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Cyber-Physical System (CPS)
Combination of physical (environment / plant / process / system) with a
cyber (computation / software / code) components potentially networked and
tightly interconnected
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Model-based Design Approach

Validation : "Are you building the right thing?"         Verification : "Are you building it right?”



Model-based Design Approach
MBD languages are often visual and block-diagram based, e.g. Simulink



Functional Components
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1. Classical model of computation: Functional or Transformational 
Programs

� Start from a given input, 

� Produce a certain output and then terminate

� Desired functionality can be described by a mathematical function

� Emphasis is on data computation



Reactive Components
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2. Reactive Programs:

� It maintains and internal state

� Continuously interact with the environment at a rate decided by 
the environment

� Emphasis is on system-environment interaction; e.g. airline 
autopilot, mail-servers, etc.
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u What’s the notion of time in the model?
� Real-time or Logical time-steps of execution?

u What time do different components in the model use?
� Single global clock for full synchronization?
� Different clocks in each component?

u What level of granularity do we need in time?
� Discrete time-steps or Continuous dense time?

Models of Computation: Timing 



Most convenient model of computation for an (Autonomous) CPS is a
reactive and concurrent model of computation.

Reactive  Component

Inputs Outputs
Internal

state

An autonomous CPS can be viewed as a network of components that communicate
either synchronously or asynchronously.



Examples of type of modeling for CPS components:

Ø Modeling physical phenomena (dynamical systems) – differential equation

Ø Feedback control systems – time-domain modeling

Ø Modeling modal behavior – FSMs, hybrid automata, … 

Ø Modeling sensors and actuators – models that help with calibration, noise elimination, 

Ø Modeling hardware and software – capture concurrency, timing, … 

Ø Modeling networks – latencies, error rates, packet loss,

Models: abstractions of CPS



Models of Computation
• Continuous-time models/Dynamical system models

• Like Synchronous, but time evolves continuously

• Synchronous Model of Computation
• Asynchronous Model of Computation
• Timed Models

• Like Asynchronous models, but with explicit time information
• Can make use of global time for coordination

• Hybrid Dynamical Models



Dynamical Systems

• Most natural model for describing most physical systems

• Continuous/discrete systems that continuously evolve over time

• It is represented by differential equations that involve the rates of change of 
quantities

• Quantities describe the state of the phenomena, modeled as state variables
• Pressure, Temperature, Velocity, Acceleration, Current, Voltage, etc.

• Could include algebraic relations between state variables
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Input u(t) Output y(t)

𝐱̇ = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)

Continuous-time component (differential)

𝑥, 𝑢 ∈ 𝐶!



Model of a simple car

Position 𝑥
Velocity 𝑣

Force 𝐹

Friction 𝑘𝑣

Newton’s law of motion: 𝐹 = 𝑚 !!"
!#!

+ 𝑘𝑣 ; 𝑣 = !"
!#



State-Space representation
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𝐱̇ = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)

Example:
Convert

Ø It is numerically efficient to solve
Ø It can handle complex systems
Ø It  allows for a more geometric understanding of dynamic systems
Ø It  forms the basis for much of modern control theory

𝑥̇ = 𝑣 𝑡

𝑣̇ =
𝐹 𝑡 − 𝑘𝑣 𝑡

𝑚



State-Space representation
All derivatives are with respect to single independent variable, often representing time.

Order of ODE is determined by highest-order derivative of state variable function appearing 
in ODE

ODE with higher-order derivatives can be transformed into equivalent first-order system.

𝑥(") = 𝑓(𝑥,… , 𝑥 "$% )

𝑧! = 𝑥, 𝑧" = 𝑥̇, … , 𝑧#= 𝑥(#%!)

𝑧̇%
𝑧̇&
𝑧̇'
.
.
.
𝑧̇"

𝑧&
𝑧'
𝑧(
.
.
.

𝑓(𝑥, … , 𝑥 "$% )

=



Model of a simple car
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𝑚
𝑑&𝑥
𝑑𝑡&

= 𝐹 − 𝑘𝑣

𝑣 = )*
)+

𝐹
real 𝑥'() ≤ 𝑥 ≤ 𝑥*+,*

𝑥̇ = 𝑣

real 𝑣'() ≤ 𝑣 ≤ 𝑣*+,*

𝑣̇ =
𝐹 − 𝑘𝑣
𝑚

𝑥
𝑣

u Rate of change of 
each state variable 
and output variables 
defined using 
expressions over 
inputs and states

Expressions, not 
assignments!



u Let 𝕋 represent a set representing time instants, i.e. 𝕋 ⊆ ℝ!"

u Input Signal: Function 𝐹 from 𝕋 → ℝ
� Input signal is assumed to be continuous or piecewise-continuous

u Given an initial state (𝑥", 𝑣") and an input signal 𝐹(𝑡), the execution of the system 
is defined by state-trajectories 𝑥 𝑡 and 𝑣 𝑡 (from 𝕋 to ℝ) that satisfy the initial-
value problem:

� 𝑥 0 = 𝑥!; 𝑣 0 = 𝑣!
� 𝑥̇ = 𝑣 𝑡 ; 𝑣̇ = " # $%& #

'

Executions of Car
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Suppose ∀𝑡: 𝐹 𝑡 = 0, 𝑥- = 5m, 𝑣- = 20 m/s, 𝑚 = 1000kg, 𝑘 = 50𝑁𝑠/𝑚
u Then, we need to solve:

� 𝑥 0 = 5; 𝑣 0 = 20
� 𝑥̇ = 𝑣; 𝑣̇ = − ",

-

u Solution to above differential equation (solve for 𝑣 first, then 𝑥):

u 𝑣 𝑡 = 𝑣-𝑒
%!"#; 𝑥 𝑡 = ./$

#
1 − 𝑒%

!"
#

u Note, as 𝑡 → ∞, 𝑣 𝑡 → 0, and 𝑥 𝑡 → ./$
#

Sample Execution of Car
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Plots
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Differential Equation 

Simple Example: Temperature equations

𝑑𝑇
𝑑𝑡

= −𝑎𝑇 + 𝑇012 + 𝐾3𝑢

The state of the system is characterized by state variables, which describe the system. The rate of change is 
(usually) expressed with respect to time



u Set 𝐼 of real-valued input variables 

u Set 𝑂 or real-valued output variables

u Set 𝑋 of real-valued (continuous) state variables

u Initialization 𝐼𝑛𝑖𝑡 specifying a set 𝑋.of initial values for states

u Dynamics: for each state variable, 𝑥, a real valued expression 𝑓 over 𝐼 and 𝑋

u Output Function: for each output variable, 𝑦, a real valued expression ℎ over 𝐼 and 𝑋.

Continuous-Time Component Definition
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u Convention: 𝐱 = 𝑥!, 𝑥", … 𝑥4 , 𝐲 = (𝑦!, 𝑦", … , 𝑦.)
u Given an input signal 𝑢: 𝕋 → ℝ, an execution consists of a differentiable 

state signal 𝐱 t , and an output signal 𝐲 𝑡 , such that:
1. 𝐱 0 ∈ 𝑋.
2. For each output variable 𝑦 and time t, 𝑦 𝑡 = ℎ 𝑢 𝑡 , 𝑥 𝑡
3. For each state variable 𝑥, ))+ 𝑥 𝑡 = 𝑓(𝑢 𝑡 , 𝑥 𝑡 )

Execution Definition
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Input u(t) Output y(t)x(0) = x0
<latexit sha1_base64="nHmN0XbWEwdjn5MZpRCp/KKoy9U=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpeyqoBeh6MVjBfsB26Vk02wbmk2WZFZalv4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0wEN+C6387K6tr6xmZhq7i9s7u3Xzo4bBqVasoaVAml2yExTHDJGsBBsHaiGYlDwVrh8G7qt56YNlzJRxgnLIhJX/KIUwJW8ke44p7hGzzqut1S2a26M+Bl4uWkjHLUu6WvTk/RNGYSqCDG+J6bQJARDZwKNil2UsMSQoekz3xLJYmZCbLZyRN8apUejpS2JQHP1N8TGYmNGceh7YwJDMyiNxX/8/wUousg4zJJgUk6XxSlAoPC0/9xj2tGQYwtIVRzeyumA6IJBZtS0YbgLb68TJrnVe+i6j1clmu3eRwFdIxOUAV56ArV0D2qowaiSKFn9IreHHBenHfnY9664uQzR+gPnM8fpW+PiA==</latexit>

𝐱̇ = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)



Order Differential Equation 

𝑢

real 𝑥'() ≤ 𝑥 ≤ 𝑥*+,*

𝑦

𝐱̇ = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)

x(0) = x0
<latexit sha1_base64="nHmN0XbWEwdjn5MZpRCp/KKoy9U=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpeyqoBeh6MVjBfsB26Vk02wbmk2WZFZalv4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0wEN+C6387K6tr6xmZhq7i9s7u3Xzo4bBqVasoaVAml2yExTHDJGsBBsHaiGYlDwVrh8G7qt56YNlzJRxgnLIhJX/KIUwJW8ke44p7hGzzqut1S2a26M+Bl4uWkjHLUu6WvTk/RNGYSqCDG+J6bQJARDZwKNil2UsMSQoekz3xLJYmZCbLZyRN8apUejpS2JQHP1N8TGYmNGceh7YwJDMyiNxX/8/wUousg4zJJgUk6XxSlAoPC0/9xj2tGQYwtIVRzeyumA6IJBZtS0YbgLb68TJrnVe+i6j1clmu3eRwFdIxOUAV56ArV0D2qowaiSKFn9IreHHBenHfnY9664uQzR+gPnM8fpW+PiA==</latexit>



u Given an input signal 𝑢(𝑡), when are we guaranteed that the system has at least 
one execution? Is there nondeterminism in continuous-time components?

u Input signal should be piecewise-continuous, and additional conditions need to be 
imposed on the RHS of dynamics (𝑓) and output functions (ℎ)

u Related to solutions for the initial value problem in the classical theory of ODEs

Existence and Uniqueness of Solutions

24 𝐱̇ = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)



u There exists at least one solution 𝐱(𝑡) if the function 𝑓 is continuous

u Definition of continuity uses notion of distance between points
� Euclidean distance: 𝑑 𝐱, 𝐲 = 𝐱 − 𝐲 ( = 𝑥) − 𝑦) ( +⋯+ 𝑥* − 𝑦* (

u 𝑓 is continuous if for all 𝐱 ∈ ℝ#, for all 𝜖 > 0, there exists a 𝛿 > 0, such that for all 
𝐲 ∈ ℝ#, if 𝐱 − 𝐲 $ < 𝛿, then 𝑓 𝐱 − 𝑓 𝐲 $ < 𝜖.

u Example when solution does not globally exist:
�

+,
+#
= 1/𝑡

Existence
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u Solution to initial value problem is unique if 𝑓 is Lipschitz continuous
u Lipschitz-continuity is a stronger version of continuity: upper bounds how fast a function 

can change
u Function 𝑓 is Lipschitz-continuous if there exists a constant 𝐿 (called the Lipschitz 

constant) such that: 
∀𝐱, 𝐲 ∈ ℝ1: 𝑓 𝐱 − 𝑓 𝐲 ≤ 𝐿 𝐱 − 𝐲

u Examples: 
� Linear functions (e.g. 𝑥% − 3𝑥&) are Lipschitz continuous
� Functions: 𝑥&, 𝑥 are not Lipschitz continuous over ℝ1

u Can restrict 𝕋 and 𝑋 to some bounded and closed set such that 𝑓 is piecewise-continuous 
and Lipschitz to get unique solutions over such compact domains

Uniqueness
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u Allow modeling arbitrarily complex functions: even functions with 
unbounded discontinuities 

u May not be even possible to check for Lipschitz conditions for what’s 
implemented in a Matlab function/Simulink model

u Rely on numerical integration schemes/solvers to obtain solutions
� ode45, ode23, ode15, etc.

What do numeric solvers/simulators do?

27



Linear Components
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u Special kind of dynamical system
𝐱̇ = 𝒇 𝐱, 𝐮
𝒚 = 𝒉(𝐱, 𝐮)

� 𝑓 is of the form 𝑎%𝑥% +⋯+ 𝑎1𝑥1 + 𝑏%𝑢% +⋯+ 𝑏-𝑢- or compactly, 𝑓 = 𝐴𝐱 + 𝐵𝐮
� ℎ is of the form 𝑐%𝑥% +⋯+ 𝑐1𝑥1 + 𝑑%𝑢% +⋯+ 𝑑-𝑢- or compactly, ℎ = 𝐶𝐱 + 𝐷𝐮

u Linear algebra was invented to reason about linear systems!
u Linear systems have many nice properties: 

� Many analysis methods in the frequency domain (using Fourier/Laplace transform 
methods)

� Superposition principle (net response to two or more stimuli is the sum of responses to 
each stimulus)



u Equation of simple car dynamics can be written compactly as:
𝑥̇
𝑣̇ = 0 1

0 −𝑘/𝑚
𝑥
𝑣 + 0

1 [𝐹]

u Letting 𝐴 = 0 1
0 −𝑘/𝑚 , 𝐵 = 0

1 , we can re-write above equation in the 
form:

u 𝐱̇ = 𝐴𝐱 + B𝐮, where 𝐱 = 𝑥 𝑣 , and 𝐮 = 𝐹

Linear Systems

29



u Autonomous linear system has no inputs: 𝐱̇ = 𝐴𝐱

u Solution of autonomous linear system can be fully characterized:
� 𝐱 𝑡 = 𝑒2+𝐱.
� Computing 𝑒2 is easy if 𝐴 is a diagonal matrix (non-zero elements are only on the 

diagonal)

u For a linear system with exogenous inputs?
� 𝑥 𝑡 = 𝑒2+𝑥. + ∫.

+ 𝑒2 +$3 𝐵𝑢 𝜏 𝑑𝜏

u In practice, numerical integration methods outperform matrix exponential

Solutions to Linear Systems
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Model with disturbance

Position 𝑥

Velocity 𝑣Force 𝐹

Friction 𝑘𝑣

Newton’s law of motion: 𝐹 = 𝑚 !!"
!#!

+ 𝑘𝑣 +𝑚𝑔 sin(𝜃)

𝜃



Model with disturbance
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𝐹
real 𝑥'() ≤ 𝑥 ≤ 𝑥*+,*

𝑥̇ = 𝑣

real 𝑣'() ≤ 𝑣 ≤ 𝑣*+,*

𝑣̇ =
𝐹 − 𝑘𝑣 −𝑚𝑔𝑠𝑖𝑛𝜃

𝑚

𝑣

𝜃



Time Invariant System 
The system is time invariant because the output does not depend on the particular 
time the input is applied.

The underlying physical laws themselves do not typically depend on time.



u Property capturing the ability of a system to return to a quiescent state after 
perturbation
� Stable systems recover after disturbances, unstable systems may not
� Almost always a desirable property for a system design

u Fundamental problem in control: design controllers to stabilize a system

Stability of Systems
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u Problem: Cart-pole is inherently unstable, aim: keep it upright

u Solution Strategy: Move cart in direction in the same direction 
as the pendulum’s falling direction

u Design problem: Design a controller to stabilize the system by 
computing velocity and direction for cart travel



u System 𝐱̇ = 𝑓 𝐱 with f Lipschitz continuous
u Equilibrium point when 𝑓 𝐱 is zero (say 𝐱∗)
u Equilibrium point 𝐱∗ is Lyapunov-stable if:

� For every 𝜖 > 0, 
� There exists a 𝛿 > 0, such that

• if 𝐱 0 − 𝐱∗ < 𝛿, then, 
• for every 𝑡 ≥ 0, we have 𝐱 𝑡 − 𝐱∗ < 𝜖

Lyapunov stability
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𝐱∗

𝛿-ball

𝐱(0)

𝜖-ball

Solutions starting 𝛿close from equilibrium point 
must remain close (within 𝜖) forever



u System 𝐱̇ = 𝑓 𝐱
u Equilibrium point 𝐱∗ is asymptotically-stable if:

� 𝐱∗ is Lyapunov-stable +
� There exists 𝛿 > 0 s.t. if 𝐱 0 − 𝐱∗ < 𝛿, then lim

+→?
‖𝐱 𝑡 − 𝐱∗‖ = 0

Asymptotic Stability
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Solutions not only remain close, but also converge to the equilibrium



Solutions not only converge to the equilibrium, but in fact converge at least as 
fast as a known exponential rate

� All stable linear systems are exponentially stable
� This need not be true for nonlinear systems!

Exponential Stability

u System 𝐱̇ = 𝑓 𝐱
u Equilibrium point 𝐱∗ is exponentially-stable if:

� 𝐱∗is asymptotically stable +
� There exist 𝛼 > 0, 𝛽 > 0 s.t. if 𝐱 0 − 𝐱∗ < 𝛿, then for all 𝑡 ≥ 0:

𝐱 𝑡 − 𝐱∗ ≤ 𝛼 𝐱 0 − 𝐱∗ 𝑒"#$



u Eigenvalues of a matrix 𝐴:
� Value 𝜆 satisfying the equation 𝐴𝐯 = λ𝐯. 𝐯 is called the eigenvector
� Equivalent to saying: values satisfying 𝐴 − 𝜆𝐼 = 0, where 𝐼 is the identity matrix

u Interesting result for linear systems: System 𝐱̇ = 𝐴𝐱 is asymptotically stable 
if and only if every eigenvalue of 𝐴 has a negative real part

u Lyapunov stable if and only if every eigenvalue has non-positive real part
u Nonlinear systems: no simple analysis technique exists

� Lyapunov’s methods allow reasoning about stability of nonlinear systems

Analyzing stability for linear systems
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u Manual way: solve the characteristic equation of the matrix 𝐴

u 𝐴 = 1 −1
3 2

u Characteristic equation: 𝐴 − 𝜆𝐼 = 0, i.e.

u
1 − 𝜆 −1
3 2 − 𝜆 = 0, or 1 − 𝜆 2 − 𝜆 + 3 = 0

u 𝜆" − 3𝜆 + 2 + 3 = 0

u i.e., 𝜆 = ? ± A%B×D
"

= 1.5 ± 1.65𝑖
u Real part is positive ⇒ 𝐴 represents an unstable linear system

Stability analysis example for linear systems
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u 𝐴 = 1 −1
3 −2

u Characteristic equation: 𝐴 − 𝜆𝐼 = 0, i.e.

u
1 − 𝜆 −1
3 −2 − 𝜆 = 0, or 1 − 𝜆 −2 − 𝜆 + 3 = 0

u 𝜆" + 𝜆 − 2 + 3 = 0

u i.e., 𝜆 = %!± %?
"

= −0.5 ± 𝑖 3
u Real part is negative ⇒ 𝐴 represents a stable linear system

Stability analysis example for linear systems
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u A signal 𝐱 is bounded if there is a 
constant 𝑐, s.t. ∀𝑡: 𝐱 t < c

u Bounded signals:
� Constant signal : 𝑥 𝑡 = 1
� Exponential signal: 𝑥 𝑡 = 𝑎𝑒@+, for 𝑏 ≤ 0
� Sinusoidal signals: 𝑥 𝑡 = 𝑎sin 𝜔𝑡

u Not bounded: 
� 𝑥 𝑡 = 𝑎 + 𝑏𝑡 for any 𝑏 ≠ 0
� Exponential signal: 𝑥 𝑡 = 𝑎𝑒@+, for 𝑏 > 0

Bounded signals
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𝑡

‖𝑥‖

𝑡

‖𝑥‖

𝑡

‖𝑥‖

𝑡

‖𝑥‖

𝑡

‖𝑥‖



The dynamical system is seen as a transformer, mapping input signals to 
output signals, and demands that a small change to the input signal 
should cause only a small change to the output signal. 

u A system with Lipschitz-continuous dynamics is BIBO-stable if:
�For every bounded input 𝐮 𝑡 , the output 𝐲(𝑡) from initial state 
𝐱 0 = 0 is bounded

Bounded-Input-Bounded-Output (BIBO) stability
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u Simple helicopter model:
�Two rotors: Main rotor gives lift, tail rotor 

prevents helicopter from spinning
�Torque produced by tail rotor must perfectly 

counterbalance friction with main rotor, or 
the helicopter spins

Helicopter Model continued
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Image credit: From Lee & Seshia: 
Introduction to Embedded Systems - A 
Cyber-Physical Systems Approach, 
http://leeseshia.org/



u 𝑢: net torque on tail of the helicopter – difference between frictional torque 
exerted by main rotor shaft and counteracting torque by the tail rotor

u 𝑦: rotational velocity of the body
u Torque = Moment of inertia × Rotational acceleration

u 𝑦̇(𝑡) = E 2
F

𝑦 𝑡 =
1
𝐼
a
-

2
𝑢 𝜏 𝑑𝜏

u What happens when 𝑢 𝑡 is a constant input?
u 𝑦(𝑡) is not bounded ⇒ helicopter model is not BIBO-stable!

Helicopter Model continued
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