 °C Soluzione 1 M di saccarosio $\rightarrow \pi$ = -2.44 MPa Soluzione 1 M di NaCl $\rightarrow \pi$ = -4.88 MPa

Soluzione 0.5 M di NaCl $\rightarrow \pi$ = -2.44 MPa

Rappresenta l'effetto della gravità su Ψ_{w}

La componente del potenziale dell'acqua funzione della gravità dipende dalla densità dell'acqua (ρ_w), dall'accelerazione di gravità (g) e dall'altezza (h) dell'acqua rispetto allo stato di riferimento

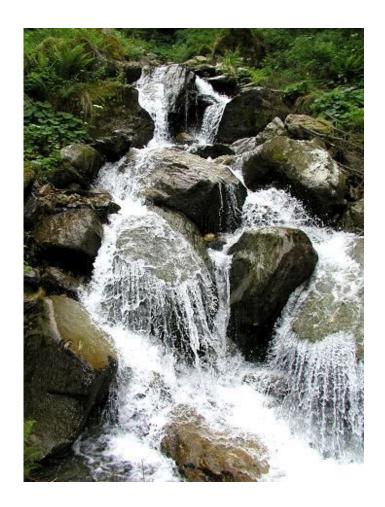
$$\Psi_g = \rho_w gh$$

$$\rho_{\rm w}$$
g = 0.01 MPa m⁻¹

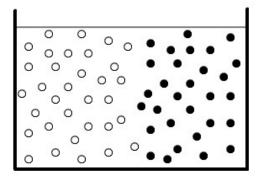
per piccole altezze (e tanto più a livello cellulare) è trascurabile

Nelle piante l'acqua si muove passivamente da punti a energia libera maggiore (= maggiore potenziale dell'acqua) a punti a energia libera minore (= minore potenziale dell'acqua).

$$\Psi_{\text{iniziale}} > \Psi_{\text{finale}}$$

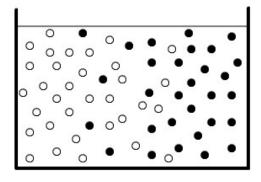

Non ci sono 'pompe' metaboliche che spostano l'acqua da una parte all'altra della pianta, e il potenziale dell'acqua delle singole cellule tende sempre ad equilibrarsi con il potenziale dell'acqua del mezzo che le circonda.

L'acqua si muove per flusso di massa, diffusione, o per osmosi


da punti a potenziale dell'acqua **maggiore** verso punti a potenziale dell'acqua **minore**

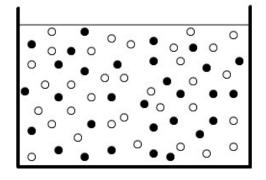
Flusso di massa: tutte le molecole di acqua (e i soluti in essa disciolti) si muovono in gruppo in risposta a potenziali di pressione

(A)

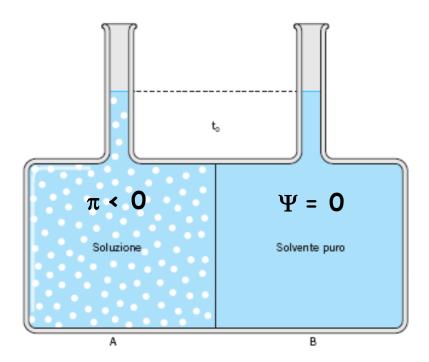

- Sostanza A
- Sostanza B

Diffusione

Stato iniziale


Descrizione quantitativa del processo di diffusione: **Prima legge di Fick**

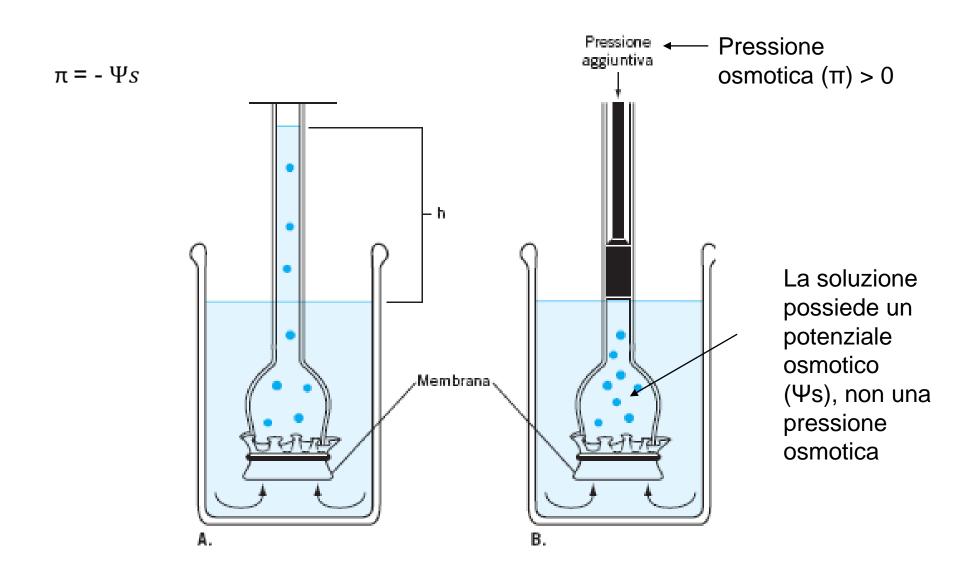
$$F = -D A \frac{\Delta C}{\Delta x}$$



Stato intermedio

D= coefficiente di diffusione ΔC = gradiente di concentrazione Δx = lunghezza del cammino di diffusione

Stato finale


Osmosi

$$\Psi = P - \pi$$

Tutte le membrane cellulari sono membrane selettivamente permeabili

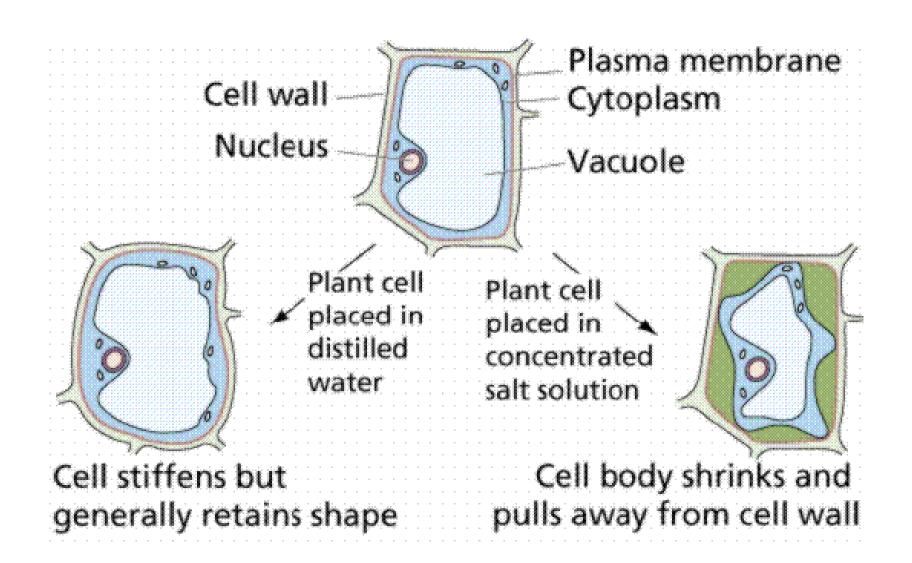
Problema terminologico: pressione osmotica (π) e potenziale osmotico (Ψs)

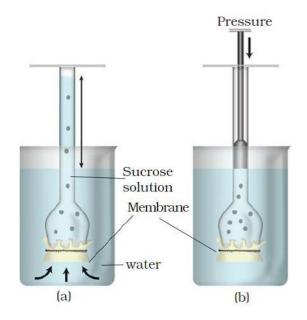
A livello di singola cellula, $\Psi_{\rm g}$ è trascurabile e pertanto:

$$\Psi_{\text{cell}} = \Psi_{\text{p}} + \Psi_{\text{s}} = P - \pi$$

Tranne in casi particolari (es: pressione radicale), nelle piante $\Psi \leq 0$, cioè la sommatoria delle componenti del potenziale dell'acqua è pari a 0 o negativa

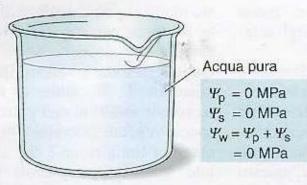
Da cosa sono determinati P e π a livello cellulare?


Soluzione isotonica


Acqua distillata

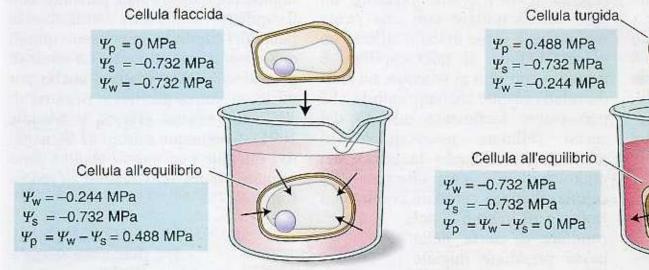
Acqua distillata

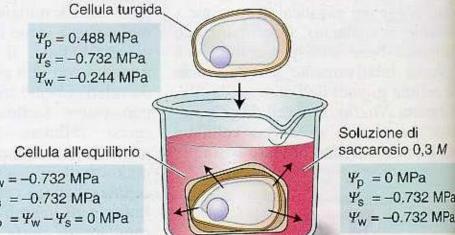
Soluzione di saccarosio al 20%


Cellula 'flaccida' $\Psi_{p} = 0 \text{ MPa}$ $\Psi_{\pi} = -1.5 \text{ MPa}$ $\Psi = -1.5 \text{ MPa}$

Cellula turgida $\Psi_{p} = 1.4 \text{ MPa}$ $\Psi_{\pi} = -1.4 \text{ MPa}$ $\Psi = 0 \text{ MPa}$

 $(\Psi_{\pi} \, \dot{e} \, \text{quello che} \, abbiamo chiamato} \, \Psi_{s})$


(A) Acqua pura



(B) Soluzione contenente saccarosio 0,1 M

(C) Cellula flaccida immersa in una soluzione di saccarosio (D) Aumento della concentrazione di saccarosio

